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Two-Dimensional BEM Thermoelastic Analysis of Anisotropic Media with
Concentrated Heat Sources

Y.C. Shiah1, T.L. Guao1 and C.L. Tan2

Abstract: It is well known in elastic stress analysis
using the boundary element method (BEM) that an addi-
tional volume integral appears in the basic form of the
boundary integral equation if thermal effects are con-
sidered. In order to restore this general numerical tool
as a truly boundary solution technique, it is perhaps
most desirable to transform this volume integral exactly
into boundary ones. For general 2D anisotropic thermo-
elastostatics without heat sources, this was only achieved
very recently. The presence of concentrated heat sources
in the domain, however, leads to singularities at these
points that pose additional difficulties in the volume-to-
surface integral transformation. In this paper, the steps
to overcome these difficulties are described and the in-
tegral transformation is successfully achieved for BEM
implementation in a mapped plane. Three numerical ex-
amples are presented to demonstrate the veracity of the
analytical and numerical formulations.

keyword: Boundary element method, anisotropic ther-
moelasticity, concentrated heat sources

1 Introduction

The elasticity problem of determining the stress field of
an anisotropic medium with concentrated (point) heat
sources or heat sinks has many important applications
in engineering. Examples include point-soldering treat-
ments of electronic circuit boards, internal cooling of sin-
gle crystal alloys, and heat source channels in bed-rock
foundations. Analytical solutions have been obtained for
a few specific problems (see e.g. Clements (1973); Rah-
man (2003); Oin (1999); Sherief and Magahed (1999)),
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but recourse to numerical methods is often necessary for
most practical problems. Among the most popular of
these methods for general engineering analysis are the fi-
nite difference method, the finite element method (FEM),
and the boundary element method (BEM). When model-
ing these problems which involve a discrete distribution
of heat sources using the first two approaches, it is often
necessary to employ very refined grids or meshes in the
vicinity of the concentrated heat sources to ensure satis-
factory accuracy, thereby giving rise to relatively com-
plex internal mesh designs.

The BEM has been recognized as an efficient computa-
tional alternative due to its distinctive feature that only
boundary discretisation of the solution domain is re-
quired. However, in its formulation for elastostatics, ther-
mal effects manifest themselves as an additional volume
integral in the boundary integral equation (BIE). Any at-
tempt to directly integrate the volume integral will in-
volve domain discretisation that destroys the notion of
it being a truly boundary solution technique. Several
schemes have been proposed over the years to obvi-
ate this. They include the Monte Carlo method, Camp
and Gipson (1992)), particular integral approach, Deb
and Banerjee (1990), the dual reciprocity method, Nar-
dini and Brebbia (1982), the multiple reciprocity method,
Nowak and Brebbia (1989), and the exact transformation
method (ETM), Rizzo and Shippy (1977). A review of
these schemes has also been provided recently by Cheng,
et al (2001). Other more recent related contributions in-
clude those by Ochiai and Sladek (2004), Sladek, Sladek
and Atluri (2004) and Rashed (2004). Among these, the
ETM, developed originally for isotropic thermoelasticity,
is fundamentally most appealing because it restores the
BEM analysis as a purely boundary solution technique
without incurring simplifying approximations. It is thus
directly applicable to problems with re-entrant corners
and cracks.

Although the ETM is now well established to treat
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the volume integral associated with thermal effects
in isotropic elasticity, a similar transformation for
anisotropic elasticity was only achieved quite recently,
when Shiah and Tan (1999a) employed a domain map-
ping technique, Shiah and Tan (1998), to facilitate the
process. By removing the singularity at the source point
for interior stress calculations, Shiah and Tan (1999b)
also derived the Somigliana’s identity for the stresses
and strains at interior points resulting from general ther-
mal effects. These authors further demonstrated the di-
rect applicability of the ETM to crack problems in 2D
anisotropic thermoelasticity in Shiah and Tan (2000).

In this paper, the work for treating the general anisotropic
thermoelasticity problem is extended to consider a dis-
crete distribution of concentrated heat sources present in
the domain. The problem under consideration, although
common and important in engineering, remains relatively
unexplored in BEM. Due to the presence of concentrated
heat sources, all temperature-related values, including
the temperature itself and its spatial gradients, are sin-
gular at the heat source points. To ensure the analyticity
of the integrand of the volume integral arising from the
thermal effects for the volume-to-surface integral trans-
formation, these singularities must be mathematically re-
moved from the domain. Starting from the treatment of
the associated anisotropic thermal field, the steps to solve
the thermoelasticity problem will next be presented next.
Some numerical examples are then provided to illustrate
the validity and applicability of the proposed scheme.

2 2D Thermal Field with Concentrated Heat
Sources

As is usual in treating a thermoelasticity problem, the
temperature field is first obtained. It will be clear in later
derivations for the transformed BIE, consideration of the
associated thermal field is not only a precursor but also
an integral part in the treatment of the BIE in thermoe-
lasticity. Thus it is worthwhile examining first, the treat-
ment of the associated thermal field. For steady state heat
conduction in an anisotropic medium involving a discrete
distribution of n internal concentrated heat sources, the
governing partial differential equation may be expressed
as

Ki jΘ,i j = −
n

∑
m=1

Smδm(�p− �Mm) , (i, j = 1,2) (1)

where Θ represents the temperature change and , the con-

ductivity coefficients. In Eq. (1), the right-hand-side rep-
resents the sum of the effects of the n concentrated heat
sources with intensity Sm at the m−th point Mm, and δm

denotes the Dirac delta function at point p. From thermo-
dynamic considerations and the Onsagar’s reciprocity re-
lation, the thermal conductivity coefficients must, in two-
dimensions, satisfy the following

K11 > 0 , K22 > 0 , K12 = K21, K11K22−K2
12 > 0 (2)

