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Reinforced 2d Domain Analysis Using BEM and Regularized BEM/FEM
Combination

Alexandre S. Botta 1, Wilson S. Venturini 2

Abstract: In this work a regularized boundary-finite
element combination is proposed to analyse 2D elasto-
static solids reinforced by fibres. The boundary element
is adopted to model the matrix behaviour, while finite
elements model the embedded fibres. The debonding ef-
fects caused by the adherence loss between the two ma-
terials are also considered. A three-degree polynomial
is adopted to approach the displacement field along the
fibre elements, while linear approximations are used to
represent the bonding forces between fibres and the ma-
trix. The non-linear debonding model is governed by a
loading function written in terms of the contact forces
and the relative displacements. The BEM algebraic equa-
tions are combined with the fibre finite element relations
to eliminate the displacement unknowns along the inter-
face. Then, the resulting redundant algebraic equations
are eliminated by applying the least square procedure.
An implicit non-linear scheme was proposed to model
the debonding effects. Examples dealing with reinforced
concrete elements are presented to illustrate the capabil-
ity of the proposed model.

keyword: Boundary elements, reinforcements,
BEM/FEM combination

1 Introduction

Since the direct boundary element approach has been for-
mulated for elastostatics, Rizzo (1967) and Cruse (1969),
this technique has experimented an enormous growth
reaching nowadays almost all application fields in engi-
neering. For the majority of the problems analysed with
BEM the collocation scheme is the most employed one,
which is justified by the simplicity to derive the integral

1 São Carlos School of Engineering – University of São Paulo Av.
Trabalhador São-Carlense, 400, 13566-970 – São Carlos, Brazil.
alexbott@sc.usp.br

2 São Carlos School of Engineering – University of São Paulo, Av.
Trabalhador São-Carlense, 400, 13566-970 – São Carlos, Brazil.
venturin@sc.usp.br

representations.

In spite of using the standard collocation model to
develop this work, it is important to mention other
boundary integral methods that could also be adopted.
The well-known Symmetric Galerkin Boundary Element
Method (SGBEM) proposed in the eighties [Bonnet et
al., 1998] has proved to be accurate and reliable to deal
with many engineering problems. The drawback of this
method is the evaluation of the hyper-singular elements
always present in the formulation. Using the Mesh-
less Local Petrov-Galerkin (MLPG) to solve non-hyper-
singular displacement and traction integral equations is
another elegant and reliable alternative that could be used
to formulate the BEM/FEM coupling presented herein.
This alternative avoids hyper-singular element integrals
leading to simpler and more accurate procedure to com-
pute the involved matrices. The weakly singular trac-
tion equation formulation was proposed by Okada, Ra-
jiyah and Atluri (1989a,b). More recently, Han & Atluri
(2003a,b) and Atluri et al. (2003) have proposed a more
general formulation using the concepts of the Meshless
Local Petrov-Galerkin – MLPG.

Although the BEM has demonstrated to be a very ac-
curate and appropriate numerical tool for elastostatics,
many times combining this technique with finite ele-
ments may be a more appropriate choice. The first works
dealing with BEM-FEM combinations appeared in the
end of seventies [ Zienkiewicz, et al., 1977; Shaw &
Falby, 1977 and Osias et al., 1977], where the technique
has been adopted for simple cases characterized by the
combination of sub-domains defined in the same space.

Two and three-dimensional solids reinforced by fibres,
beams and even surface elements define a class of prob-
lems for which BEM/FEM combinations have been
adopted in many situations [ Vallabhan & Sivakumar,
1986, Coda & Venturini, 1995 and 1999, Coda et al.,
1999 and Coda, 2001]. The BEM is often adopted to ap-
proximate the region described in the largest space, while
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finite element equations are chosen to model structural
elements defined in smaller spaces. Although recom-
mended, this combination can exhibit unmatched cou-
pling of some degrees of freedom what may bring nu-
merical instabilities. This is always the case when an ap-
proximated boundary value of the finite element region
is coupled with the corresponding value inside the BEM
region.

Better results are always obtained using only BEM ap-
proach when the tractions along the interface are elim-
inated before the discretization, avoiding therefore any
possible problem regarding the selected shape functions.
This formulation has been first introduced by Venturini
(1992) and recently extended to analyse thin inclusions,
including fibres [Leite, et al., 2003]. Particularly for the
case of fibre immersed into 2D solids, closed analytical
forms to carry out all boundary and interface element in-
tegrals have been used, eliminating therefore any possi-
ble numerical integration error.

