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A Meshless IRBFN-based Method for Transient Problems

L. Mai-Cao1 and T. Tran-Cong2

Abstract: The Indirect Radial Basis Function Net-
work (IRBFN) method has been reported to be a highly
accurate tool for approximating multivariate functions
and solving elliptic partial differential equations (PDEs).
The present method is a truly meshless method as de-
fined in [Atluri and Shen (2002a)]. A recent develop-
ment of the method for solving transient problems is pre-
sented in this paper. Two numerical schemes combining
the IRBFN method with different time integration tech-
niques based on either fully or semi-discrete framework
are proposed. The two schemes are implemented making
use of Hardy’s multiquadrics (MQ) and Duchon’s thin
plate splines (TPS). Some example problems are solved
by the present method, and the results compare favorably
in terms of accuracy and efficiency with those from other
numerical methods such as finite difference (FDM), finite
element (FEM), boundary element (BEM) and the Direct
Radial Basis Function Network (DRBFN) methods.

keyword: meshless method; radial basis functions;
IRBFN method; time-dependent PDEs.

1 Introduction

In recent years meshless methods based on radial basis
functions (RBFs) have increasingly attracted much at-
tention from researchers not only for interpolating mul-
tivariate scattered data and approximating functions but
also for solving partial differential equations (PDEs).
The idea of using RBFs for solving PDEs was first pro-
posed in [Kansa (1990a,b)] where a global MQ scheme
was used together with the collocation method to solve
parabolic, hyperbolic and elliptic PDEs. This method
is hereby referred to as the Direct Radial Basis Func-
tion Network (DRBFN) method. Since its introduction,
the method has been widely applied to various tran-
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sient problems. In [Moridis and Kansa (1994)] a hy-
brid scheme combining MQ with the numerical inver-
sion of Laplace transforms was proposed for solving lin-
ear or linearized time-dependent PDEs. Some appli-
cations using MQ and TPS for heat transfer problems
and linear advection-diffusion equations were reported
in [Zerroukat, Power, and Chen (1998); Zerroukat, Djid-
jeli, and Charafi (2000)]. RBF-based methods were used
for solving natural convection, porous media, and solid-
liquid system problems in [Sarler, Perko, Chen, and
Kuhn (2001); Perko, Chen, and Sarler (2001); Kovace-
vic, Poredos, and Sarler (2003); Sarler, Perko, and Chen
(2004)]. In [Hon, Cheung, Mao, and Kansa (1999)] a
computational algorithm using MQ was devised to solve
the shallow-water equations. It is noted that, the global
MQ and TPS are ranked to be the most accurate for scat-
tered data approximation [Franke (1982)]. The accuracy
of MQ, however, is influenced by the so-called shape pa-
rameter whose optimal value depends on data [Carlson
and Foley (1991); Rippa (1999)].

In addition to the DRBFN method, other meshless ap-
proaches to solving PDEs based on RBFs have been de-
veloped in the last decade. Unlike Kansa’s method where
the RBF coefficient matrix is unsymmetric, the Hermite-
type collocation method proposed in [Fasshauer (1996)]
yields a symmetric positive definite coefficient matrix
which is guaranteed to be non-singular. The meshless
local Petrov-Galerkin (MLPG) was developed in [Atluri
and Zhu (1998a,b)] where compactly supported RBFs
among others can be used as trial functions. Various
MLPG methods were compared and shown to be promis-
ing contenders to the FEM in [Atluri and Shen (2002b)].
The power and flexibility of the MLPG approach were
further demonstrated recently in [Atluri, Han, and Rajen-
dran (2004); Han and Atluri (2004)]. Another approach
investigated in [Chen, Golberg, and Rashed (1998); Gol-
berg and Chen (1999, 2001)] is to combine the method
of fundamental solutions (MFS) with techniques from
the dual reciprocity method (DRM) where the MFS is
employed to find the homogeneous solution and the ap-
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proximation of particular solutions can be found in the
context of the DRM using RBFs. In [Hon (2002)] the
quasi-radial basis function method was proposed where
the quasi-interpolation [Beatson and Powell (1990)] and
RBFs are combined so that the ill-conditioning problem
resulted from a global RBFs scheme is eliminated.

