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On the use of a wave based prediction technique for steady-state
structural-acoustic radiation analysis
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Abstract: Conventional element based methods for
modelling structural-acoustic radiation problems are li-
mited to low-frequency applications. Recently, a novel
prediction technique has been developed based on the in-
direct Trefftz approach. This new wave based method
is computationally more efficient than the element based
methods and, as a consequence, can tackle problems also
at higher frequencies. This paper discusses the basic
principles of the new method and illustrates its perfor-
mance for the two-dimensional radiation analysis of a
bass-reflex loudspeaker.
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1 Introduction

The use of element based prediction techniques such as
the finite element (FE) method, the infinite element (IE)
method and the boundary element (BE) method, is gen-
erally accepted for the steady-state dynamic analysis of
coupled structural-acoustic radiation problems [Desmet,
Pluymers, and Sas (2003)].

In the FE and the IE method, the problem domain is dis-
cretized into a finite number of small elements. FE meth-
ods [Zienkiewicz and Taylor (2000)] lead to system ma-
trices which can be partly decomposed into symmetric,
frequency independent, real, sparsely populated, banded
submatrices. To be able to apply these FE methods for
structural-acoustic radiation problems, an artificial trun-
cation surface is introduced to truncate the unbounded
acoustic domain (see figure 1) [Wolf and Song (1996)].
Some characteristic impedance model is applied at this
truncation surface to prevent acoustic reflections [Keller
and Givoli (1989); Coyette (1992); Nicholls and Nigam
(2004)]. A distinction is made between local and global
impedance models. Local impedance models apply char-
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acteristic impedance boundary conditions to the trunca-
tion surface. The impedance values are determined us-
ing locally defined properties. In this way, the sparsely
populated, banded matrix structure is retained. Global
impedance models, however, like for instance a Dirichlet
to Neumann mapping [Harari, Patlashenko, and Givoli
(1998)], relate all the degrees of freedom on the artificial
truncation surface to each other such that the sparsity of
the system matrices is significantly reduced.

Figure 1 : An FE model with truncating boundary sur-
face

The IE method [Bettess (1992); Astley, Macaulay,
Coyette, and Cremers (1998); Gerdes (2000)] explicitly
models the domain exterior to the artificial truncation
surface. Infinite elements discretize the exterior domain
and are coupled at the artificial truncation surface with
the finite element discretization of the bounded interior
domain (see figure 2). The shape functions used for mod-
elling the acoustic field variables within the infinite ele-
ments combine a suitable amplitude decay and a wave-
like variation for modelling outgoing travelling waves.
By increasing the radial order of these shape functions,
the accuracy increases, but so does the computational
load. A distinction is made between conjugated infinite
elements (or wave envelope elements) and unconjugated
infinite elements, depending on whether the weighting
functions in the integral formulation are, respectively, the
complex conjugate of the shape functions or identical to
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the shape functions [Shirron and Babuska (1998); Ihlen-
burg (2000)]. With the conjugated formulation, the re-
sulting system matrices are frequency independent and
involve (a fairly simple) integration of polynomial func-
tions but are not symmetric. The unconjugated formu-
lation yields matrices that are symmetric but frequency
dependent. Moreover, matrix coefficients result from
more tedious numerical integrations [Astley (1999); Cre-
mers, Fyfe, and Sas (2000); Harari, Barai, Barbone, and
Slavutin (2001)].

Figure 2 : An IE model with 13 infinite elements

BE methods [Kirkup (1998); Von Estorff (2000);
Ochmann, Homm, Makarov, and Semenov (2003)] dis-
cretize only the problem boundary surface (see figure
3). Their solutions are based on a boundary integral for-
mulation that relates the dynamic field variables in the
(bounded or unbounded) domain to the distribution of
some specific variables on the problem boundary surface.
This integral formulation satisfies inherently the Som-
merfeld radiation condition so that no special treatment
is needed to account for the problem domain possibly be-
ing unbounded. Since only the boundary surface is dis-
cretized, BE models are small. However, drawbacks of
these methods are the fully populated, frequency depen-
dent, complex and not always symmetric system matrices
which lead to computationally demanding calculations.