Herein, the standard BEM/FEM combination is again
considered to analyse the simple case of fibres im-
mersed in a two-dimensional domain. Boundary ele-
ments are adopted to describe the equilibrium of the two-
dimensional domain. The algebraic equations of the fi-
bres, assumed without any bending stiffness, are written
using the finite element approach. The interface forces
are considered as load lines to derive the 2D solid inte-
gral representations and as body forces for the fibre dif-
ferential equation. A third degree polynomial is adopted
to approach the displacement field along the fibre, lead-
ing to linear approximation for the interactive bonding
forces. Algebraic equations are written for all nodes de-
fined along the interface and required to approach the dis-
placement field. The BEM algebraic block equation is
combined with the finite element relations written for the
fibre structure to eliminate the displacement unknowns
along the interface. A debonding criteria is also assumed
to governs the shear stresses along the fibre-matrix inter-
face. An implicit scheme employing consistent tangent
matrix was also developed to deal the non-linear case. In
order to assure stability of the combined system of equa-
tions, a certain number of redundant relations for nodes
taken along the interface is written. Then, the number
of relations is properly reduced by using the least square
concept.

Numerical examples are shown to illustrate the capability
of both, the proposed enriched BEM-FEM combination

and the degenerated sub-region technique, to deal with fi-
bres immersed into two dimensional elastic solids, lead-
ing to very accurate results, without exhibiting spurious
oscillations as often observed for this kind of problems.

2 Basic equations

Let us consider the domain Ω depicted in Figure 1 that,
for simplicity but without loss of generality, is reinforced
by a single fibre Ω f .

For the elastic body Ω, the equilibrium equation written
in terms of displacements is given by:

ui, j j +
1

1−2ν
u j, ji +bi/G = 0 (1)

where ui represents displacement components, G is the
shear modulus and ν is Poisson’s ratio.

Γ

fΩ

Ω

Figure 1 : Domain reinforced by single fibre.

As usual, for a domain Ω with boundary Γ, the integral
representation of displacements is derived by applying
Betti’s principle (or Green’s second identity).

ci ju j = −
∫
Γ

p∗i ju jdΓ+
∫
Γ

u∗i j p jdΓ+
∫
Γ f

u∗is fsdΓ (2)

where the symbols “∗” is used to indicate fundamental
solutions and p j represent boundary traction values.

In equation (2) fs is the internal force acting along the
interface Γ f and represents the fibre effects. They may
be assumed as body forces multiplied by the fibre thick-
ness. Thus, the fibre domain Ω f depicted in Figure 1 is
replaced by the interface Γ f where fs acts, as shown in
Figure 2.

One can differentiate equation (2) to derive the integral
representation of strains and then apply the Hooke’s law
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Figure 2 : Line load fs acting along the interface Γ f .

to obtain the stress integral equation, as follows,

σk
i j = −

∫
Γ

S∗i jkukdΓ +
∫
Γ

D∗
i jk pkdΓ+

∫
Γ f

D∗
i js fs (3)

where S∗i jk, and D∗
i jk are well known tensors for the stress

equation obtained by applying the Hooke’s law on the
fundamental solution at the source point, D∗

i js = D∗
i jksk

being sk the fibre cosine director (Brebbia & Dominguez,
1992).

For the fibre domain, Ω f , the differential equation is very
simple and given by:

d2u f

ds2 +
f f

E f S
= 0 (4)

where u f is the displacement in the fibre direction, f f is
the distributed force applied along the fibre, representing
the interface forces (bonding forces) when the element
is immersed into a 2D or 3D body, and E f S gives the
element rigidity (E f and S are the elastic modulus and
the cross section area of the fibre).

From the Virtual Work Principle one can find:

∫
Γ f

εσdΓ =
∫
Γ f

u f f dΩ+
Np

∑
i=1

uiFi (5)

where σ is the fibre normal stress component, Fi gives
the concentrated forces at Np fibre end nodes i, while the
upper bars indicate virtual strains and displacements in
the fibre direction.

3 Debonding model

Fibres embedded in the domain (matrix material) can
only pay important roles to modify the solid stiffness and

loading capacity if enough internal forces along the inter-
face can be sustained. Sliding along the interface may be
allowed when a certain amount of strength is preserved.
The ideal situation where perfect bonding is assumed is
impossible in practice; at least in the vicinity of fibre
ends, the interface forces tend to rise to infinity and there-
fore sliding occurs according to the bonding carrying ca-
pacity.