Recently, a new method, namely the Indirect Radial Ba-
sis Function Network (IRBFN) was proposed in [Mai-
Duy and Tran-Cong (2001a, 2003)] for approximating
functions and their derivatives, and solving differential
equations. In the DRBFN method, a function is first
approximated by the RBFN and its derivatives are then
calculated by differentiating such closed form RBFN ap-
proximation. In the IRBFN method, on the other hand,
the highest derivative is first decomposed into radial ba-
sis functions. Lower derivatives and the function it-
self are then successively obtained via symbolic integra-
tions. Recently, it was discovered that this indirect idea
is similar to a Chebyshev method for solving boundary
value problems proposed in [Zebib (1984)]. The IRBFN
method is, however, unique in its way of using the basis
functions and computing the constants of integration as
described later in this paper.

As far as the IRBFN method is concerned, the method
has been successfully applied for function approxima-
tions and solving elliptic PDEs as well as steady Navier-
Stokes equations. It was reported in [Mai-Duy and Tran-
Cong (2003)] that the indirect method performs better
than the direct method in terms of accuracy for approx-
imating both functions and their derivatives. Further-
more, in [Mai-Duy and Tran-Cong (2001a,b)] the indi-
rect method showed its superiority over the direct method
in solving 1-dimensional and 2-dimensional Poisson’s
equations.

In this paper, further developments of the IRBFN method
for solving transient problems are presented. In par-
ticular, the method is extended to solve time-dependent
parabolic PDEs, hyperbolic PDEs, and advection-
diffusion equations. The remaining of this paper is or-
ganized as follows. Firstly, the approximation of a func-
tion and its derivatives by the IRBFN method in a time-
dependent framework is formulated. Two numerical
schemes based on the IRBFN method for solving tran-
sient problems are then presented, followed by some nu-
merical examples for verification purposes. Accuracy
and efficiency comparisons between the two schemes
based on both MQ and TPS RBFs with other numerical

methods, as well as sensitivity studies of the MQ-based
schemes to the network parameters are also discussed.

2 Function approximation by the IRBFN method
for time-dependent problems

The approximation ũ(x, t) of a function u(x, t) can be
written as a linear combination of N basis functions

ũ(x, t) =
N

∑
i=1

wi(t)φi(x) = φφφT (x)www(t), (1)

where φφφ(x) = [φ1(x), . . .,φN(x)]T is a given set of ba-
sis functions, and www(t) = [w1(t), . . .,wN(t)]T is the cor-
responding set of N weight coefficients.

Given a set of M data points and the corresponding
nodal values of the function at certain point in time t,
UUU(t) = [U1(t),U2(t), ...,UM(t)]T , the collocation method
is implemented by applying (1) at every data point to give
a system of equations as follows

ũ(x j, t)=
N

∑
i=1

wi(t)φi(x j) =φφφT (x j)www(t), j = 1,2, ...,M,

(2)

or in a compact form

UUU(t) = ΦΦΦwww(t), (3)

where

ΦΦΦ =

⎡
⎢⎢⎢⎣

φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
...

. . .
...

φ1(xM) φ2(xM) . . . φN(xM)

⎤
⎥⎥⎥⎦ . (4)

The weight coefficients www(t) can be then determined by

www(t) = ΦΦΦ−1UUU(t). (5)

Substituting (5) into (1) yields

ũ(x, t) = φφφT (x)ΦΦΦ−1UUU(t) = ψψψT (x)UUU(t), (6)

where ψψψT (x) = φφφT (x)ΦΦΦ−1 is analogous to a “shape func-
tion” in the FEM context. The first and higher deriva-
tives of the function in terms of spatial variables can be
approximated by

ũ, j(x, t) = φφφT
, j(x)ΦΦΦ−1UUU(t), (7)

ũ, j...l(x, t) = φφφT
, j...l(x)ΦΦΦ−1UUU(t), (8)
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where

φφφ, j(x) = [φ1, j(x),φ2, j(x), . . .,φN, j(x)]T ,

φφφ, j...l(x) =
[
φ1, j...l(x),φ2, j...l(x), . . .,φN, j...l(x)

]T
.