All element based methods express the dynamic response
variables in terms of simple but approximating shape
functions. Because of this approximation, a sufficient
number of elements per wavelength is required to obtain
reasonable accuracy. With increasing frequency, wave-
lengths shorten, so that the number of elements must
increase accordingly to maintain the same level of ac-
curacy. Therefore, computational resources restrict the

Figure 3 : A BE model

practical use of these element based methods to low-
frequency applications [Ihlenburg and Babuska (1995)].
By applying certain approximations, like the Rayleigh
and Kirchoff approximation, also high-frequency appli-
cations can be analyzed [Junger and Feit (1993); Herrin,
Martinus, Wu, and Seybert (2003)]. These cost-efficient
approximations yield accurate results when the radii of
curvature of the problem boundary surface, measured
in terms of acoustic wavelengths, becomes very large,
which is the case for high-frequency applications.

In recent years, a vast amount of research has been done
on alternative methods for the analysis of structural-
acoustic radiation problems, in order to find an adequate
method for the mid-frequency range; see for instance,
ongoing research regarding boundary element formula-
tions [Qian, Han, and Atluri (2004); Qian, Han, Ufimt-
sev, and Atluri (2004); Callsen, Von Estorff, and Za-
leski (2004)], Galerkin least-squares methods [Thomp-
son and Pinsky (1995); Babuska and Sauter (1997)],
discontinuous Galerkin methods [Farhat, Wiedemann-
Goiran, and Tezaur (2004)], element-free Galerkin meth-
ods [Babuska and Melenk (1997); Bouillard, Lacroix,
and De Bel (2004)], meshless Petrov-Galerkin meth-
ods [Atluri (2004)] and Trefftz based methods [Fair-
weather, Karageorghis, and Martin (2003); Alves and
Valtchev (2003)]. A recently developed wave based
method (WBM) [Desmet (1998)] is part of the latter
family of numerical methods. The WBM is based on
the indirect Trefftz approach [Trefftz (1926)] and has
proven to be successful for low- and mid-frequency ap-
plications [Desmet, Van Hal, Sas, and Vandepitte (2002);
Pluymers, Desmet, Vandepitte, and Sas (2004)]. In-
stead of using simple, approximating shape functions,
exact solutions of the governing differential equations
are used to describe the dynamic variables. Fine dis-
cretization of the domains is not required for convex do-
mains. Concave domains require a subdivision into con-
vex subdomains, which is straightforward for domains
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of moderate geometrical complexity. Model size and
subsequent computational efforts are much smaller than
with element based methods. This allows to handle also
mid-frequency applications. Recently, hybrid methods
have been developed, coupling the WBM with conven-
tional element based methods, in order to broaden the
novel method applicability [Van Hal, Desmet, Vande-
pitte, and Sas (2003a); Van Hal, Desmet, Vandepitte, and
Sas (2003b); Van Hal, Desmet, and Vandepitte (2005)].

This paper discusses how the WBM can be extended for
radiation problems in unbounded domains. The tech-
nique is illustrated for the two-dimensional analysis of
the sound radiation of a bass-reflex loudspeaker and its
performance is compared with the conventional element
based techniques.

2 Problem definition

Figure 4 shows a two-dimensional (2D) bass-reflex loud-
speaker. The thin flexible membrane Γs is excited by a
normal line force F at circular frequency ω and radi-
ates sound into the loudspeaker and its unbounded sur-
roundings. The loudspeaker back-cavity panels Γ0 are
rigid. The time-harmonic normal displacement of the
thin membrane is given by w(rs, t) = w(rs,ω)e jωt with
j the imaginary unit

√−1 and with t denoting the time.
The time-harmonic acoustic pressure response is given
by p(r, t) = p(r,ω)e jωt . From here onwards, the steady-
state solutions w(rs,ω) and p(r,ω) are abbreviated as
w(rs) and p(r), respectively.