To model the slip that may occur in the matrix-fibre in-
terface, a debonding criterion should be considered. In
this work, the model proposed in the CEB-FIP (1990)
was implemented together with the proposed BEM-FEM
coupling. This model is particularly appropriate to sim-
ulate the concrete-steel debonding process in reinforced
concrete members.

The curve shown in Figure 3 represents the debonding
criterion obtained from the CEB-FIP (1990) to relate the
bonding forces f with the slip s, which represents the
relative displacement due to the sliding effects. The fol-
lowing parameters define this model: maximum bonding
force fmax, residual bonding force f f , slip characteristic
values s1, s2 and s3, constant α and the unloading modu-
lus Sd. These parameters, found in the CEB-FIP recom-
mendations, are given in terms of the steel arrangements,
bonding conditions and characteristic concrete strength
in compression.

From the Figure 3, the following relationships can be
written for the adopted model:

f = fmax(s/s1)α for [0, s1] (6)

f = fmax for [s1, s2] (7)

f = [ fmax · s3 − f f · s2 +( f f − fmax) · s]/(s3− s2)
for [s2, s3] (8)

f = f f for s > s3 (9)

4 Algebraic equations

4.1 Displacement compatibility and equilibrium
equation

In order to analyse reinforced solids governed by the
debonding model given in item 3, the relative displace-
ments between fibres (steel bars for the reinforced con-
crete case) and the matrix (concrete material assumed ho-
mogeneous and isotropic) are taken into account to define
the kinematic relationships. The displacements at matrix
points along the interface are denoted by the vector ui and
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Figure 3 : CEB-FIP (1990) debonding model.

are represented algebraically by the BEM equations. On
the other hand, the nodal displacements of the embedded
fibres are denoted by the vector u f . Then, assuming that
a relative displacement along the interface may occur, the
displacement compatibility reads:

u f = ui + s (10)

being s the nodal slip values.

The equilibrium equation is represented by f f + f i = 0,
where f f and f i are nodal value vectors of distributed
forces applied to the fibre finite elements and acting
along the interface line (bonding forces) in the 2D do-
main, respectively.

4.2 BEM equations

As usual for BEM formulations, algebraic equations are
obtained from equations (2) and (3). One has to dis-
cretize both the boundary Γ of the 2D domain and the in-
terface Γ f into elements and approximate the associated
variables, displacements and tractions along the bound-
ary elements and interaction forces along the fibre in-
terface elements. In the present case, continuous and
discontinuous linear elements have been conveniently
adopted.

From equation (2), one can write the algebraic represen-
tation for the displacements at any collocation point x de-
fined inside the domain, along the fibre load line, along
the boundary or outside, as follows:

c(x)u(x) = −H(x)U +G(x)P+S(x) f i (11)

where H(x), G(x) and S(x) are influence matrices ob-
tained by carrying out the integrals over boundary and

interface elements in equation (2), u(x) gives the dis-
placement components at the collocation x and U and P
are vectors containing boundary nodal displacements and
tractions, respectively.

Selecting a proper number of collocation points along the
boundary and along the interface, two sets of algebraic
equations can be derived for boundary nodes and internal
points, respectively, as follows:

HbU = GbP+Sb f i (12)

ui = −HiU +GiP +Si f i (13)

where the subscripts b and i indicate the block matrix for
boundary and interface nodes, respectively.

Remark: very short elements to represent the fibre ends
may be defined together with the corresponding interface
forces. If considered, an extra degree of freedom must be
defined at the middle point of those elements.

For the stresses, the algebraic equations are directly de-
rived from the stress integral representation given by
equation (3), as follows:

σ = −H ′U +G′ P+S′ f i (14)

where H ′, G′ and S′ are obtained by carrying out the in-
tegrals over boundary and interface elements in equation
(3).

It should be noted that special care is required when writ-
ing values that involve displacement derivatives, which
is the case of stresses in equation (14). The collocations
at the interface must be properly chosen and one has to
compute correctly the Hadamard’s finite parts when per-
forming the integrals over adjacent elements.