In the DRBFN method, φi’s are chosen to be radial basis
functions. The IRBFN method, on the other hand, starts
from the highest derivative of φi

φi, j...l(x) = ϕi(x) = ϕ(||x−xi||). (9)

For all examples in this paper, the highest order derivative
of interest is the second derivative

φi, jk(x) = ϕi(x), (10)

and the chosen basis function is Hardy’s multiquadrics

ϕi =
√

r2
i + s2

i , (11)

or Duchon’s thin plate splines

ϕi = r2m
i log(ri), m = 1,2,3, . . ., (12)

where ri = ||x − xi|| is the Euclidian norm of vector
(x−xi); si is the RBF shape parameter which can be cal-
culated by

si = βd min
i , (13)

where β is the user-defined parameter and d min
i is the dis-

tance from the ith center to its nearest neighboring center
[Moody and Darken (1989)].

Based on the closed form of the highest order deriva-
tive of φi(x) in (9), the lower derivatives and the func-
tion φi(x) itself are then successively obtained via sym-
bolic integrations. The formulations of the first and sec-
ond order antiderivatives of Hardy’s multiquadrics and
Duchon’s thin plate splines are presented in Appendices
1 and 2, respectively. It should be noted that the integra-
tion process gives rise to constants of integration which
contribute to the formulation of φφφ(x) in (6). The detailed
procedure for calculating these constants of integration is
presented in Appendix 3.

It is noted that in the case of the DRBFN method, the
RBF must be sufficiently differentiable to satisfy the par-
ticular differential operator. The MQ is, therefore, al-
ways applicable as it is C∞ continuous, whereas the TPS

is only C2m−1 continuous, and m must be chosen ap-
propriately to suit the differential operator. The IRBFN
method, on the other hand, can use the first order TPS
(m = 1) regardless of the order of the differential opera-
tor because the method starts from the highest derivative
and the approximation of the corresponding function is
obtained via successive integrations. Another note to be
mentioned here is that, although the MQ and TPS are
used with up to second order derivatives of a function
in this paper, the IRBFN method can be used without
changing its interface (6)-(8) with other kinds of RBFs
and/or with higher order derivatives provided that sym-
bolic integrations can be performed.

3 Numerical schemes based on the IRBFN method
for transient problems

Consider a general initial boundary value problem

∂u
∂t

+Lu = f in QT := (0,T)×Ω,

Bu = g1 on ΣT := (0,T )×∂Ω, (14)

u = g2 on Ω, t = 0,

where Ω is a bounded domain in Rd, d = 1,2,3, with
boundary ∂Ω; T > 0 is a prescribed time-level; f = f (x),
g1 = g1(x) and g2 = g2(x) are given functions; L is a
linear differential operator; B is an operator representing
Dirichlet, Neumann or Robin boundary conditions as
follows

Dirichlet:

Bu = u (15)

Neumann:

Bu = n ·∇u (16)

= n1
∂u
∂x1

+n2
∂u
∂x2

+n3
∂u
∂x3

where n = [n1,n2,n3]T is the outward unit vector normal
to the boundary.

Robin:

Bu = n ·∇u+κu (17)

where κ is a given function on the boundary.
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3.1 Fully discrete schemes

In fully discrete schemes, problem (14) is discretized
with respect to both time and space variables. Firstly,
the time interval [0,T ] is partitioned into NT subintervals
[tn, tn+1] of length ∆t = T/NT with t0 = 0 and tNT = T .
The discretization of the problem in time is then accom-
plished by a time-stepping scheme, followed by the spa-
tial discretization based on the IRBFN method. Among
many possible time-stepping schemes, the standard θ-
scheme, 0≤ θ≤ 1 is used in this work. It should be noted
that the extreme cases θ = 0 and θ = 1 correspond to the
well-known forward (fully explicit) and backward (fully
implicit) Euler methods, respectively. The scheme asso-
ciated with the case θ = 1/2 is equivalent to the (semi-
implicit) Crank-Nicolson method which is second-order
accurate. Applying the θ-scheme to problem (14) gives

ũn+1− ũn

∆t
+θLũn+1 +(1−θ)Lũn = f , (18)