A BEM approach to treat the anisotropic heat conduc-
tion problem is to employ the fundamental solution for
the differential operator of Eq. (1) directly together with
Green’s identities, as adopted by Mera, et al (2001) re-
cently. A more common approach, however, is to re-
duce Eq. (1) into its canonical form by changing the
spatial coordinates so that the generally anisotropic prob-
lem becomes mathematically an orthotropic one. To this
end, the principal axes (ζ1, ζ2) are first determined by
rotating the original Cartesian axes such that the cross-
derivative terms disappear. In the rotated Cartesian coor-
dinate system, the governing equation in the absence of
heat sources becomes

K∗
1

∂2Θ
∂ζ2

1

+K∗
2

∂2Θ
∂ζ2

2

= 0 (3)

where K∗
i represents the conductivity coefficients in the

i-direction of the principal axis. This approach has been
used in the finite element method, Segerlind (1984), the
finite difference method, Li (1983), and also the BEM,
Bruch and Lejeune (1989). The procedure to further re-
duce Eq. (3) into the canonical form of the standard
Laplace’s equation by scaling the principal coordinates
has also been discussed in, e.g., Barnerjee and Butterfield
(1981).

A variation of the above-mentioned approach is to em-
ploy a linear coordinate transformation such that Θ in the
transformed domain is governed by the standard Laplace
equation, Shiah and Tan (1998). For two-dimensional
cases, the linear transformation between both coordinate
systems may be expressed in general matrix form as

[x̂1 x̂2 ]T = [F(Ki j)] [x1 x2]
T

[x1 x2]
T = [F−1(Ki j)] [x̂1 x̂2 ]T (4)

where F = [F(Ki j)] and F−1= [F−1(Ki j)]) are the trans-
formation and the inverse transformation matrices, re-
spectively, in terms of the invariant coefficients. They



Two-Dimensional BEM Thermoelastic Analysis 323

have component elements [Fmn(Ki j)] and [F−1
mn (Ki j)], re-

spectively, given below, Shiah and Tan (1998).

F =
( √

∆/K11 0
−K12/K11 1

)
, F−1 =

(
K11/

√
∆ 0

K12/
√

∆ 1

)
∆ = K11K22 −K2

12 (5)

This linear transformation has the distinct advantage of
allowing the analysis to be carried out using any stan-
dard BEM code for isotropic potential theory, albeit on a
distorted domain in the mapped plane. With this transfor-
mation, the primary solution variable, such as the temper-
ature, must remain unchanged at corresponding points on
the physical and mapped plane. The value of its normal
gradient across the boundary can be obtained via, Shiah
and Tan (1998),

d Θ
d n

= (Θ,1F11 +Θ,2F21) n1 + (Θ,1F12 +Θ,2F22) n2

d Θ
d n̂

=
(
Θ,1F−1

11 +Θ,2F−1
21

)
n̂1 +

(
Θ,1F−1

12 +Θ,2F−1
22

)
n̂2

(6)

where ni and n̂i denote components of the unit outward
normal vector on the domain boundary defined in the
physical and in the mapped domain, respectively; and
the underline refers to the mapped plane defined by the
x̂i coordinate system. Following the same transformation
described above, the anisotropic field involving internal
concentrated heat source can be written in the mapped
plane as

Θ, ii = −
n

∑
m=1

S′mδ′m(p̂−M̂m) (7)

In Eq. (7), S′m, denotes the equivalent source intensity in
the mapped plane and is given by

S′m = SmK11/∆ (8)

The steps to reduce the anisotropic problem to an
“isotropic” one have now been presented. Its numerical
solution by the BEM is briefly reviewed next.

As is well established in the BEM literature, the tem-
perature change Θ and its normal gradient q (=dΘ/dn)
along the boundary of a solution domain are related by
the following boundary integral equation written for the

mapped plane which is indicated by the hat sign on the
symbols,

c(P̂)Θ(P̂) =
∫

Ŝ
q(Q̂)W(P̂, Q̂)dŜ(Q̂)

−
∫

Ŝ
Θ (Q̂)V(P̂, Q̂)dŜ(Q̂)−

n

∑
m=1

S′mW(P̂,M̂m) (9)

where P̂ and Q̂ are the source and field point on the dis-
torted boundary Ŝ. In Eq. (9), the value of c(P̂) depends
on the geometry at P̂; W(P̂, Q̂) and V(P̂, Q̂) represent the
fundamental solutions for the temperature and its normal
gradient, respectively, viz.

W(P̂, Q̂) =
1

2π
ln

(
1
r̂

)
, V (P̂, Q̂) =

−1
2π r̂

r̂, in̂i (10)

where r̂ represents the distance between P̂ and Q̂. To
solve Eq. (9), the solution domain is discretized into
an assemblage of line elements, each of which is de-
fined by a finite number of nodes. Writing Eq. (9) for
each of these distinct nodes with the appropriate shape
functions for the interpolation of the solution variables
will result in a set of simultaneous equations for the un-
known temperature or its normal gradient at all the nodes.
Note, however, that the collocation process for solving
this boundary integral equation needs to be carried out
on the distorted boundary. The input Neumann boundary
conditions must therefore be accordingly transformed, as
follows,

dΘ
dn̂

=
(

∂Θ
∂x1

K11√
∆

+
∂Θ
∂x2

K12√
∆

)
n̂1 +

(
∂Θ
∂x2

)
n̂2 (11)

With properly posed boundary conditions, the set of si-
multaneous equations for the unknown temperatures or
the normal temperature gradients at nodal points may
now be solved using standard matrix methods. The
solved potential gradients need to be further processed,
however, to obtain the corresponding values in the actual
physical domain by the operation below,

dΘ
dn

= φ̂T F
FT n̂T

|FT n̂| (12)

where n̂ is the outward normal vector on the boundary
of the mapped domain, expressed in terms of its compo-
nents n̂i in the x̂i-direction. Also, φ̂̂φ̂φ is the temperature
gradient along the mapped boundary, as defined by

