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A Geometrical Approach for Solving 2D Eikonal Equation

C. K. Au 1

Abstract: Solving the Eikonal equation is popular due
to its potential applications in various areas. Numerical
method is the most common approach to solve the equa-
tion. This paper presents a geometric approach to solve
the equation. Each point in a two dimensional domain
with a given velocity field is characterized by the least
time from the source. The path of least time is obtained
by the Euler equations characterizing the extrema of the
variation problem. A geometric representation of the
space time function for the source is constructed. The so-
lution to the eikonal equation is obtained based on space
time geometry.

keyword: path of least time, eikonal equation, front
propagation

1 Introduction

The Eikonal equation describes the time propagation in a
given velocity field. Due to its numerous applications
[Sethian (1999b), Lions (1982), Bardi and Copnzzo-
Dolectta (1997), Osher and Fedkiw (2003), Qian and
Symes (2001), Cheng, Kang, Osher, Shim, and Tsai
(2004)], solving the equation is an active topic of re-
search. The equation may be solved analytically in cer-
tain situations; however, numerical methods have been
recognized as the most efficient means of the compu-
tation since the velocity field and the existence of ob-
stacles complicate the propagation. Among the var-
ious algorithms [Mauch (2003), Reitich and Tamma
(2004)] proposed to solve the equation, fast marching
method [Mauch (2003), Sethian (1999a), Sethian and
Vladimirsky (2000)], level set methods [Sethian (1999b),
Kim (2001), Adalsteinsson and Sethian (1999), Barth
and Sethian (1998)] and fast sweeping method [Tsai,
Cheng, Osher, and Zhao (2003), Kao, Osher, and Qian
(2003), Zhao (2004)] are three popularly adopted ap-
proaches. For a given velocity field with obstacles, two
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major phases are included in these approaches: dis-
cretization of the flow field and resolution of the nonlin-
ear discrete system. The discrete domain can be a struc-
tured or an unstructured mesh. The obstacles are consid-
ered as the regions with zero speed in the velocity field.
Finite difference method is used to solve the system of
equations obtained from the mesh.

This paper presents a geometric approach to solve the
two dimensional Eikonal equation. A flow path from
a primary source is determined by a given static veloc-
ity field which is a function of the location in the two
dimension domain. Secondary sources are activated as
the flow collides with the obstacles. These secondary
sources complicate the flow pattern. A space time func-
tion is adopted to describe the flow from each source,
either primary or secondary. These functions are repre-
sented by a set of solid geometries [Mantyla (1988)]. The
resultant space time function is created by Boolean sum
[Mantyla (1988)] of these geometries. The flow fronts
are determined from this solid geometry.

2 Eikonal Equation

The 2D eikonal equation for describing the propagation
time t(x1,x2) from a primary source Γi to a point (x1,x2)
has the form of

v |∇t| = 1 in Ω ⊂ R2

t = 0 on Γi ⊂ R2 (1)

where v = v(x1,x2) is a velocity field; Ω is the 2D com-
putational domain.

A flow path γ in the Euclidean domain R2 is given by
a vector-valued function of the path length s defined on
some interval [a,b]

γ(s) = ((x1(s),x2(s))

Denoting y,k = dy
dxk

(∀k = 1,2) and y,s = dy
ds as the first

derivative of y with respect to xk and s respectively.
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Lemma 0. The flow path between two points in a 2D
Euclidean domain satisfies the Eikonal equation.

Proof. Use chain rule, xk,s = 1
v xk,t which implies

t,k =
1
v

s,k

As a result,

∑ t2
,k =

1
v2 ∑ s2

,k

Since s =
√

gi jxix j in the 2D Euclidean domain,

s,k =
xk√

gi jxix j

Hence

t2
,1 + t2

,2 =
1
v2

or

v |∇t| = 1

Equation (1) is nonlinear. The nonlinearity is essential
for producing multiple branches of solution. Multiple
branches include various modes of propagation such as
reflection, refraction and diffraction. Multiple paths also
exist in each mode. Different paths between two points p
and q are shown in figure 1.