Figure 4 : A 2D bass-reflex loudspeaker

The steady-state normal displacement w(rs) of the loud-
speaker membrane is governed by the dynamic plate

equation

(∇4 −k4
b)w(rs) =

F
D

δ(rs, rF )+
pdi f f (rs)

D
(1)

with the bilaplacian operator ∇4 = ∂4

∂x4
s
+ 2 ∂4

∂x2
s ∂y2

s
+ ∂4

∂y4
s
,

(rs = (xs,ys)). kb = 4
√

ρshω2

D is the bending wavenum-

ber and D = Eh3(1+ jη)
12(1−ν2) is the bending stiffness, with h the

plate thickness, ρs the density, E the elasticity modulus,
ν the Poisson coefficient and η the loss factor. pdi f f (rs)
is the pressure difference over the membrane, acting as
an external load.

To uniquely define the normal displacement, four struc-
tural boundary conditions must be specified, i.e. two con-
ditions at both plate edges. For clamped plates, for in-
stance, the boundary conditions are (rs → xs ∈ [0,L])

w(0) = w(L) = 0

dw(0)
dxs

=
dw(L)

dxs
= 0

(2)

Assuming that the system is linear, non-viscous, and adi-
abatic, the steady-state acoustic pressure p(r) is gov-
erned by the homogeneous Helmholtz equation

∇2 p(r)+k2 p(r) = 0 (3)

with ∇2 = ∂2

∂x2 + ∂2

∂y2 the laplacian operator, (r = (x,y)),
k = ω/c the acoustic wavenumber and c the speed of
sound.

The acoustic boundary conditions for the rigid back-
cavity panels are:

r ∈ Γ0 :
j

ρ0ω
∂p(r)

∂n
= 0 (4)

with ρ0 the ambient fluid density and ∂/∂n the derivative
in the normal direction.

To ensure the normal velocity continuity along the fluid-
plate coupling interface Γs, the following relationship
must apply at the interface:

rs ∈ Γs :
j

ρ0ω
∂p(rs)

∂n
= jωw(rs) (5)

The Sommerfeld radiation condition for outgoing waves
ensures that no reflections occur at infinity [Ihlenburg
(1998); Colton and Kress (1998)],

lim
|r|→∞

(
|r|∂p(r)

∂|r| + jkp(r)
)

= 0 (6)
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3 The Wave Based Method

The Wave Based Method (WBM) adopts an indirect
Trefftz approach [Trefftz (1926)] in that the approxima-
tions of the dynamic response variables w and p exactly
satisfy the governing differential equations (1) and (3)
and, where appropriate, the Sommerfeld radiation condi-
tion (6).

3.1 Partitioning into subdomains

A sufficient condition for the WBM approximations to
converge towards the exact solution is convexity of the
considered problem domains [Desmet (1998)]. In the 2D
bass-reflex loudspeaker problem, see figure 4, the struc-
tural problem domain is convex. However, the acoustic
problem domain Ω is a non-convex domain and has to be
partitioned into a number NΩ of non-overlapping, convex

subdomains Ωi,

(
Ω =

NΩ⋃
i=1

Ωi

)
. The boundary of a con-

vex subdomain Ωi is denoted as δΩi. Furthermore, the
following notations are introduced

• Γ0,i = Γ0
⋂

δΩi indicates the part of the boundary of
subdomain Ωi on which rigid boundary conditions
are applied.

• Γs,i = Γs
⋂

δΩi indicates the part of the boundary
of subdomain Ωi which belongs to the fluid-plate
coupling interface.

• Γi j = δΩi
⋂

δΩ j indicates the part of the boundary
of subdomain Ωi which is in contact with part of the
boundary of subdomain Ω j.

• ΓI,i =
NΩ⋃

j=1,i�= j

Γi j indicates the total part of the bound-

ary of subdomain Ωi which is in contact with any
another subdomain.

Each subdomain boundary can thus be decomposed into
three parts

δΩi = Γ0,i

⋃
Γs,i

⋃
ΓI,i (7)

At the subdomain boundaries Γ0,i and Γs,i acoustic
boundary conditions (4) and (5), respectively, are im-
posed. At each of the induced subdomain interfaces
Γi j continuity conditions have to be applied [Pluymers,
Desmet, Vandepitte, and Sas (2003)]. In order to describe

the continuity condition, the following ’equivalent veloc-
ity’ operator is introduced

Rint =
(

j
ρ0ω

∂
∂n

− 1

Zint

)
(8)

with n the boundary normal direction, with positive ori-
entation away from the subdomain.