φ̂̂φ̂φ =
(

∂Θ
∂x̂1

∂Θ
∂x̂2

)
(13)
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and it can be directly computed using

φ̂̂φ̂φT
=

⎛
⎜⎜⎜⎜⎝

∂Θ
∂x̂1

∂Θ
∂x̂2

⎞
⎟⎟⎟⎟⎠=

⎛
⎝ ŝ1 ŝ2

n̂1 n̂2

⎞
⎠

−1

⎛
⎜⎜⎜⎝

∂Θ
∂ŝ

∂Θ
∂n̂

⎞
⎟⎟⎟⎠ (14)

where ŝi denotes the components of the unit tangential
vector along the path ŝ. In Eq. (14), the temperature
gradient ∂Θ

∂n̂ is directly obtained from the solution of the
BIE for the distorted domain, while the other temperature
gradient ∂Θ

∂ŝ can be computed using the standard numer-
ical interpolation scheme involving the shape functions.
Once the heat conduction problem is solved, the asso-
ciated stress field can now be determined, as described
below.

3 The BEM for 2D Thermoelasticity with Concen-
trated Heat sources

In the direct formulation of the BEM for a plane
anisotropic elastic medium, the displacements, ui, and
the tractions, ti, on the boundary S of the domain Ω are
related by

Ci j (P)ui (P)+
∫
S

ui(Q)Ti j (P,Q)dS

=
∫
S

ti(Q)Ui j(P,Q)dS +
∫
Ω

Xi(q)Ui j(P,q)dΩ (15)

which Q and q represent the field points on the boundary
S and in the domain Ω, respectively, and P represents the
source point on S. In Eq. (15), Ci j are the coefficients
associated with boundary geometry at the source point
P; and Xi represents the equivalent body-force term due
to the temperature change in the domain. Also Ui j(P, q)
is the corresponding fundamental solution for displace-
ments and is given by

Ui j(P,q) = 2Re{ri1 Aj1 logz1 +ri2 Aj2 logz2} (16)

where ri j and A ji are material constants, expressed by
complex quantities, Re{} is the operator which takes the
real part of the quantities in the parentheses, and zi is a
generalized complex variable. The generalized complex
variable is defined in terms of the characteristic roots, µι
and the difference of coordinates between the field point

Q(x1, x2) and the load or source point P(xp1, xp2) as fol-
lows

zi = (x1−xp1)+µi(x2−xp2) = ζ1 +µi ζ2 (17)

where ζ i represent the local coordinates with the origin
located at the source point. Also in Eq. (15), Ti j(P,Q) is
the fundamental solution for tractions, the explicit form
of which is well established in the BEM literature. Since
Ti j(P,Q) is not involved in the formulation of what fol-
lows, its full expression is not repeated here.

In Eq. (16), the equivalent body-force Xi can then be
written as Xi = -γi jΘ, j where γi j are the coefficients given
by γi j = ci jklαkl; ci jkl and αkl are the stiffness matrix co-
efficients and the coefficients of thermal expansion, re-
spectively. With this term and the additional thermal trac-
tion term substituted into Eq. (17), the complete integral
equation, when thermal effects are considered, can now
be expressed as

Ci j ui(P)+
∫
S

ui(Q)Ti j(P,Q)dS

=
∫
S

ti(Q)Ui j(P,Q)dS +
∫
S

γik nk Θ(Q)Ui j(P,Q)dS

−
∫
Ω

γik Θ,k(q)Ui j(P,q)dΩ (18)

As has been presented by Shiah and Tan (1999a), the last
term on the right-hand-side of Eq. (18), which is a do-
main integral (and will be denoted by VI), can be rewrit-
ten in the mapped plane defined by Eq. (4), as

V Ij = −
∫
Ω

γik Θ,k(q)Ui j(P,q)dΩ

= −
∫
Ω̂

γik Θ,k(q̂)Ui j(P̂, q̂)dΩ̂ (19)

where the invariant coefficients γi j are elements of the
matrix

γik =

⎛
⎜⎜⎜⎝

γ11
−γ11 k12 +γ12 k11√

∆

γ21
−γ21 k12 +γ22 k11√

∆

⎞
⎟⎟⎟⎠ (20)

To ensure that only the boundary of the solution domain
needs to be modeled in the BEM analysis, the volume
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integral needs to be transformed into boundary ones. For
such a transformation, however, the integrand must be
analytic everywhere. By making spatial differentiation
of Eq, (9), the temperature gradient, Θ,k, at an arbitrary
point in the mapped domain is

Θ,k(p̂) =
∫

Ŝ
q(Q̂)Wk(p̂, Q̂)dŜ(Q̂)

−
∫

Ŝ
Θ (Q̂)V,k(p̂, Q̂)dŜ(Q̂)−

n

∑
m=1

S′mW,k(p̂,M̂m)

= bk(p̂, Q̂)−
n

∑
m=1

S′mW,k(p̂,M̂m) (21)

where bk(p̂, Q̂) represents the bounded value given by

bk(p̂, Q̂)

=
∫

Ŝ
q(Q̂)W,k(p̂, Q̂)dŜ(Q̂)−

∫
Ŝ

Θ (Q̂)V,k(p̂, Q̂)dŜ(Q̂)

(22)

and the function W,k(p̂,M̂m) is

W,k(p̂,M̂m) =
(x̂(p̂)

k − x̂(M̂m)
k )

2π r̂2 (23)

In arriving at Eq. (21), the coefficient c(P̂) appearing
in Eq. (9) has the value of unity and is dropped for the
interior point solution. There are evidently singularities

at the internal heat source points when r̂ = 0 and x̂(M̂m)
k =

x̂(p̂)
k . When substituting Eq. (21) into Eq. (19), it is also

apparent that the integral transformation process cannot
be carried out unless these singularities are analytically
removed. To this end, the distorted domain is sub-divided
into several parts as shown in Fig. 1, where the main sub-
domain Ω̂0 is free of singularity and each circular sub-
region, Ω̂m, contains a concentrated heat source located
at its center M̂m.