Given a path parametrized in u, with components its line
element (ds)2 = gi jdxidx j is invariant. As it will be use-
ful, the conversion factor between the parameter u and
the arc length s is:

ds =
√

gi j(xi
,u)(x j

,u)du (2)

Among the multiple paths for the eikonal equation, the
path of least time is adopted. The geometry of the path γ
in a 2D Euclidean domain R2 is affected by two factors:

1. the velocity field and;

2. the obstacles in the domain.

p

q 
obstacle 

refraction 

reflection 

diffraction 

Figure 1 : Multiple paths between two points

3 Path Curvature Due to Velocity Field

The time of travel t along a path γab from a to b with
speed v is given as

t =
∫

γab

ηds (3)

where η = 1
v is also known as slowness field.

The calculus of variation allows one obtain a differential
equation for describing the path that has least travel time
between two points. Differentiating the functional (3)
invokes the necessary condition of the Euler-Lagrange
equations:

f,i =
d

du

(
∂ f

∂xi,u

)
∀i = 1,2 (4)

where

f = η
√

gi j(xi
,u)(x j

,u)

If the conversion equation (2) between du and ds is unity,

s,u =
√

gi j(xi
,u)(x j

,u) = 1

then the following result is immediate.

Lemma 1. The flow path between two points in a 2D
Euclidean domain involves the solution of the Euler-
Lagrange equations in the form:

∇η =
d(ηx′)

ds
(5)

where x′ = (x1,s,x2,s).
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Proof. Verification of the x1-component proceeds as fol-

lows. Since
√

gi j(xi
,u)(x j

,u) = 1 implies u = s and f = η.
Therefore,

∂ f
∂x1

=
∂η
∂x1

and

d
du

(
∂ f

∂x1,u

)
=

d
du

⎛
⎜⎜⎝

∂
(

η
√

gi j
(
xi
,u

)(
x j
,u

))
∂x1,u

⎞
⎟⎟⎠

which gives

d
du

(
∂ f

∂x1,u

)
=

d
ds

(ηx1,u)

Hence,

∂η
∂x1

=
d
ds

(ηx1,s)

Expanding equation (5) yields

x” = x′ ×(∇ lnη×x′
)

(6)

Hence, the propagation path will be a straight line for
constant speed. Curvature is introduced into the path if
the speed is not a constant in the domain, which implies
the introduction of forces. For instance, if the speed v =
kx2 (i.e. speed is proportional to the x2 co-ordinate), the
path takes on the form of a circular arc in R2. Similarly,
if v = k

x2
(i.e. speed is inversely proportional to the x2

co-ordinate), the flow path will be a catenary.

4 Path Curvature Due to Obstacles

The obstacles in the domain are symbolized by a set of
boundaries. A more detail discussion of the geometric
definition of an obstacle can be found in reference [An-
gluin, Westbrook, and Zhu (2001)]. When an obstacle
exists and blocks the path, a path of local minimal time
of travel will be picked. As a result, the path goes around
the obstacle.

For the existence of an obstacle, the 2D Euclidean do-
main R2 is divided into two regions, Ri (the region which
is inside the obstacle) and Ro (the region which is outside
the obstacle) by a closed boundary ∂R.

Definition 1. A concave boundary is a part of a closed
boundary which is concave to a region.

Definition2. A convex boundary is a part of a closed
boundary which is convex to a region.

Hence, a concave boundary to the region Ri is a convex
boundary to the region Ro.

Lemma 2. If the path of least time γab between two points
a and b in a 2D Euclidean region Ro is blocked by the
boundary (i.e. it intersects the concave boundary seg-
ment ∂R so that the path is partially in the region Ri),
then the flow path γ′ab is expressed as

γ′ab = γat1 ∪∂Rt1t2 ∪ γt2b,∀γat1,∂Rt1t2 ,γt2b ⊂ Ro

where t1 and t2 are points on ∂R which are tangent to γat1

and γat2 respectively;

∂Rt1t2 is part of ∂R with two extreme points t1 and t2 and
is concave to the region Ro.

Proof. Figure 2(a) shows a part of a boundary ∂R and
the corresponding two regions. Let u and w be the in-
cident and reflected velocity respectively. Considering
the assumption of no reflection and conservation of mo-
mentum, ucosθ = 0 and usinθ = wsinφ where θ and φ
are the incident angle and reflected angle with the nor-
mal vector n at t1. u �= 0 implies θ = π

2 and u = w (since
θ = φ). Hence, γat1 is tangent to ∂Rt1t2 at t1. Similarly,
γt2b is tangent to ∂Rt1t2 at t2 as shown in figure 2(b).
Therefore, γat1 ∪∂Rt1t2 ∪γt2b is the path within the region
Ro.