4.3 FEM equations

From equation (5), one can write the algebraic equations
using finite elements choosing properly the approxima-
tions of displacements and body forces (bonding forces)
over each element. In this work, third degree poly-
nomials are adopted to approximate the displacements
along fibre elements; as a consequence of equation (4)
the bonding forces are linearly approximated. Thus, for
each fibre finite element, four nodes equally spaced along
the fibre element length L are required for displacement
approximation, while the bonding force approximation
requires only two nodes. As the relationship between
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slip and bonding force taken directly from the debond-
ing model is locally defined, it is convenient to adopt the
same linear approximation for the slip variable s, using
also the same end nodes.

As usual adopted for BEM/FEM combination, the inte-
gral of the right hand side of equation (5) are performed
keeping as nodal values the bonding force values. Thus,
the obtained FEM matrix equation for a single fibre ele-
ment is given by:

H f u f = G f f f +P f (15)

Substituting u f according to equation (10) gives:

H f u+Hss = G f f f +P f (16)

where ui was replaced by u, H f and Hs are the fibre stiff-
ness matrices, separately represented to take into account
different approximations of u and s, G f is the well-known
lumping matrix, while P f stands for applied nodal con-
centrated forces.

For the fibre element defined in Figure 4, the matrices H f

can be easily derived, as follows:

H f =
E f S
40L

⎡
⎢⎢⎣

148 −189 54 −13
−189 432 −297 54

54 −297 432 −189
−13 54 −189 148

⎤
⎥⎥⎦ (17)

where E f S is the bar section rigidity.

The lumping matrix G f appears when transforming the
nodal forces (standard FEM formulations) into inter-
face traction nodal values. It is obtained by perform-
ing the integral of the product of the third degree dis-
placement approximating function φ and the linear ap-
proximation function ψ adopted for interface tractions,
i.e., G f =

∫
Γ f φψdA. For the fibre element defined in

Figure 4, with linear function ψ for bonding forces and
the third degree polynomial function φ for displacements,
the lumping matrix G f , given in terms of its geometrical
characteristics, reads:

[
G f ]T =

⎡
⎣ 13L

120
3L
10

3L
40

L
60

L
60

3L
400

3L
10

13L
120

⎤
⎦ (18)

The matrix Hs is directly obtained from equation (17) by

approximating linearly the displacement s to give:

Hs =
E f S
40L

⎡
⎢⎢⎣

148 −189 54 −13
−189 432 −297 54

54 −297 432 −189
−13 54 −189 148

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

s1
2
3 s1 + 1

3 s2
1
3 s1 + 2

3 s2

s2

⎫⎪⎪⎬
⎪⎪⎭=

E f S
L

⎡
⎢⎢⎣

1 −1
0 0
0 0
−1 1

⎤
⎥⎥⎦
{

s1

s2

}

(19)

where s1 and s2 are nodal slip variables shown in Fig-
ure 4.

It is to be noted that the values (2s1/3+ s2/3) and
(s1/3+2s2/3) that appear in equation (19) are the s val-
ues computed at the element thirds.

4.4 BEM/FEM combination

In order to combine the algebraic equations obtained
from both BEM and FEM schemes applied to the matrix
body and to bars or fibres, respectively, one has to en-
force traction equilibrium and displacement compatibil-
ity at the interface nodes, i.e., u f = ui+s and f i + f f = 0,
bearing in mind that, along the interface, the displace-
ments and interface shear tractions are the unknown val-
ues.

For N selected collocation points related with the N
boundary nodes, equation (12) contains 2N boundary al-
gebraic relationships, relating 2N displacements U and
2N tractions P, and a certain number of internal matrix-
fibre interface unknowns, contained in f i, necessarily
smaller than 2M the corresponding dimension of matrix-
fibre interface displacement vector ui. To couple BEM
domains with fibre reinforcement, equation (13) has to be
written for the M collocation points defined along the fi-
bre where displacement compatibility is enforced, giving
2M algebraic relations. Moreover, if convenient to im-
prove numerical solutions, other redundant displacement
equations can be written for complementary collocations
defined along the fibre elements, but without introducing
new unknowns. The dimension 2M of Hi can be there-
fore conveniently increased. The displacement values at
the new collocations are properly replaced by consider-
ing the approximation function along the fibre element.
The number of redundant equations will be larger than
2M, but the number of displacement values remains 2M,
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Figure 4 : Variable approximations for fibre element.

while the number of nodal bonding forces is smaller that
2M.