Therefore, the domain integral can be expressed as

VIj = VI(Ω̂0)
j +

n

∑
m=1

VI(Ω̂m)
j

= −
∫

Ω̂0

γik Θ,k(q̂)Ui j(P̂, q̂)dΩ̂

−
n

∑
m=1

∫
Ω̂m

γik Θ,k(q̂)Ui j(P̂, q̂)dΩ̂ (24)

It is necessary now to examine the volume integral for

each circular sub-region, denoted by VI(Ω̂m)
j , when its ra-

dius is reduced to zero by following the usual limiting

1
ˆ

2
ˆ

m
ˆ

mM̂0
ˆ

0Ŝ 1Ŝ

2Ŝ

mŜ

1n
2n

n̂
mŜ

Figure 1 : A discrete distribution of concentrated heat
sources in the mapped plane

process. Substituting Eq. (21) into the last term in Eq.
(24) and taking the limit for the radius yields

V I(Ω̂m)
j = −

∫
Ω̂m

γik Θ,k(q̂)Ui j(P̂, q̂)dΩ̂

= lim
ρ→0

−
∫ 2π

0

∫ ρ

0
γik

[
bk(q̂, Q̂)−

n

∑
m=1

S′m W,k (q̂,M̂m)

]

·Ui j(P̂, q̂) r dr dθ (25)

The term associated with the bounded value, bk(q̂, Q̂),
vanishes when the radius ρ approaches zero. It follows
that the volume integral can be expressed as

V I(Ω̂m)
j =

lim
ρ→0

∫ 2π

0

∫ ρ

0
γik

n

∑
m=1

S′m(x̂(M̂m)
k − x̂(q̂)

k )

2π
[
(x̂(M̂m)

1 − x̂(q̂)
1 )2 +(x̂(M̂m)

2 − x̂(q̂)
2 )2

]
·Ui j(P̂, q̂) r dr dθ (26)

When the interior field point q̂ does not fall inside the
same sub-region where the m-th heat source point M̂m is
located, the associated volume integral vanishes. Thus,
the above volume integral turns out to be

V I(Ω̂m)
j

= lim
ρ→0

∫ 2π

0

∫ ρ

0

−S′m(γi1 r cos θ+ γi2 r sin θ)
2πr2

·Ui j(P̂,M̂m) r dr dθ =

− S′m
2π

Ui j(P̂,M̂m) lim
ρ→0

∫ 2π

0

∫ ρ

0
(γi1 cos θ+γi2 sin θ) dr dθ

= 0 (27)
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Therefore Eq. (24) becomes just

VIj = −
∫

Ω̂0

γik Θ,k(q̂)Ui j(P̂, q̂)dΩ̂ (28)

With singularities removed in the mapped domain, the
volume integral may now be transformed to boundary
ones by applying Green’s theorem. The transformed vol-
ume integral of Eq. (28) can be written as

VIj = −
∫
Ŝ

γik Ui j(P̂, Q̂)Θ(Q̂)nk dŜ

+
∫
Ŝ

(γik Qi jk,t(P̂, Q̂)Θ(Q̂)

− γik Qi jk(P̂, Q̂)Θ,t(Q̂))nt dŜ

+
∫

Ω̂0

γik Qi jk(P̂, q̂)Θtt(q̂)dΩ̂ (29)

where Qi jk and Qi jk,t are defined by

Qi jk

= 2Re

{
ri1 Aj1 µk1 z1 log(z1)

(µ11
2 +µ21

2)
+

ri2 Aj2 µk2 z2 log(z2)
(µ21

2 +µ22
2)

}
(30)

Qi jk,t = 2Re

{
ri1 A j1 µk1 µt1(1+ log(z1))

(µ11
2 +µ21

2)

+
ri2 A j2 µk2 µt2(1+ log(z2))

(µ21
2 +µ22

2)

}
(31)

In Eqs. (30) and (31), the coefficients µ ji are given by

µ ji =

(
K11 +µ1 K12√

∆
K11 +µ2 K12√

∆
µ1 µ2

)
(32)

From Eq. (7), it is clear that the last term in Eq. (29)
is zero, since the interior point q̂ is in the sub-region
Ω̂0 which is free of concentrated heat sources. However
the boundary integrals in Eq. (29) need to be performed
along all surfaces of the sub-region Ω̂0, including the out-
side boundary Ŝ0 and those inside Ŝ1, . . . , Ŝm as shown in
Fig. 1. By noting that the directions of the integration
paths are opposite for the inside and the outside surfaces,

Eq. (29) can be rewritten as

VIj = −
∫

Ŝ0

γik Ui j(P̂, Q̂)Θ(Q̂)nk dŜ

+ lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Ui j(P̂, q̂)Θ(q̂)nk (ρdθ)

+
∫

Ŝ0

γik Qi jk,t(P̂, Q̂)Θ(Q̂)nt dŜ

− lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk,t(P̂, q̂)Θ(q̂)nt (ρdθ)

−
∫

Ŝ0

γik Qi jk(P̂, Q̂)Θ,t(Q̂)nt dŜ

+ lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ,t(q̂)nt (ρdθ) (33)

To evaluate the first two limiting terms in Eq. (33), con-
sider for the moment the temperature field Θ(q̂) at the
interior, given by

Θ(q̂) =
∫

Ŝ0

q(Q̂)W(q̂, Q̂)dŜ

−
∫

Ŝ0

Θ (Q̂)V(q̂, Q̂)dŜ−
n

∑
m=1

S′mW (q̂,M̂m) = bo(q̂, Q̂)