Corollary 2.1 If the boundary segment ∂Rcd is both con-
cave and convex, then the flow path γ′a′b′ is expressed as

γ′a′b′ = γa′t1 ∪∂Rt1 t′1 ∪ γt′1t′2 ∪∂Rt′2 t2
∪ γt2b′

∀γa′t1 ,∂Rt1t′1 ,γt′1t′2 ,∂Rt′2t2
,γt2b′ ⊂ Ro

where t′1 and t′2 are points on γt′1t′2 which are tangent to
∂R.

Proof. Figure 3 shows a combination of two situations
described by Lemma 2. Setting point a′ = a, t′2 = b, by



4 Copyright c© 2005 Tech Science Press CMES, vol.8, no.1, pp.1-13, 2005

 
 
 
 
 
 
 

a 

b

oR

iR

u

w

n
1t

R∂

(a) obstacle on the path of least time be-
tween a and b
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(b) the path between a and b

Figure 2 : The propagation path around an obstacle

Lemma 2,implies that t′1 is a tangent point on Γt1t′1. Sim-
ilarly, setting b′ = b, t′1 = a indicates that t′2 is a tangent
point on ∂Rt′2t2

. Therefore γt′1t′2 is tangent to the concave
boundary segments ∂Rt1t′1 and ∂Rt′2t2

Corollary 2.2 If there exists a reentrant vertex v on the
boundary of the region Ro which blocks the path of least
time γab between two points a and b, then the flow path
γ′ab is expressed as

γ′ab = γav ∪ γvb,∀γav,γvb ⊂ Ro

Proof. Figure 4(a) depicts the flow path between two
points. Due to the existence of the concave boundary,
the deflected flow path γ′ab = γat1 ∪∂Rt1t2 ∪ γt2b as spec-
ified by Lemma 2. If the concave boundary degen-
erates to a reentrant vertex v as shown in figure 4(b)
(t1 and t2 converge to v), then the flow path becomes
γ′ab = γav ∪ γvb.
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Figure 3 : The propagation path along a boundary seg-
ment
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(b) a reentrant vertex on a boundary

Figure 4 : Flow path over a reentrant vertex

5 Space Time Geometry of a Source

A source emits continuously in the region. Hence, the
flow paths start at the source.

Definition 3. A source Γi is a geometric entity Γi ⊂ R2

such that the flow path is γsb,∀s ∈ Γi and ∀b ∈ R2.

A source can be further categorized into point source,
curve source and region source based on the geometric
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(a) constant velocity field 

(b) velocity field 2kxv =  

Figure 5 : Propagation paths from a point source with
different velocity field

entity.

Figure 5(a) and 5(b) show the flow paths from a point
source with constant speed and speed proportional to the
axis x2 respectively.

The flow front from an emitted point source is the front
line of the emission. It is a topological circle in the do-
main. An advancing flow front is a function of time t.
The flow front possesses the geometrical property that it
must be orthogonal to the flow path from the source.

Lemma 3. The Euler-Lagrange equations for a flow path
of least time adopt the form:

ẍi = λ j
i (lnη) , j (7)

where λ j
i =

(
δi j

η2 −2ẋiẋ j

)
(lnη) , j

Proof. Form equation (6),

d2xi

ds2 = ∑ j

(
δi j − dxi

ds

dx j

ds

)
(lnη), j

Rewriting as

dt
ds

d
dt

(
dxi

ds

)

= ∑ j

(
δi j −

(
dt
ds

)(
dxi

dt

)(
dt
ds

)(
dx j

dt

))
(lnη), j

Substituting dt
ds = η gives

η
d
dt

(ηẋi) = ∑ j

(
δi j −η2 ẋiẋ j

)
(lnη), j

Expanding the left hand side yields

η(η̇ẋi +ηẍi) = ∑ j

(
δi j −η2 ẋiẋ j

)
(lnη), j

Since η̇ = η,kẋk which implies

η
(
η, j ẋ

jẋi +ηẍi
)
= ∑ j

(
δi j −η2ẋiẋ j

)
(lnη), j

Re-arrangement of the terms yields ẍi = λ j
i (lnη), j

Figure 6 shows the flow fronts of the point sources cor-
responding to that in figure 5.