Bũn+1 = g1, (19)

where tn+1 = tn + ∆t, ũn+1 ≈ u(x, tn+1), and ũ0 = g2(x).
The time discrete system (18)-(19) is then discretized
in space by using the IRBFN approximants in (6)-(8) at
time tn+1 and applied at every data point to obtain a sys-
tem of equations to be solved for UUUn+1. Note that data
points are partitioned into MI interior points and M−MI

boundary points. The fully discrete version of (18) reads

φφφT (x j)ΦΦΦ−1UUUn+1 +θ∆t φφφT
L (x j)ΦΦΦ−1UUUn+1 =

φφφT (x j)ΦΦΦ−1UUUn − (1−θ)∆t φφφT
L (x j)ΦΦΦ−1UUUn +∆t f(x j),

j = 1, . . .,MI,

or

(
ψψψT (x j)+θ∆t ψψψT

L (x j)
)

UUUn+1 = ψψψT (x j)UUUn−
(1−θ)∆t ψψψT

L (x j)UUUn +∆t f(x j), j = 1, . . .,MI, (20)

where UUUn = [U1(tn), . . .,UN(tn)]T is a known set of nodal
values of the function at time tn, and

φφφL(x) = [Lφ1(x), . . .,LφN(x)]T ,

ψψψT (x j) = φφφT (x j)ΦΦΦ−1, j = 1, . . . ,MI,

ψψψT
L (x j) = φφφT

L (x j)ΦΦΦ−1, j = 1, . . . ,MI.

Similarly, one has fully discrete versions of (19) cor-
responding to different boundary conditions defined in

(15), (16), and (17) as follows

Dirichlet:

ψψψT (x j)UUUn+1 = g1(x j),
j = MI + 1, . . .,M, (21)

Neumann:

(
n1ψψψT

,1(x j)+n2 ψψψT
,2(x j)+n3 ψψψT

,3(x j)
)
UUUn+1

= g1(x j), (22)

where

ψψψT
,i (x j) = φφφT

,i (x)ΦΦΦ−1,

in which i = 1,2,3 and j = MI +1, . . . ,M,.

Robin:

(
n1ψψψT

,1(x j)+n2 ψψψT
,2(x j)+n3 ψψψT

,3(x j)+κψψψT (x j)
)
UUUn+1

= g1(x j), (23)

where j = MI +1, . . . ,M.

A general form corresponding to any of the above bound-
ary conditions can be written as follows

ψψψT
B(x j)UUUn+1 = g1(x j), j = MI +1, . . . ,M, (24)

where ψψψT
B(x) is defined by either (21), (22) or (23).

System (20) and (24) can be written in a compact form
as follows

AUUUn+1 = b, (25)

where

A =
[

I+θ∆t ΨΨΨL 000
000 ΨΨΨB

]
,

and

b =
[

UUUn − (1−θ)∆t ΨΨΨLUUUn +∆t f
g1

]
,

in which ΨΨΨL and ΨΨΨB result from the application of ψψψL(x)
and ψψψB(x) at interior and boundary points, respectively.
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The system (25) is solved at each time step for UUUn+1

until the prescribed time T is reached using the corre-
sponding nodal values at the previous time t = tn, UUUn,
and the IRBFN coefficient matrices associated with func-
tion u, differential operator L and boundary operator B.
It is noted that an alternative system of equations in
terms of the weight coefficients w can be set up by min-
imizing the sum-squared error (SSE) in the sense of the
general least-squares principle [Mai-Duy and Tran-Cong
(2001a)]. However, the SSE approach is not used here
since a slight drawback might arise due to the fact that
boundary conditions are not strictly satisfied within the
least-squares context. As shown above, the fully discrete
schemes have been derived and the system (25) has been
set up without using the SSE approach.