The continuity condition for subdomain Ωi applied on Γi j

to ensure continuity with subdomain Ω j is

Rint [pi(ri)] = Rint [p j(ri)] , (ri ∈ Γi j) (9)

with pi and p j the acoustic pressure in subdomain Ωi and
Ω j, respectively. Zint is a weighting factor which deter-
mines the relative importance of the velocity term com-
pared to the pressure term in the ’equivalent velocity’
and is chosen to be the characteristic acoustic impedance
value ρ0c. It is shown in [Pluymers, Desmet, Vandepitte,
and Sas (2003)] that choosing Zint = ρ0c is beneficial for
the convergence ratio.

The following sections describe both the approximations
of the acoustic pressure response and the structural dis-
placement response, resulting in a coupled WBM model.

3.2 Acoustic pressure approximation

The acoustic problem domain is divided into two regions
similar to the IE method (see figure 5): an unbounded
region exterior to a circular truncation boundary surface
(subdomain 12) and a bounded region inside the trunca-
tion surface (subdomains 1 - 11). The non-convex region
inside the circular truncation surface of the considered
loudspeaker problem is partitioned into 11 convex sub-
domains to ensure convergence of the WBM approxima-
tions (see figure 5). In total, the acoustic problem domain
is subdivided into NΩ = 12 subdomains.

The steady-state pressure fields pi(r) (i = 1...11) in the
11 bounded acoustic subdomains are approximated as so-
lution expansions p̂i(r),

pi(r)� p̂i(r) =
mi

∑
a=1

pi,aΦi,a(r) (10)

Each function Φi,a(r) is an acoustic wave function, which
satisfies the homogeneous Helmholtz equation:

Φi,a(r (x,y)) =
{

Φi,ar (x,y) = cos(kxi,arx)e− jkyi,ar y

Φi,as(x,y) = e− jkxi,as xcos(kyi,asy)
(11)
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Figure 5 : Domain decomposition

Since the only requirement for the wave number compo-
nents (kxi,ar ,kyi,ar) and (kxi,as ,kyi,as) is that k2

xi,ar
+k2

yi,ar
=

k2
xi,as

+ k2
yi,as

= k2
i with ki = ω/ci, an infinite number of

wave functions (11) can be defined for the expansion
(10). It is proposed to select the following wavenumber
components,

(kxi,ar ,kyi,ar) =

⎛⎝ei,ar π
Lxi

,±
√

k2
i −
(

ei,ar π
Lxi

)2
⎞⎠ (12)

(kxi,as ,kyi,as) =

⎛⎝±
√

k2
i −
(

fi,asπ
Lyi

)2

,
fi,asπ
Lyi

⎞⎠
with ei,ar , fi,as = 0,1,2, ... The dimensions Lxi and Lyi in
(12) represent the dimensions of the (smallest) rectangu-
lar domain, enclosing the considered subdomain. From
here onwards, both kxi,ar and kxi,as are denoted as kxi,a and
both kyi,ar and kyi,as are denoted as kyi,a.

The wave function contributions pi,a in (10) are the un-
knowns.

In the unbounded subdomain outside the circular bound-
ary surface, i.e. subdomain 12, the steady-state pressure
p12(r) is approximated as a solution expansion of wave
functions that are solutions of the Helmholtz equation
(3) and that satisfy the Sommerfeld radiation condition
for outgoing waves (6). It has been proven in [Herrera
(1984)] that, for a 2D acoustic domain, exterior to a cir-

cular boundary surface, the expansion

p12(r,θ)� p̂12(r,θ) = pc,0H(2)
0 (kr)

+
N

∑
a=1

pc,aH(2)
a (kr)cos(aθ)+ ps,aH(2)

a (kr)sin(aθ)(13)

converges for N → ∞. H(2)
a (∗) is the a-th order Hankel

function of the second kind. The contributions pc,0, pc,a

and ps,a are the m12 = 2N +1 unknowns.

The set of all nAdo f =
12

∑
i=1

mi acoustic wave function con-

tributions pi,a (i = 1...11), pc,0, pc,a and ps,a is denoted
as pset .