A space time describes the position in domain with a ve-
locity field v at a specific time instant. Lemma 3 gives
the relationship between a two dimensional space (in
terms of x1,x2) and time in terms of the direction of flow
at the source.

Definition 4. The space time function of a source j is
defined as Ψ j : E2 → R such that t = Ψ j (x1,x2), ∀t ∈ R,
(x1,x2)∈ E2 and ẍi = λ j

i (lnη) , j with the initial condition
(x1(t0),x2(t0)) ∈ j.

Hence, the space time function Ψj of a source j at (0,y0)
in a velocity field v = k and v = kx2 (where k is a constant)
are given by equation (7) in implicit form of:

(x1)
2 +(x2 −y0)2 = k2(t j − t)2 (8)

and

(x1)
2 +

(
x2 −y0

e2k(t−t j) +1

ek(t−t j)

)2

=
y2

0

4

(
e2k(t j−t)−1

ek(t j−t)

)2

(9)

where t j is the time delay of source j .

Figure 7 shows space time function of a point source j at
(0,y0) in a constant speed field with a time delay t j. The
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flow fronts flow path 

(a) constant velocity field

(b) velocity field 2kxv =  

Figure 6 : Flow fronts from a point source with different
velocity field

black curves link all the events happen simultaneously
while the grey lines are the world lines.

The space time function of a point source j at (0,y0) in a
velocity field v = kx2 with a time delay t j = 0 is plotted
in figure 8.

A curve source c is considered as an aggregation of infi-
nite number of point sources along the curve. All these
point sources co-operate to acquire territories. The space
time function of the curve source is given as:

Ψc(x1,x2) = min[Ψj(x1,x2)],∀j ∈ c,∀(x1,x2) ∈ R2 (10)

Hence, the space time function of a curve source is the
envelope obtained by sweeping the space time function
of a point source with time delays. Figure 9(a) and 9(b)
show the space time functions of a line and a curve source
with various time delay in a domain with a constant speed
field respectively, while figure 9(c) is the space time func-
tion of a line source with constant time delays along the
source in a domain with velocity field v = kx2. Similarly,
the space time function of a region source p with constant
speed field is shown in figure 9(d).
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Figure 7 : Space time function of a point source in a
constant velocity field 
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Figure 8 : Space time function of a point source in a
velocity field v = kx2

6 Source and Obstacles

Consider a source j in a 2D Euclidean domain with a
boundary. If the boundary is convex, the flow paths from
the source will only be deflected due to the change of
flow velocity as specified in Lemma 1. However, if
the boundary is concave, then certain areas within the
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Figure 9 : Various curve sources

boundary will be shielded by the concave segment of the
boundary. By Lemma 2, the flow paths between any lo-
cations in these areas and the source will be tangent to
the concave boundary segment. A set of flow paths in a
bounded 2D Euclidean domain with constant speed field

is plotted in figure 10(a). The domain is partitioned into
two regions: the “light grey” region with straight flow
path from the source j as the velocity is constant, while
the flow paths (from the source j ) in the “dark grey”
region are deflected due to the concave boundary seg-
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(a) constant velocity 

(b) velocity 2kxv =  

Figure 10 : Propagation paths in a domain with boundary

ment. Figure 10(b) gives a similar plot with flow veloc-
ity v = kx2. The flow paths from the source j to the “dark
grey” region are deflected by both speed variation and
obstacle.

Focusing on the “dark grey” region reveals that all the
flow paths in this region originate from the concave seg-
ment of the boundary as illustrated in figure 11. This
segment starts at the tangent point p between the flow
path from j and the boundary, and ends at the point of
inflection q on the boundary. As a result, this segment is
considered as a secondary source in the “dark grey” re-
gion. This secondary source is a curve source with vari-
able time delay. The delay is the time of travel from the
source j to various points on the source.

7 Flow Pattern Generation by Geometric Approach

Flow pattern is important in describing the propagation
from a primary source in a domain since it tells the com-
plexity of the propagation.

Definition 5. A flow pattern from a source in a domain is
an aggregation of the flow fronts.

 

tangent 
point p 

point of
inflection q

source j

propagation path 
which is tangent to 
the boundary at p 

secondary source

Figure 11 : A secondary source

Figure 12(a) illustrates the flow pattern from a primary
point source with space time function as shown in figure
8. (As the commercial software is intended for plastic
mold injection, the thickness of the molding is made to
vary with the x2-axis so as to simulate a velocity field
with v = kx2.) The flow pattern are computed and shown
in figure 12(b).