−
n

∑
m=1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2
(34)

where bo(q̂, Q̂) denotes the bounded value computed by

bo(q̂, Q̂)

=
∫

Ŝ0

q(Q̂)W(q̂, Q̂)dŜ −
∫

Ŝ0

Θ (Q̂)V(q̂, Q̂)dŜ (35)

As seen earlier above, the singularity exists only when
the interior point q̂ coincides with the heat source point.
With reference to Figure 2, Eq. (34) can be further re-
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written as

Θ(q̂) =
∫

Ŝ0

q(Q̂)W(q̂, Q̂)dŜ

−
∫

Ŝ0

Θ (Q̂)V(q̂, Q̂)dŜ−
n

∑
m=1

S′mW(q̂,M̂m)

= b0(q̂, Q̂)

−
n

∑
m=1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2

= b0(q̂, Q̂)

−
k−1

∑
m=1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2

−
n

∑
m=k+1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2

− S′k
2π

log
1√

(x̂(M̂k)
1 − x̂(q̂)

1 )2 +(x̂(M̂k)
2 − x̂(q̂)

2 )2

= B0(q̂, Q̂)− S′k
2π

log
1√

(x̂(M̂k)
1 − x̂(q̂)

1 )2 +(x̂(M̂k)
2 − x̂(q̂)

2 )2

= Bo(q̂, Q̂)+
S′k
2π

log ρ (36)

where Bo(q̂, Q̂) represents the bounded value from

B0(q̂, Q̂) = b0(q̂, Q̂)

−
k−1

∑
m=1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2

−
n

∑
m=k+1

S′m
2π

log
1√

(x̂(M̂m)
1 − x̂(q̂)

1 )2 +(x̂(M̂m)
2 − x̂(q̂)

2 )2

(37)

By substituting Eq. (36) into Eq. (33) and taking the
limit as ρ approaches zero, it can be verified that

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Ui j(P̂, q̂)
(

Bo(q̂, Q̂)+
S′m
2π

log ρ
)

nk (ρdθ)

= 0 (38)

and

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk,t(P̂, q̂)
(

Bo(q̂, Q̂)+
S′m
2π

logρ
)

nt(ρdθ)

= 0 (39)

1st heat source

(k-1)th heat source 
kth heat source

(k+1)th heat source

nth heat source point

q̂

1M̂

1
ˆ

kM

kM̂

1
ˆ

kM

nM̂

Figure 2 : A domain with n concentrated heat sources

The remaining task in the transformation process is to
evaluate the last limiting term in Eq. (33). Substitution
of Eq. (21) into this term results in

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ,t (q̂)nt (ρdθ)

= lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)

⎡
⎢⎢⎣
(

b1(q̂, Q̂)−
n
∑

m=1
S′mW,1 (q̂,M̂m)

)
cosθ

+
(

b2(q̂, Q̂)−
n
∑

m=1
S′mW,2(q̂,M̂m)

)
sinθ

⎤
⎥⎥⎦ (ρdθ)

(40)

Due to the fact that W,t(q̂,M̂m) is singular only when the
point q̂ is on the surface of Ŝm and as it becomes coinci-
dent with M̂m, Eq. (40) can be re-written as

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ,t (q̂)nt (ρdθ)

= lim
ρ→0

q̂→M̂m

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂,M̂m)

[ (
B1(M̂m, Q̂)−S′mW,1(q̂,M̂m)

)
cosθ

+
(
B2(M̂m, Q̂)−S′mW,2(q̂,M̂m)

)
sinθ

]
(ρdθ) (41)

where Bt(M̂m, Q̂) represents the bounded part of

lim
q̂→M̂m

(
bt(q̂, Q̂)−

n
∑

m=1
S′mW,t(q̂,M̂m)

)
. It can be easily

verified that the all the bounded values of the integrals
of Eq. (41) vanish when ρ approaches zero. With refer-
ence to Fig.1 which shows the outward normal vector n̂
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pointing towards the center of the circle of exclusion, Eq.
(41) may be further re-written using Eq. (23) to give

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ, t (q̂)nt (ρdθ)

= lim
ρ→0

n

∑
m=1

∫ 2π

0
γik Qi jk(P̂,M̂m)

⎡
⎣
(

S′m
(x̂m

1 −x̂M
1 )

2πρ2

)
(−cosθ)

+
(
−S′m

(x̂m
2 −x̂M

2 )
2πρ2

)
(−sinθ)

⎤
⎦ (ρdθ) (42)

Along the path of integration Ŝm, the coordinates of the
field point q̂ are given by

x̂m
1 = x̂M

1 +ρcosθ , x̂m
2 = x̂M

2 +ρsinθ (43)

Therefore, Eq. (42) becomes

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ,t(q̂)nt (ρdθ)

= lim
ρ→0

n

∑
m=1

∫ 2π

0
γik Qi jk(P̂, q̂)

[(
S′m

ρcosθ
2πρ2

)
(−cosθ)

+
(

S′m
ρsinθ
2πρ2

)
(−sinθ)

]
(ρdθ)

= −
n

∑
m=1

∫ 2π

0
γik Qi jk(P̂,M̂m)

(
S′m
2π

)
dθ

= −
n

∑
m=1

S′m γik Qi jk(P̂,M̂m) (44)

The volume-surface-integral transformation for the ther-
mal effects is now complete. The extra volume integral
seen in Eq. (19) can now be computed via

VIj = −
∫

Ŝ0

γik Ui j(P̂, Q̂)Θ(Q̂)nk dŜ

+
∫

Ŝ0

γik Qi jk,t(P̂, Q̂)Θ(Q̂)nt dŜ

−
∫

Ŝ0

γik Qi jk(P̂, Q̂)Θ,t(Q̂)nt dŜ

−
n

∑
m=1

S′m γik Qi jk(P̂,M̂m) (45)

For many practical applications, concentrated heat
sources are often placed at the surface of the domain.