3.3 Structural displacement approximation

Based on the above pressure approximations, the steady-
state normal displacement w is approximated as a solu-
tion expansion ŵ

w(xs) � ŵ(xs) =
4

∑
s=1

wsΨs(xs)+ ŵF (xs)+
NΩ

∑
i=1

ζi ŵAi(xs)

with ζi = 0 if Γs,i = /0
ζi = nT

i .ns if Γs,i �= /0 (14)

where ns and ni represent the unit normal vectors of the
plate and of subdomain Ωi, respectively. .T is the trans-
pose operator. ŵAi represents a particular solution of the
dynamic plate equation (1) due to the pressure loading
from the acoustic field along the cavity-plate interface
Γs,i. For the considered bass-reflex example, see figure
4, the following expression can be used

ŵAi(xs) =
mi

∑
a=1

wAi,a (xs) (15)

with

wAi,a(xs) = pi,a
Φi,a(xs)

D(k4
xi,a −k4

b)
(16)

The four structural wave functions Ψs are four linearly
independent solutions of the homogeneous part of the
fourth-order dynamic plate equation (1),

Ψs(xs) = e− jskbxs , (s = 1...4) (17)

and ŵF is the normal displacement of an infinite plate,
excited by a normal line force F ,

ŵF(xs) =
− jF

4Dk3
b

(e− jkb|xs−xF | − je−kb|xs−xF |) (18)
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The 4 structural wave function contributions ws (s =
1...4) are the structural unknowns and are denoted as
wset .

3.4 Coupled structural-acoustic wave model

With the use of the proposed pressure and displacement
expansions (10), (13) and (14), the dynamic plate equa-
tion (1), the Helmholtz equation (3) and the Sommerfeld
radiation condition (6) are always exactly satisfied, irre-
spective of the values of the nDOF = (4+nAdo f ) unknown
wave function contributions wset and pset . These con-
tributions are merely determined by the structural and
acoustic boundary conditions. There are two types of
boundary conditions

• For a structural domain in a 2D problem, structural
boundary conditions are specified at discrete edge
locations. The boundary conditions (2) can be im-
posed exactly using expansion (14). This leads to
4 algebraic equations in the nDOF unknown wave
function contributions

[
ASS CSA

]{ wset

pset

}
=
{

fS
}

(19)

The (4×4) matrix [ASS] results from the application
of the structural boundary conditions (2) on the 4
structural wave functions (17)

[ASS] =

⎡⎢⎢⎢⎣
Ψ1(0) Ψ2(0) Ψ3(0) Ψ4(0)
Ψ1(L) Ψ2(L) Ψ3(L) Ψ4(L)
dΨ1(0)

dxs

dΨ2(0)
dxs

dΨ3(0)
dxs

dΨ4(0)
dxs

dΨ1(L)
dxs

dΨ2(L)
dxs

dΨ3(L)
dxs

dΨ4(L)
dxs

⎤⎥⎥⎥⎦ (20)

The
(
4×nAdo f

)
matrix [CSA] results from the ap-

plication of the structural boundary conditions
(2) on the particular solution terms wAi,a (16)
(a = 1...mi , i = 1...NΩ) which are due to the acous-
tic loading on the structural domain. Each column
corresponds with an acoustic wave function and is
calculated as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ζi wAi,a(0)
ζi wAi,a(L)

ζi
dwAi,a (0)

dxs

ζi
dwAi,a (L)

dxs

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(21)

Note that, for the considered loudspeaker case, only
the columns associated with wave functions of sub-
domains 2 and 3 will be non-zero.

The (4×1) vector { fS} results from the application
of the structural boundary conditions (2) on the par-
ticular solution term (18)

{
fS
}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ŵF(0)
−ŵF (L)
−dŵF(0)

dxs

−dŵF (L)
dxs

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

• Due to the introduction of NΩ = 12 acoustic sub-
domains, continuity conditions (9) along the subdo-
main interfaces Γi j must be taken into account, in
addition to the problem boundary conditions (4) and
(5). Since both the acoustic boundary conditions
and the continuity conditions are defined at an infi-
nite number of boundary positions, while only finite
sized prediction models are amenable to numerical
implementation, the acoustic boundary and the con-
tinuity conditions are transformed into a weighted
residual formulation.