Since the flow paths are deflected (and hence the flow
fronts are distorted) by the flow velocity variation and the
boundaries, the flow pattern from a source in a bounded
domain with obstacles can be complicated. As secondary
sources may arise in a domain due to the geometry of the
boundary (and the obstacles), a resultant space time func-
tion from a source is obtained by composing the space
time functions from various sources (including the sec-
ondary sources). The flow pattern can be obtained from
the space time function of a source.

A geometric approach is proposed to construct the flow
pattern.

Secondary sources identification For a two dimensional
domain, there are two types of secondary sources arise
when the flow propagates around an obstacle: curve
source and point source. A secondary source is a curve
source if there is a flow path of least time which is tan-
gent to the boundary (either domain boundaries or ob-
stacle boundaries). The source starts at the tangent point
and ends at either a point of inflection or another source.
A point source arises when there is a reentrant vertex on
the (domain or obstacle) boundary.

Solid geometry creation A solid geometry K j for each
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(a) numerical solution

(b) closed form solution

Figure 12 : Flow pattern of a point source in a velocity
field with v = kx2

source j (including secondary sources) is defined to rep-
resent the space time function given in definition 4 as

K j =
{
(x1,x2, t)|t∞ > t ≥ Ψ j(x1,x2)≥ 0;

∀(x1,x2) ∈ E2 ∧ t ∈ R
}

where t∞ is the upper bound of the time t.

Definition 4 is defined with a monotonic increasing time
variable t. If this space time function is geometrized, an
upper bound of t, denoted by t∞, is needed to obtain an
finite solid geometry.

Resultant space time function creation Since the resul-
tant space time function of multiple sources is Ψc(x1,x2)
= min[Ψj(x1,x2)],∀j ∈ c,∀(x1,x2) ∈ R2 (as specified in
equation (10)), the solid geometry representing the resul-
tant space time function is the boolean sum of all these

solid geometries:

K =
⋃

j
K j (11)

Sectioning and projection Sectioning the solid geome-
try K with a set of planes t ≥ 0 gives the flow fronts at the
time instant t. Projecting these flow fronts onto the space
(x1 − x2 plane) gives the flow pattern in a 2D Euclidean
domain.

8 Examples

Three examples are listed to show the propagation of the
flow front. In order to compare the flow patterns, the
solution for each example is shown with a similar plot
from a commercial finite element flow analysis.

Example 1: Flow pattern from a primary source in con-
stant velocity field with a circular obstacle

Figure 13 shows an example of flow pattern generation
by geometric approach. Consider a rectangular two di-
mensional domain with a circular obstacle. Assuming
that the flow speed is constant for simplicity, hence the
solid geometry representing the space time function is a
solid cone. The time axis is pointing downward for easy
visualization. Two curve secondary sources are identified
in the domain with time delay. In figure 13(a), the do-
main is partitioned into two regions: “light grey” region
is filled up by the source j while the “dark grey” region
is covered by the secondary sources. Figure 13(b), 13(c)
and 13(d) show the solid cones representing the space
time functions of source j and two secondary sources.
The cones are trimmed due to the domain boundaries.
The Boolean sum of all the solid geometries is shown in
figure 13(e). Sectioning the resultant solid geometry and
projecting the section curves on the 2D domain give the
flow pattern as illustrated in figure 13(f) and 13(g).

Figure 14 shows the flow pattern obtained by using fi-
nite element approach for comparison. The flow pattern
basically agrees with that generated by the geometric ap-
proach.

Example 2: Flow pattern from a primary source in veloc-
ity field v = kx2 (velocity is proportional to the x2 axis)
with a triangular obstacle

Figure 15(a) shows the flow pattern from a source with
velocity field v = kx2 (the flow velocity is inversely pro-
portional to the x2 axis). The flow path is a circular arc
with centre on the x1 axis. A triangular obstacle is in-
side the flow field. Secondary sources arise as the flow



10 Copyright c© 2005 Tech Science Press CMES, vol.8, no.1, pp.1-13, 2005

 

source j 

secondary 
sources 

(a) a 2D domain with circular obstacle (b) the trimmed solid cone of the 
space time function of source j 

(c) the solid cone of the space time 
function of one of the secondary 
source 

circular 
obstacle

(d) the solid cone of the space time 
function of the other secondary 
source 

(e) Boolean sum of the solid 
cones representing the 
space time function of the 
domain with obstacle 

(f) sectioning the resultant solid cone (g) flow pattern 

t 

t
t

Figure 13 : Flow pattern in a constant velocity field with a circular obstacle
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Figure 14 : Flow pattern around a circular obstacle gen-
erated by finite element method

reaches the obstacle. The similar flow pattern generated
by finite element method is shown in figure 15(b).