As described above and also illustrated in Figure 4, at the
fibre element level, the number of displacement values is
much larger than that of bonding force values. Thus, in
equation (13) the number of algebraic relations is much
larger than the number of force values in f i. To reduce
the number of equations to be equal to the number of
unknowns one can apply the least square method. In
this work, we have simplified this scheme reducing the
number of equations at element level. Equation (13) was
rewritten to express the displacement values at nodes de-
fined over a single fibre, as follows:

uk = −HkU +GkP+Sk f i (20)

where k = 1, · · · ,n is the fibre number and the matrices
Hk, Gk and Skare now referred to the fibre k.

To reduce the redundant algebraic relations, in equation
(20) one has to use the least square method leading to the
following reduced system of equations:

ST
k uk = −ST

k HkU +ST
k GkP +ST

k Sk f i (21)

where the matrix Sk is defined for each fibre and ST
k is its

transpose matrix.

Equations (21) written for all fibres are joined together to
define the system of algebraic relations for the interface
points. The final number of algebraic relations written
for interface nodes is exactly the dimension of vector f i.
After applying the boundary conditions, all relations for
the interface points are expressed by,

Sui = −HU +GP +R f i (22)

where the matrices S, H, G and R are properly obtained
from equation (21).

It is important to point out that, in equation (22), the
boundary conditions have already been introduced there-
fore the matrices H and G contains displacement and
tractions coefficients. For simplicity, the notation U is
referred to the boundary unknowns and P refers to the
prescribed boundary values.

Equation (22) is a regularized algebraic representation re-
lating boundary and bonding force unknowns.

Similarly, applying the boundary conditions to the
boundary algebraic system of equations (12) gives:

U = H−1
b GbP+Rb f i (23)

where Rb = H−1
b Sb stands for the bonding forces influ-

ences.

Replacing the unknown vector U in equation (22) leads
to:

Sui = (G−HH−1
b Gb)P+(R−HRb) f i (24)

or simply

Sui = GP+S f i (25)

where

G = G−HH−1
b Gb (26)

S = R−HRb (27)

The regularized BEM equation (25), containing only in-
ternal unknowns, can be combined with the FEM alge-
braic equation (16), by enforcing displacement compati-
bility (u f = ui+s) and equilibrium ( f i =− f f ) conditions
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to give the final algebraic representation of the reinforced
solid as follows:[

S 0
H f Hs

]{
u
s

}
=
[

G
0

]
{P}

+
[

S
−G f

]
f +
{

0
P f

} (28)

where, for convenience, the index i has been suppressed.

5 Non-linear formulation

To solve equation (28), one has to take into account
the non-linear relationship described by the debonding
model presented in item 3, in which the relation between
the debonding force f and the slip s, f = f (s) is estab-
lished. The equilibrium equation (28) is then rewritten in
terms of the variable increments, as follows:[

S 0
H f Hs

]{
∆un

∆sn

}
=
[

G
0

]
{∆Pn}

+
[

S
−G f

]
{∆ fn(∆sn)}+

{
0

∆P f
n

} (29)

where for any value a, ∆an = an+1 −an is its increment
in the time increment ∆tn.

From equation (29) one can find the unknown vector{
∆un ∆sn

}T
, as follows:{

∆un

∆sn

}
= [K]

[
G
0

]
{∆Pn}

+[K]
[

S
−G f

]
{∆ fn (∆sn)}

+[K]
{

0
∆P f

n

} (30)

where

[K] =
[

S 0
H f Hs

]−1

(31)

Equation (30) can be conveniently rewritten in the fol-
lowing form:{

∆un

∆sn

}
=
[

Kuu

Ksu

]
G∆Pn

+
[

Kuu Kus

Ksu Kss

] [
S

−G f

]
∆ fn (∆sn)

+
[

Kus

Kss

]
∆P f

n

(32)

where Kik are sub-matrices of K, conveniently rearranged
to compute ∆un and ∆sn, respectively.