Applying a weighted residual formulation on each
subdomain Ωi separately, yields, for every subdo-
main Ωi, a set of mi algebraic equations in the nDOF

unknown wave function contributions. In the pro-
posed weighted residual formulation three residual
error functions occur:

R0i(r0) =
j

ρ0ω
∂p̂i(r0)

∂n
−0 , (r0 ∈ Γ0,i) (23)

Rsi(rs) =
j

ρ0ω
∂p̂i(rs)

∂n
− jω ŵ(rs), (rs ∈ Γs,i) (24)

Ri j(ri) = Rint [p̂i(ri)]−Rint [p̂ j(ri)] , (ri ∈ Γi j) (25)

These errors are orthogonalised with respect to a
weighting function p̃i. The integral formulation is
expressed as∫

Γ0,i

p̃i R0idΓ+
∫

Γs,i

p̃i Rs,idΓ

+
NΩ

∑
j=1,i�= j

∫
Γi j

p̃i Ri jdΓ = 0 (26)
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Like in the Galerkin weighting procedure, used in
the FEM, the weighting function p̃i is expanded in
terms of the same set of acoustic wave functions
used in the field variable expansions (10) and (13)
for the considered subdomain Ωi.

Substituting the field variable expansions (10), (13)
and (14) and the weighting function expansion into
the weighted residual formulation (26) leads to mi

equations in nDOF unknowns

[
CASi AAAi

]{ wset

pset

}
=
{

fAi

}
(27)

The element on row a and column s of the (mi ×4)
matrix [CASi] is

[CASi]a s = −ζi

∫
Γs,i

jωΦi,aΨs dΓ (28)

The element on row au and column av of the
(mi ×mi) matrix [AAAi ] is

[AAAi ]au av
=
∫

Γ0,i
⋃

Γs,i

j
ρ0ω

Φi,au

∂Φi,av

∂n
dΓ

−ζi

∫
Γs,i

jωΦi,au wAi,av
dΓ (29)

+
NΩ

∑
j=1,i�= j

∫
Γi j

j
ρ0ω

Φi,au

∂Φi,av

∂n
− 1

Zint
Φi,auΦi,avdΓ

+
NΩ

∑
j=1,i�= j

∫
Γi j

j
ρ0ω

Φi,au

∂Φ j,av

∂n
+

1

Zint
Φi,auΦ j,avdΓ

The element on row a of the (mi ×1) vector { fAi} is

{ fAi}a =
∫

Γs,i

Φi,a jω ŵF dΓ (30)

Combining NΩ matrix equations of type (27) asso-
ciated with each of the NΩ subdomains Ωi results in
a system of nAdo f algebraic equations in nDOF un-
knowns.[

CAS AAA
]{ wset

pset

}
=
{

fA
}

(31)

The combination of the equations resulting from the
structural boundary conditions (19) and those resulting
from the acoustic boundary and continuity conditions

(31) yields a square matrix equation in the nDOF un-
known wave function contributions wset and pset[

ASS CSA

CAS AAA

]{
wset

pset

}
=
{

fS

fA

}
(32)

As for the BE method and in contrast with the FE
method, the proposed technique yields a fully populated
matrix, whose elements are complex and which cannot
be decomposed into frequency independent submatrices.
The big advantage of the WBM is, however, that the
system matrices are substantially smaller in comparison
with the element based techniques. This property, com-
bined with the fast convergence of the WBM, make it a
less computationally demanding method for dynamic re-
sponse calculations, which creates opportunities to tackle
problems also in the mid-frequency range. The benefi-
cial convergence characteristics of the WBM for radia-
tion problems, in comparison with the IE and BE meth-
ods, are illustrated in the next section.

4 Numerical results

4.1 Validation example

In order to illustrate the high accuracy that can be ob-
tained with the WBM, a 2D bass-reflex, as shown in
figure 6, is considered. A unit normal line force F
is applied at the center of the loudspeaker membrane
(E = 70.109 N

m2 , ρs = 700 kg
m3 , ν = 0.3, t = 3mm). The

membrane edges are clamped. The loudspeaker is sur-
rounded with air (c = 340 m

s , ρ0 = 1.225 kg
m3 ).