Example 3: Flow pattern from a primary source in a cir-
cular maze with constant velocity field.

A circular maze is used to depict the flow pattern gener-
ated by geometric approach. The flow pattern is shown
in figure 16. A similar result can be found in reference
[Gremaud and Kuster (2004)], which is generated by fast
marching method and fast sweeping method. The source
is at the lower left corner with a constant velocity field.
The flow is deflected due to diffraction as it propagates
through the maze into the centre.

9 Discussion

Front propagation governed by the Eikonal equation is
common in many physical and engineering phenomena.
Certain simple situations yields complicated flow pat-
tern. Example 1 gives a simple situation: a primary
point source in a constant velocity field with a circular
obstacle. The space time function of such a source is
represented by a linear solid cone, the resultant space
time function becomes non-linear as the flow propagates
around the obstacle. Hence, a concentric circular flow
pattern is transformed into a non-linear flow pattern. This
is an example of giving a non-linear effect by the inter-
action between linear elements. Example 3 is basically

 

 

(b) flow pattern generated by finite element method 

(a) flow pattern generated by geometric 

Figure 15 : Flow pattern in a velocity field v = kx2 with
a triangular obstacle

similar to example 1 with more circular obstacles. The
complexity of the flow pattern is greatly increased. A bit
more complicated situation with a variable velocity field
v = kx2 (velocity is proportional to the x2 axis) is shown
in example 2. Rewriting the velocity field to 1

x2

ds
dt = k

(ds2 = gi jdxidx j) reveals that the velocity field is “con-
stant” on a hyperbolic plane (instead of the Euclidean
plane). The flow fronts are circles of Apollonius on the
Euclidean plane which are “concentric circles” on the hy-
perbolic plane. The flow fronts in both situations are set
of circular arcs with time dependent centres and radius.
Comparing with the numerical approach, the proposed
geometric approach gives an analytical solution for these
situations.

The geometric approach for producing the flow pattern
consists of four procedures:

(i) secondary source identification;

(ii) solid geometry creation;
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Figure 16 : Flow pattern in a circular maze with constant
velocity field

(iii) resultant space time function creation and

(iv) sectioning and projecting.

As the complexity of the flow pattern increases expo-
nentially with the number and the geometry of primary
source, the order of the velocity field, the locations and
the geometry of the obstacles, numerical methods are un-
avoidable, particularly for solving equation (7) to obtain
the solid geometry representation for the space time func-
tion of a source. However, the efforts are greatly reduced
for some common but simple situations such as the given
examples if the geometric approach is adopted.

For the simple situations such as point source in con-
stant velocity field with polygonal obstacles, secondary
source identification is the common computational ge-
ometry problem of visibility graph creation. Various al-
gorithms [Mitchell (1992), Hershberger and Suri (1999)]
are available which can be adopted to identify the sec-
ondary sources. However, more exploration for an ef-
ficient algorithm to deal with the general situation of
higher order geometry for the sources and obstacles, and
complex dynamic velocity field v = v(x1,x2, t) are needed
in order to handle the more complicated situations.

10 Conclusion

A geometric approach is presented to solve the two di-
mensional Eikonal equation with a given static velocity
field. It is based on the fact that secondary sources arise
as the flow propagates around an obstacle. The propa-

gation is influenced by these secondary sources. Solid
geometry and Boolean operation are used to model the
geometry of the resultant space time function. The flow
pattern, which is a solution to the Eikonal equation, is
obtained from this geometrization.

The approach is particularly suitable for some common
situations such as point and analytical curve sources in a
constant and liner velocity field with obstacles of analyt-
ical geometry. Since only simple geometry is used by the
approach in these situations, the performance is in real
time because the computation involves no more algebra.
These situations are common in robotics path planning,
computer graphics, wave propagation etc.
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