The formulation developed above can also be modified
for BEM modeling of these problems. For this purpose,
consider a concentrated heat source located at a corner
with an included angle λ as shown in Fig. 3. The forego-
ing process to exclude the singularity at the point of the
heat source is still valid, provided the term in Eq. (44) is
modified by

lim
ρ→0

n

∑
m=1

∫
Ŝm

γik Qi jk(P̂, q̂)Θ,t (q̂)nt (ρdθ)

= −
n

∑
m=1

∫ θ2

θ1

γik Qi jk(P̂,M̂m)
(

S′m
2π

)
dθ

= −
n

∑
m=1

S′m γik Qi jk(P̂,M̂m) (λm/2π) (46)

It should be reminded that the included angle between the
two planes meeting at the corner is defined in the mapped
plane; it can be readily computed using the outward nor-
mal vectors at the corner of the two adjacent boundary
elements. Although this modification to remove the sin-
gularity of the integrals is fundamentally valid for point
heat sources on the boundary, care should still be ex-
ercised when modeling the problem. Some difficulties
may arise in the direct numerical evaluation of the log-
arithmic function in Qi jk(P̂,M̂m) when the distance be-

tween points P̂ and M̂m becomes zero in the collocation.
A simple way to avoid this is to relocate the heat source
to be at a point in the interior of the domain very close
to the boundary. Numerical experiments conducted by
the authors suggest that satisfactory results will typically
be obtained if it is placed at a relative distance d/l =0.1
from the nearest element; d being the distance and l is
the length of the element.

Boundary
m

Boundary

2
1

x1-axisPoint heat source

Figure 3 : Point heat source at a corner
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There remains one issue that needs to be addressed for
the more general case of a multiply connected domain.
It concerns the terms containing log(z) in the integrands
of the BIE, as it may not be analytic everywhere in the
domain. This has been explained in detail in Zhang, et
al (1996a), and Shiah and Tan (1999a). If the principal
value of z is defined, as by default in computing, in the
range -π < arg(z) < π, the quantity log(z) is not analytic
along the negative ζ1-axis as shown in Fig.4. This will
invalidate the foregoing volume-to-surface integral trans-
formation. Although the problem may be avoided by re-
defining the range of the argument, arg(z), it is not al-
ways possible to do so to ensure the analyticity of log(z)
everywhere in the domain. Referring to Fig. 4, if rays
from any point along an inner boundary are projected in
arbitrary directions, they will cut through the domain.

2

l2 l0 0l3 l1 1

Figure 4 : A multiply connected domain

This problem was resolved by Zhang et al (1996b) in
their BEM work for body force loading, by carrying out
a limiting process. They obtained a series of extra line
integrals over the intervals along the negative ζ1-axis
where it cuts the domain, such as (l0, l1), (l2, l3), from the
source point on the internal surface of the region. Sim-
ilarly, for the general case here, if the negative ζ1-axis
cuts through the region m times in the intervals (l2m−1,
l2m−2), (l2m−3, l2m−3),......, (l1, l0), the complete bound-
ary integral equation for plane anisotropic thermoelastic-
ity involving a discrete distribution of concentrated heat

sources can be expressed as

Ci j ui(P)+
∫
S

ui(Q)Ti j(P,Q)dS

=
∫
S

ti(Q)Ui j(P,Q)dS +
∫
S

γik nk Ui j(P,Q)ΘdS

−
∫
Ŝ

γik nk Ui j(P,Q)ΘdŜ+
∫
Ŝ

[γik Qi jk,t(P,Q)Θ

− γik Qi jk(P,Q)Θ,t ]nt dŜ +
m

∑
n=1

∫ l2n−2

l2n−1

Lj(ζ1)dζ1

−
n

∑
m=1

S′m γik Qi jk(P̂,M̂m) (λm/2π) (47)

In Eq. (44), the integrand, Lj(ζ1) , is given by

Lj(ζ1)

= −4πΘ

(
K12

K11
γi1 +

√
∆

K11
γi2

)
Im{ri1 A j1 +ri2 A j2}

+4πΘγik

(
K12

K11
Im

{
ri1 Aj1 µ11 µk1

µ11
2 +µ21

2 +
ri2 A j2 µ12 µk2

µ12
2 +µ22

2

}

+
√

∆
K11

Im

{
ri1 A j1 µ21 µk1

µ11
2 +µ21

2 +
ri2 A j2 µ22 µk2

µ12
2 +µ22

2

})

−4π γik

(
K12

K11
Θ,1 +Θ,2

√
∆

K11

)

Im

{
ri1 A j1 µk1

µ11
2 +µ21

2 +
ri2 A j2 µk2

µ12
2 +µ22

2

}
(48)

It should be noted, however, the problem of multi-values
will also occur for Qi jk(P̂,M̂m) appearing in the last term
of Eq. (47) when a concentrated heat source is located
on its branch cut, which is set by default in computing
to be the negative ζ1-axis. For a simply connected do-
main, this problem can always be avoided by redefin-
ing the arguments mentioned above, such that the branch
cut is aligned with the outward normal vector (Zhang,
et al (1996a)). However, for a multiply connected re-
gion, care should be taken in the boundary discretisation
to ensure that the concentrated heat source does not lie
on the negative ζ1-axis. An expedient way to overcome
these difficulties for multiply connected bodies in general
and to avoid the evaluation of the extra line integrals of
Eq. (47) is to adopt the sub-regioning scheme commonly
used in BEM analysis, making each sub-region a simply
connected sub-domain.
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The formulations developed for treating anisotropic ther-
mal stresses arising from concentrated heat sources in
two dimensions have been implemented into an existing
BEM computer code which employs quadratic isopara-
metric elements (e.g. Zhang, et al (1996b), Shiah and
Tan (1999a)). Three numerical examples are provided
next to demonstrate their veracity and applicability.