Figure 6 : Dimensions (in mm) of the bass-reflex loud-
speaker
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Figures 7 and 8 show the calculated pressure field and
the calculated active intensity field at 120Hz. These re-
sults are obtained with a wave model which consists of
495 wave functions with a truncation boundary surface
having a radius of 0.5m. The pressure contour plots show
that the rigid boundary conditions are correctly taken into
account by the WBM since the pressure contour lines
are perpendicular to the rigid walls. Also, no pressure
field discontinuities are observed, which indicates that
the continuity conditions at the subdomain interfaces and
the infinite domain interfaces are correctly taken into ac-
count. Figure 8 shows that active intensity flows from
both the membrane and the reflex-channel towards infin-
ity which clearly illustrates the working principle of a
bass-reflex channel. For the given loudspeaker dimen-
sions, the considered frequency of 120Hz indeed corre-
sponds to the reflex-frequency of the loudspeaker.

Figure 7 : Contour plot of the pressure amplitudes at
120Hz (10−4Pa)

4.2 Comparison with element based techniques

To compare the performances of the WBM and the
existing element based techniques, several coupled
FE/indirect BE and FE/(8th order conjugated) IE mod-
els of the considered problem have been solved using
LMS/SYSNOISE Rev.5.5. The structural FE meshes
consist of 2-noded plate elements, the acoustic BE
meshes of 2-noded linear fluid elements and the acoustic

Figure 8 : Vector plot of the active intensity at 120Hz

FE meshes of 3- and 4-noded linear fluid elements. Ta-
bles 1 and 2 show the number of elements used to model
the considered loudspeaker problem (see figure 6).

Table 1 : FE/IE model sizes
� acoustic FE � acoustic FE � structural � IE total �

inside cavity outside cavity FE dofs

2835 7786 34 312 14567

4832 15973 68 394 25031

9492 26525 136 524 42552

Table 2 : BE and WBM model sizes
� ac. BE � str. BE tot. � dofs

472 34 593

944 68 1167

1888 136 2315

3776 272 4611

� ac. WBM dofs � str. WBM dofs tot. � WBM dofs

131 4 135

195 4 199

327 4 331

587 4 591

853 4 857

Figure 9 plots the relative prediction errors for the ra-
diated sound power W at 5000Hz against the CPU time
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needed for a direct response calculation at one frequency
on a Windows XP system (INTEL 1.8GHz,1Gb RAM)
and against the number of degrees of freedom to model
the problem with the different methods. The indicated
CPU times for the WBM and the FE/BE models include
both the times for construction of the model and for so-
lution of the resulting matrix equation since the matri-
ces are frequency dependent. This is in contrast with the
frequency independent FE/conjugated IE models where
only the solution time is taken into account. Both in
terms of the CPU time and in terms of the number of
degrees of freedom, the WBM has a beneficial conver-
gence rate, compared with the element based techniques,
which confirms the findings of [Desmet (1998); Desmet,
Van Hal, Sas, and Vandepitte (2002); Pluymers, Desmet,
Vandepitte, and Sas (2004)].

To increase the accuracy of the FE/IE models, a finer el-
ement discretization is required. However, since the arti-
ficial boundary, which truncates the unbounded domain,
was chosen to be a circle, the greater part of the acoustic
finite elements are needed to model the enclosed area be-
tween the artificial truncation boundary surface and the
cavity, which is not very efficient and which leads to pro-
hibitively large calculations. A more efficient way of
modelling the problem would be to use a more close-
fitting truncation boundary, such as for instance an el-
lipsoidal boundary, so that the area between the trunca-
tion boundary and the problem boundary becomes much
smaller.

5 Conclusions

This paper applies a novel wave based method for
the steady-state dynamic analysis of structural-acoustic
problems with unbounded fluid domains. It is illus-
trated through a bass-reflex loudspeaker example that
the method converges towards the exact solution. A
comparison with corresponding FE/indirect BE and
FE/conjugated IE models indicates the enhanced conver-
gence rate of the new method. In this way, the proposed
technique offers an adequate way to comply with the cur-
rent challenge in structural-acoustic modelling. Due to
its beneficial convergence rate, the practical frequency
threshold may become substantially higher than for the
element based methods, resulting in a significant narrow-
ing of the currently existing mid-frequency twilight zone.
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