3.2 Semi-discrete schemes

In semi-discrete schemes, problem (14) is first dis-
cretized in space while still continuously dependent on
time. The IRBFN approximation of function u(x, t) is
written here as a linear combination of shape functions
ψi(x) and nodal values Ui(t) of function u(x, t) from (6)

ũ(x, t) = ψψψT (x)UUU(t) =
N

∑
i=1

Ui(t)ψi(x). (26)

Substituting (26) into (14) yields a discrete version of the
problem in space

N

∑
i=1

dUi(t)
dt

ψi(x)+
N

∑
i=1

Ui(t)ψLi(x) = f (x), (27)

N

∑
i=1

Ui(t)ψBi(x) = g1(x). (28)

The collocation method is then used to set up a system of
ordinary differential equations (ODEs) by applying (27)-
(28) at every data point

N

∑
i=1

dUi(t)
dt

ψi(x j)+
N

∑
i=1

Ui(t)ψLi(x j) = f (x j),

j = 1, ...,MI,

N

∑
i=1

Ui(t)ψBi(x j) = g1(x j),

j = MI + 1, ...,M,

or in a compact form

dUUU
dt

+ΨΨΨLUUU = f, (29)

ΨΨΨBUUU = g1, (30)

where ΨΨΨL and ΨΨΨB result from the application of ψψψL(x)
and ψψψB(x) at every data point, respectively.

Solving the ODE system (29)-(30) for UUU with the ini-
tial conditionsUUU0 = g2 yields the solution to the problem
(14) at every data point within the time interval of in-
terest. It is noted that various high-order ODE solvers
can be applied to solve the system (29)-(30) depending
on the problem at hand. For illustrative purposes, the
fourth-order Runge-Kutta method is described here in
the IRBFN framework to solve the problem (14). In that
case, the ODE (29) can be rewritten as

dUUU
dt

= FFF(t,UUU), (31)

where FFF = f −ΨΨΨLUUU . At each time step, four func-
tion evaluations of FFF are performed taking into account
the boundary conditions described in (30). The updated
value of UUU at time tn+1 is calculated as follows

KKK1 = ∆t FFF (tn,UUUn) ,

KKK2 = ∆t FFF
(

tn+1/2,UUUn +KKK1/2
)

,

KKK3 = ∆t FFF
(

tn+1/2,UUUn +KKK2/2
)

,

KKK4 = ∆t FFF
(
tn+1,UUUn +KKK3

)
,

UUUn+1 = UUUn +
KKK1 +2KKK2 +2KKK3 +KKK4

6
, (32)

where ∆t is the time step size; tn+1/2 = tn +∆t/2; tn+1 =
tn + ∆t; UUUn is the set of nodal values of function u(x, t)
at time tn. It is noted that other methods such as Adams
methods, predictor-corrector methods, and backward dif-
ferentiation formula (BDF) can be used for both non-
stiff and stiff problems [Quarteroni, Sacco, and Saleri
(2000)].

4 Numerical Examples

For verification purposes, the IRBFN method is applied
to solve five example problems namely the 1D and 2D
diffusion equations, the 1D and 2D wave equations, and
the 1D advection-diffusion equation. The results are then
compared in terms of accuracy and efficiency to those
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from other methods such as finite difference, finite ele-
ment, boundary element and the DRBFN methods. Fur-
thermore, three network parameters including the user-
defined parameter β described in (13), the point density
and the time-step size are taken into account to investi-
gate their influence on the accuracy of the solutions by
the MQ-IRBFN method.

In order to compare the present results with published
works, it is necessary to use the same data format and
hence most of the accuracy comparisons in this paper
are made necessarily in a pointwise manner using abso-
lute/relative errors at each time step. For each table of
comparison, however, L∞-norm of error is shown for fur-
ther information. In addition, root-mean-squared-error
throughout the time domain are used for sensitivity anal-
ysis. The root-mean-squared error is calculated by

RMSE =

√
1

NT

NT

∑
i=1

(ui − ũi)
2, (33)

where ũ and u are numerical and analytical solutions, re-
spectively; NT is the total number of time steps.

4.1 Example 1. One-dimensional heat equation

Two test problems are considered in this example where
the numerical solutions by the present IRBFN method
are compared to those by the FDM and DRBFN method.

Example 1.1
Consider an 1D heat equation

∂u
∂t

(x, t) =
∂2u
∂x2 (x, t), 0 < x < 1, t > 0,

subject to boundary and initial conditions

u(0, t) = u(1, t) = 0, t > 0,

u(x,0) = sinπx, 0 ≤ x ≤ 1,

where u(x, t) is the temperature at the position x at time
t. The problem has the analytical solution u(x, t) =
sinπxcos2πt.