4 Numerical Examples

For the purpose of verification of the numerical algo-
rithm, the first problem analyzed is an isotropic steel
disc, but treated as quasi-isotropic in the BEM code for
anisotropy. The material properties of the steel were
taken to be as follows

   E G K
 200 77  0.29 11.7E-6 60
Gpa GPa   / 0C W/(m-oC)

where E is the elastic modulus, G the shear modulus, ν
the Poisson’s ratio, α the thermal expansion coefficient,
and K the thermal conductivity coefficient. The second
problem considered is an anisotropic rectangular plate
with a discrete distribution of concentrated heat sources
inside domain. The third example deals with a doubly
connected domain with a concentrated heat source pre-
scribed on the boundary. The material properties cho-
sen in the last two examples were arbitrarily chosen to
correspond to those of a glass-epoxy that is generally
anisotropic. Following the usual notations but with aster-
isks denoting values in the directions of principal axes,
the mechanical properties are listed below.

 E*
11/E*

22
*
12 G*

12/E*
22

*
12,1

*
12,2

*
11/ *

22 *
22

*
11 / KK

55/21  0.25 9.7/21  0  0  6.3/20   3.46/0.35

All three problems were analyzed under the assumptions
of plane stress conditions.

These example problems are also analyzed by the finite
element method as a means of comparison of the nu-
merical results. The commercial software, ANSYS, was

employed. It should be mentioned that when modeling
the concentrated heat source with ANSYS, a very re-
fined mesh discretisation in its vicinity was introduced;
over these elements, a uniform heat flux is prescribed.
Furthermore, the anisotropic field problem was solved in
the FEM analysis in a rotated, scaled, coordinate system
mentioned earlier above.

4.1 Example 1

As shown in Fig. 5, the first problem treated is a quasi-
isotropic thin disc with a concentrated heat source of in-
tensity S =60 W located at its center. The circumferen-
tial edge of the disc is fully constrained and is kept at a
constant uniform temperature T = 0◦C. Although only
a sector of the disk needs to be considered, by virtue
of axisymmetry, the problem was solved for the whole
domain for the purpose of verification of the computer
code for anisotropy. For the analysis, R was taken to
be 1 m. Thirty-two quadratic line elements with a to-
tal of sixty-four nodes (Fig. 5) were used to model the
problem with BEM. The associated thermal field was
first solved to obtain the temperature gradients at the
nodes along the circumference. For the corresponding
FEM analysis with ANSYS, a total of 2654 PLANE77
(high-order quadrilateral) elements were employed; the
mesh is shown in Figure 6. Table 1 shows the excellent
agreement of the solutions obtained from both numeri-
cal methods for the distribution of the computed normal-
ized temperature, T · (K R/S), along a radial plane of the
disc. The computed normalized temperature gradients at
the circumferential edge, (dT/dn) · (K R2/S), were also
in perfect agreement with each other to four significant
digits, with a uniform value of -3.609E-2. With the ther-
mal field obtained and using the same mesh design, the
BEM thermoelastic stress analysis was then carried out.
The corresponding FEM analysis using ANSYS was also
performed, but with element type PLANE82 (high-order
quadrilateral element for elasticity) instead. Figure 7
shows the distribution of the normalized radial stress, σrr

KR/ (EαS), at the interior points along a radial plane from
the centre of the disc. Table 2 lists the computed nor-
malized radial stress around the circumference obtained
using both numerical methods. It can be seen that the
agreement between the computed results is again excel-
lent, and that the radial stress is uniform all around the
circumference, as to be expected. The hoop stress at the
disc circumference was also found to be uniform, the nu-
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Point Heat 
Source
S=60W

x1-axis
R

T=00C

Figure 5 : A circular disc with a concentrated heat source
and the BEM mesh discretisation - Example 1

Figure 6 : FEM mesh for analysis with ANSYS - Exam-
ple 1

merical value being in agreement with the expected value
of the product of the Poisson’s ratio and the radial stress.

4.2 Example 2

The second problem considered is a rectangular glass-
epoxy plate (1 m× 2 m) with two internal point heat
sources with intensity S=100 W as shown in Fig. 8. To
demonstrate the capability of the developed BEM algo-
rithm in dealing with full anisotropy, the material prin-
cipal axes are rotated counterclockwise by an angle θ

0.0 0.2 0.4 0.6 0.8 1.0

-0.32

-0.28

-0.24

-0.20

-0.16

-0.12

-0.08

r/R

ANSYS(
rr
)

BEM( rr)

rr
*K

 R
 / 

E
S

Figure 7 : Distribution of the normalized radial stress
σrrKR/EαS along a radial plane – Example 1

Table 1 : Distribution of normalized temperature,
T *(KR/S), along a radial plane – Example 1

*( / )T K R S
r/R BEM

quasi-isotropic
ANSYS
isotropic

% Diff.

0.1 0.3742 0.3742 0
0.2 0.2639 0.2639 0
0.3 0.1994 0.1994 0
0.4 0.1536 0.1536 0
0.5 0.1181 0.1181 0
0.6 0.0891 0.0891 0
0.7 0.0645 0.0645 0
0.8 0.0433 0.0433 0
0.9 0.0245 0.0245 0

measured from the x1-axis. For the purpose of illustra-
tion, the temperature at the top and bottom surfaces re-
main unchanged (T =0◦C), and these surfaces are fully
constrained from displacement. The two perpendicu-
lar sides, on the other hand, are thermally insulated and
free. The problem is investigated for different separation
distances between the two heat sources, with d/L(see
Fig. 8) varying from 0.1 to 0.4. Relatively refined el-
ements were employed at those parts of the boundary
close to the heat sources in the BEM model that has a
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Table 2 : Normalized radial stress, σrrKR/E αS, around
the circumference of the disc – Example 1

SEKRrr /
BEM

quasi-isotropic
ANSYS
isotropic

� Diff.