From equation (32), one can write separately the slip in-
crement ∆sn as follows:

∆sn = KsuG∆Pn + [Ksu Kss]
[

S
−G f

]
∆ fn (∆sn)

+ Kss∆P f
n

(33)

Rearranging equation (33) one obtains:

Y (∆sn) = ∆sn−
[
Ksu Kss

]{ ∆Pn

∆P f
n

}
− Ss∆ fn (∆sn) = 0

(34)

where

Ss = [Ksu Kss]
[

S
−G f

]
(35)

Ksu = KsuG (36)

Equation (34) represents a non-linear system of equa-
tions given in terms of the slip increment {∆sn}. It can
be solved by applying the Newton-Raphson scheme. An
iterative process may be required to achieve the equilib-
rium. Then, from the iteration i the next try, i+1, for the
time increment ∆tn is given by:

∆si+1
n = ∆si

n +δ∆si
n (37)

Linearizing equation (34) and using the first term of the
Taylor’s expansion, give:

Y
(
∆si

n

)
+

∂Y
(
∆si

n

)
∂∆si

n
δ∆si

n + · · · = 0 (38)

The derivative that appears in equation (38) is directly
obtained from equation (34) using the debonding model
relationships given by equations (6)-(9). Then, one has:

∂Y
(
∆si

n

)
∂∆si

n
= I −Ss

[
∂∆ fn

(
∆si

n

)
∂∆si

n

]
= SCT O (39)

where I is the identity matrix.

The matrix SCTO, in equation (39), is the algorithmic con-
sistent tangent operator for the present formulation. The
derivatives on the right hand side of equation (39) depend
on the actualized slip values, si

n+1 = sn + ∆si
n, computed
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Figure 5 : Stretched reinforced domain. Geometry and discretization.

appropriately according to the intervals of s defined in
equations (6)-(9). These derivatives are locally defined
by:

d
(
∆ fn

(
∆si

n

))
d∆si

n
=

α fmax

s1

((
sn +∆si

n

)
s1

)α−1

for [0, s1] (40)

d
(
∆ fn

(
∆si

n

))
d∆si

n
= 0 for [s1, s2] (41)

d
(
∆ fn

(
∆si

n

))
d∆si

n
=

( f f − fmax)
(s3 − s2)

for [s2, s3] (42)

d
(
∆ fn

(
∆si

n

))
d∆si

n
= 0 for s > s3 (43)

Reaching the convergence in equation (34) for the time
increment ∆tn after i iterations, one has to compute the
slip variable s to start the next increment, as follows:

sn+1 = sn +∆si
n (44)

After finding ∆sn = sn+1−sn, other variables are directly
obtained. The internal displacements in ∆un are com-
puted from the first block in equation (32). The debond-
ing forces are computed from the constitutive relation
∆ fn (∆sn). The boundary displacements and tractions,
stresses and strains in the 2D domain are computed by
the appropriate integral equations.

6 Numerical examples

In this section, two numerical examples are analysed
to check the performance and accuracy of the proposed
BEM/FEM combination for two-dimensional reinforced
solids.

The rectangular domain reinforced by four internal fi-
bres, as shown in Figure 5, defines the first exam-
ple. Plane stress conditions were assumed for the two-
dimensional matrix domain, although according to its
length/height ratio beam behaviour is expected. The ma-
trix material is assumed linear elastic with Young’s mod-
ulus Em = 2,000.0 kN/cm2 and Poisson’s ratio ν = 0.0.
The rigidity associated with the matrix domain is given
by AmEm = 4,000.0 kN, in which Am is the correspond-
ing matrix cross-section area, while the rigidity of each
bar is A f E f leading to the total amount of 4A f E f when
the four fibres are considered (As and Es are the fibre
cross-section and young’s modulus, respectively). For
convenience, the analysis is carried out relating the to-
tal fibre rigidity with the matrix rigidity by assuming
4A f E f = αAmEm. A rather fine 2D solid boundary mesh
with 60 linear elements, also shown in Figure 5, was
adopted to assure obtaining accurate numerical values.
Four discretizations, with 25, 50, 100 and 200 elements
per fibre, were used to approximate displacements and
interface forces. Finer discretizations are required to
capture precisely the interface forces near the fibre end
where singularity is expected. The example was also
analysed by using only boundary elements, treating the
fibres as very thin sub-region as proposed by Leite et al.,
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Figure 6 : Longitudinal displacements along a central fibre.

Figure 7 : Fibre-matrix interface shear force distribution.
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2003. For this BEM analysis both side of each fibre must
be discretized as well as the very small ends.