The finite difference method (FDM) and the IRBFN
method are used to solve the problem. For the FDM,
Crank-Nicolson algorithm is used whereas the fully dis-
crete scheme described in section (3.1) with θ=0.5 is used
for the IRBFN method. The numerical solution by the
IRBFN method is shown in Figure 1. Table 1 shows that
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Figure 1 : Solution profile in Example 1.1 by the MQ-
IRBFN method.

the IRBFN method using either MQ or TPS RBFs gives
more accurate result than the FDM with the same number
of points N = 11 and the time step size ∆t = 0.01. In par-
ticular, the present method yields the solution accurate
to 4 significant digits with TPS and up to 5 significant
digits with MQ. In Table 2, the IRBFN method shows its
superiority over the FDM when the point density and the
number of time steps it uses are only half as many as the
FDM uses. With such a “crude” discretization in both
time and space domain, the IRBFN method still yields
solutions more accurate than that of the FDM.

For the purpose of sensitivity studies for the MQ-IRBFN
method, four point densities are chosen to be 5, 7, 9,
11 points, and the numbers of time steps of interest
are 25 and 50. In addition, a wide range of β’s values
from 1 to 10 are used to study its influence on the
solution accuracy. Figures 2a, 2b, 2c, 2d show the
maximum absolute errors by the MQ-IRBFN method
over the entire set of collocation points, and figures 2e,
2f, 2g, 2h present the root-mean-squared errors over the
time domain of 25 time steps. It can be seen from the
figures that the errors of the proposed method do not
vary significantly for this problem where β’s are in the
range from 1 to 10. In particular, these errors are of
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Table 1 : Accuracy comparison of the solution at time t = 0.5 between the FDM and the IRBFN method (using
either MQ or TPS) in Example 1.1. Both methods use the same discretization (N = 11, ∆t = 0.01). The L∞-norm of
the error vector for FDM, TPS-IRBFN and MQ-IRBFN are 2.6766e−4, 1.6887e−5 and 8.3494e−6, respectively.

Numerical solution Absolute Error
X Exact FDM TPS MQ FDM TPS MQ

0.1 0.002222 0.002305 0.002219 0.002224 8.271e-05 3.341e-06 1.908e-06
0.2 0.004227 0.004385 0.004218 0.004226 1.573e-04 8.856e-06 9.966e-07
0.3 0.005818 0.006035 0.005805 0.005815 2.165e-04 1.311e-05 3.066e-06
0.4 0.006840 0.007094 0.006824 0.006835 2.546e-04 1.591e-05 4.544e-06
0.5 0.007192 0.007460 0.007175 0.007187 2.677e-04 1.689e-05 5.035e-06
0.6 0.006840 0.007094 0.006824 0.006835 2.546e-04 1.592e-05 4.543e-06
0.7 0.005818 0.006035 0.005805 0.005815 2.165e-04 1.311e-05 3.064e-06
0.8 0.004227 0.004385 0.004218 0.004226 1.573e-04 8.861e-06 9.937e-07
0.9 0.002222 0.002305 0.002219 0.002224 8.271e-05 3.348e-06 1.912e-06

Table 2 : Accuracy comparison of the solution at time t = 0.5 between the FDM and the IRBFN method (using
either MQ or TPS) in Example 1.1. Although the number of collocation points and time steps the IRBFN method
needs (6 and 25) are only half as many as the FDM uses (11 and 50), the IRBFN method still yields more accurate
solution. The L∞-norm of the error vector for FDM, TPS-IRBFN and MQ-IRBFN are 2.5455e−4, 4.3845e−5 and
1.8211e−5, respectively.