0.0 -1.1394E-01 -1.1365E-01 0.3
22.5 -1.1373E-01 -1.1369E-01 0.0
45.0 -1.1386E-01 -1.1372E-01 0.1
67.5 -1.1366E-01 -1.1368E-01 0.0
90.0 -1.1372E-01 -1.1365E-01 0.1

112.5 -1.1380E-01 -1.1369E-01 0.1
135.0 -1.1367E-01 -1.1372E-01 0.0
157.5 -1.1392E-01 -1.1368E-01 0.2
180.0 -1.1403E-01 -1.1365E-01 0.3
202.5 -1.1380E-01 -1.1369E-01 0.1
225.0 -1.1324E-01 -1.1373E-01 0.4
247.5 -1.1340E-01 -1.1369E-01 0.3
270.0 -1.1358E-01 -1.1365E-01 0.1
292.5 -1.1320E-01 -1.1369E-01 0.4
315.0 -1.1375E-01 -1.1372E-01 0.0
337.5 -1.1393E-01 -1.1368E-01 0.2

total 116 elements. In the FEM model with ANSYS, be-
cause very refined mesh discretizations at the locations
of the heat sources were required, a separate mesh was
developed for each case when the heat sources were dis-
placed. Figure 9 shows the FEM mesh used for the case
of d/L=0.4, where 3353 elements were used. To investi-
gate the anisotropic effect of the material, the problem
is solved by both numerical approaches for various θ
values, namely, 0◦, 30◦, 60◦, and 90◦. The computed
stresses along the constrained surfaces, all normalized by
the quantity, E11α11S/LK11, are shown in Figs. 10 to 12
for σ11, σ22, and σ12, respectively. Comparisons of all
the BEM and FEM computed stresses on the constrained
surfaces again show excellent agreement of the numeri-
cal solutions with one another.

4.3 Example 3

The third problem considered is a doubly connected re-
gion of a thin square plate containing a central circular
with a point heat source on the boundary, with the dimen-

2
T=0oC

L=1S=10

T=00C

E*
2

E*
1in

su
la

te
d

in
su
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te

d

CD

d

d

A B

Figure 8 : A rectangular plate with a pair of concentrated
heat sources in the domain – Example 2

Figure 9 : FEM mesh for analysis with ANSYS – Exam-
ple 2, d/L=0.4

sions as shown in Fig. 13. For the purpose of demonstra-
tion, the temperature at the top surface was prescribed a
value of 100◦C while the bottom surface was prescribed
with T=0◦C; all other surfaces, including the circumfer-
ence of the central hole, are thermally insulated. Also, it
is assumed that a concentrated heat source with strength
S=103 W exists at the top surface. The exterior bound-
ary of the plate is constrained from displacements as
shown in Fig. 13 while the edge of the central hole is
free.

The problem can be solved using the conventional sub-
regioning scheme with the BEM to avoid dealing with the
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Figure 10 : Distribution of the normalized stress,
σ11K11L/E11α11S,along the constrained surfaces – Ex-
ample 2

extra line integrals on the right-hand side of Eq. 47 when
treating a multiply connected domain, as explained ear-
lier. This was not followed, however, in order to demon-
strate the generality of the formulation developed.

The boundary discretization of the BEM model in which
82 quadratic elements were employed, is also shown in
Fig. 13. To investigate the effects of anisotropy, the
problem was also solved for various rotation angles of
the principal axes, namely, 0◦, 30◦, 60◦, and 90◦. Fig-
ure 14 shows the FEM mesh used with ANSYS, con-
taining a total of 1558 (PLANE77 and PLANE82) ele-
ments. The variations of the computed normalized hoop
stress around the circumference of the hole for the dif-
ferent orientation angles of the material principal axes
are shown in Fig. 15. Similar results for the normalized
direct stress components along the outer edges AB, BC,
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Figure 11 : Distribution of the normalized stress,
σ22K11L/E11α11S, along the constrained surfaces – Ex-
ample 2

DC, and AD are shown in Fig. 16 to 19, respectively.
From the comparison of the results shown in these fig-
ures, it can be seen that the BEM results are in very sat-
isfactory agreement indeed with the corresponding FEM
results obtained with ANSYS.

5 Conclusions

In this paper, the BEM has been developed for two di-
mensional thermoelastic stress analysis of an anisotropic
medium with concentrated heat sources. This physical
problem in anisotropic elasticity has many practical ap-
plications in engineering but its solution using the BEM
remains extremely scarce indeed. The presence of con-
centrated heat sources gives rise to thermal singularities
at their point locations that pose additional difficulties
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Figure 12 : Distribution of the normalized stress,
σ12K11L/E11α11S, along the constrained surfaces – Ex-
ample 2

in the derivation of the exact boundary integral equation
(BIE). In the derivation of the BIE, the volume integral
associated with the thermal loading needs to be trans-
formed into boundary integrals. The exact transforma-
tion has been successfully achieved by a direct domain
mapping technique in which the singularity is analyti-
cally removed in the mapped plane; the steps for which
have been elucidated in the paper. Three example prob-
lems have been provided to demonstrate the veracity of
the analytical and numerical formulations of the BEM.
Their numerical results have been compared with those
obtained using the FEM with the commercial code AN-
SYS, and excellent agreement between them have been
obtained. The work has also provided illustrations of the

Figure 13 : A square plate with a central hole subjected
to a point heat source on the boundary - Example 3

T=0oC

T=100oC CD
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Figure 14 : FEM mesh for analysis with ANSYS – Ex-
ample 3

ease with which the problems can be modeled using the
BEM.
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Figure 15 : Distribution of the hoop stress around the
circumference of the hole – Example 3
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side AB – Example 3
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Figure 17 : Distributions of the direct stresses along the
side BC – Example 3
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side CD – Example 3
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side AD – Example 3
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