Figure 6 shows the displacements computed along the
beam axis. These results have been obtained by mak-
ing the parameter α = 1, i.e., the matrix and the fibre
rigidities are the same. As one can see, accurate results
are obtained even for course meshes. For this exam-
ple, the results obtained by using the standard BEM/FEM
and BEM/BEM combinations are also accurate. The in-
terface shear force distributions computed by adopting
several fibre discretizations are depicted in Figure 7. A
rather fine mesh was needed to represent the unbounded
value near the fibre end (fibre end detail in Figure 7). Al-
though unbounded values are expected at the fibre ends
and very high values on its vicinity, the force distribu-
tion computed for all experimented discretizations are
smooth and exhibit the same behaviour. It is important
to point out that interface forces exhibiting oscillations
may be obtained with the standard BEM/FEM approach,
even when reasonable fine meshes were used. The oscil-
lations will disappear only for very fine meshes.

We have also run this problem for several fibre densities
to verify the capability of the formulation to deal with
highly reinforced domains. We have used four reinforce-
ment densities α =0.5, 1.0, 2.0 and 4.0. Figures 8 and 9
show the influence of the reinforcement densities on the
computed results given in terms of longitudinal displace-
ments and shear force along the fibre-matrix interface.

The second example analysed here was carried out to
check the capability of the formulation to model the
bonding shear stress distribution along the steel bar-
matrix interface during a classical pulling test. In Fig-
ure 10, a steel bar is partially embedded into a 2D block;
a small part of the steel bar is not immersed to allow ap-
plying the pulling forces. The geometric data chosen to
perform this analysis is also given in Figure 10. Displace-
ments are prescribed equal to zero along the left vertical
side of the two-dimensional domain, whereas at the op-
posite side the load is applied by prescribing the displace-
ment u f at the steel bar extremity; the 2D domain right
end is free to move. The concentrated force P, the pre-
scribed displacement u f conjugate, acts to pull the steel
bar out of the domain.

The elastic properties assumed for this analysis are:
block Young’s modulus, Em=30,000.00Mpa, Poisson’s
ratio ν=0.0, steel bar rigidity, E f A f = 21,000.00 kN. The
debonding model parameters chosen to run this example

are: α = 0.8, s1 = 0.06 cm, s2 = 0.065 cm, s3 = 0.1 cm,
fmax = 10.95 MPa and f f = 1.65MPa. A boundary mesh
with 60 linear elements is adopted to approximate the
matrix domain boundary, while 160 uniform finite ele-
ments were adopted to model the single steel bar. Finer
meshes have been tested to confirm that the discretization
adopted was enough fine to give accurate results.

Figure 11 shows the obtained force-displacement
(P X u f ) curve. As expected, one has a non-linear re-
sponse due to the sliding effect. Initially, the curve is
almost linear. Then, the bonding strength diminishes and
the steel bar slides.

Figure 12 shows five different diagrams with the debond-
ing forces acting along the steel bar, each one for a par-
ticular value of the prescribed displacement u f . As ex-
pected, for low values of u f , the forces are larger in the
vicinity of the steel bar end. As u f increases, one can ob-
serve that the horizontal path of the debonding model was
clearly represented. Prescribing a large displacement, as
u f = 0.15cm, the interface shear forces reach the limit
f f = 1.65MPa along the whole steel bar interface. Fig-
ures 13 and 14 show the matrix displacement u and the
slip s along the steel bar interface, respectively, for differ-
ent values of the prescribed displacement u f . As shown
in Figure 13, the matrix displacements increase along the
whole steel bar when u f increases. For u f = 0.15cm, the
matrix displacements decrease as a result of the debond-
ing model softening. On the other hand, the slip values
given in Figure 14 always increase when u f increases, as
expected.

Conclusions

In this work an improved BEM/FEM coupling is pre-
sented to deal with reinforced 2D elastic domains con-
sidering the possibility of sliding along the matrix-fibre
interface. The combination of the two methods is made
by writing redundant algebraic equations. The necessary
number of algebraic relations is then obtained by using
the least square method. A non-linear criterion has been
introduced to allow sliding between the reinforcement
and the matrix material. For this case the consistent tan-
gent operator has been derived. For the solution of the
non-linear system an implicit scheme was adopted. The
accuracy and reliability of the developed formulation to
deal with reinforced domains have been demonstrated by
solving two rather complex examples.
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Figure 8 : Longitudinal displacements along a central fibre for several reinforcement densities.

Figure 9 : Fibre-matrix interface shear force distribution for several reinforcement densities.
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Figure 10 : Reinforced 2D domain.
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Figure 11 : Force-displacement curve.
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Figure 12 : Debonding forces along the steel bar for different values of u f .
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Figure 13 : Matrix displacement u along the steel bar for different values of u f .
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Figure 14 : Slip s along the steel bar for different values of u f .
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