Numerical solution Absolute Error
X Exact FDM TPS MQ FDM TPS MQ

0.1 0.002222 0.002305 - - 8.271e-05 - -
0.2 0.004227 0.004385 0.004271 0.004245 1.573e-04 4.362e-05 1.821e-05
0.3 0.005818 0.006035 - - 2.165e-04 - -
0.4 0.006840 0.007094 0.006884 0.006852 2.546e-04 4.384e-05 1.176e-05
0.5 0.007192 0.007460 - - 2.677e-04 - -
0.6 0.006840 0.007094 0.006884 0.006852 2.546e-04 4.384e-05 1.176e-05
0.7 0.005818 0.006035 - - 2.165e-04 - -
0.8 0.004227 0.004385 0.004271 0.004245 1.573e-04 4.361e-05 1.821e-05
0.9 0.002222 0.002305 - - 8.271e-05 - -

the same order of magnitude. In addition, a “mesh” (or
discretization) convergence can be observed from figures
2b, 2d and 2f, 2h where the accuracy of the numerical
solution does not improve significantly when the number
of points nx increases from 7 to 11.

Example 1.2
Consider the one-dimensional heat equation

∂u
∂t

= κ
∂2u
∂x2 , 0 < x < 1, t > 0,

subject to Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0,

and initial conditions

u(x,0) =
{

µx, 0 ≤ x ≤ 0.5,
µ(1−x), 0.5 ≤ x ≤ 1.

The analytical solution to the problem is given by

u(x, t) =
4µ
π2

∞

∑
n=1

1
n2 sin

nπx
2

e−κtn2π2
.
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Figure 2 : Sensitivity analysis of the MQ-IRBFN method with respect to the network parameters in Example 1.1 for
the case where the number of time steps = 25. Figures a,b,c,d show the maximum absolute error over the entire set
of collocation points, and figures e,f,g,h show the root-mean-squared errors over the whole time domain.

In this example, the problem is solved by both direct and
indirect RBFN methods. The solution by the DRBFN
method is obtained from [Zerroukat, Power, and Chen
(1998)] where the explicit scheme, namely EEX-MQ,
was used. The scheme used explicit exponential formu-
lation with multiquadrics as RBFs and was reported to

yield the most accurate results among others. For the
IRBFN method, a semi-discrete scheme based on Adams
predictor-corrector method [Quarteroni, Sacco, and Sa-
leri (2000)] is used with either MQ or TPS to solve the
problem. Figure 3 shows the solution profile of the prob-
lem given by the MQ-IRBFN method. Solutions at time
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Table 3 : Example 1.2: Accuracy comparison between the DRBFN using explicit exponential scheme with MQ
[Zerroukat, Power, and Chen (1998)] and the IRBFN using semi-discrete scheme with MQ. With the same number
of collocation points, the indirect method yields more accurate solution while the number of time steps it uses
(Nts = 10) is one-tenth of that required by the direct method (Nts = 100). The L∞-norm of the error vector for
MQ-Direct and MQ-Indirect are 5.6000e−4 and 5.2220e−5, respectively.

Numerical solution Absolute Error
X Exact MQ-Direct MQ-Indirect MQ-Direct MQ-Indirect

0.10 0.00483 0.00458 0.00484 2.5000e-004 1.0235e-005
0.30 0.01265 0.01218 0.01262 4.7000e-004 2.5465e-005
0.50 0.01564 0.01508 0.01560 5.6000e-004 4.2446e-005
0.60 0.01488 0.01434 0.01483 5.4000e-004 5.2220e-005
0.80 0.00919 0.00882 0.00918 3.7000e-004 1.2937e-005

Table 4 : Example 1.2: Accuracy comparison between the DRBFN using explicit exponential scheme with MQ
[Zerroukat, Power, and Chen (1998)] and the IRBFN using semi-discrete scheme with TPS. Although the number of
time steps it uses (Nts = 10) is one-tenth of that required by the direct method (Nts = 100), still the indirect method
yields more accurate solution. The two methods use the same number of collocation points. The L∞-norm of the
error vector for MQ-Direct and TPS-Indirect are 5.6000e−4 and 1.6953e−4, respectively.

Numerical solution Absolute Error
X Exact MQ-Direct TPS-Indirect MQ-Direct TPS-Indirect

0.10 0.00483 0.00458 0.00489 2.5000e-004 6.0989e-005
0.30 0.01265 0.01218 0.01275 4.7000e-004 1.0490e-004
0.50 0.01564 0.01508 0.01576 5.6000e-004 1.1617e-004
0.60 0.01488 0.01434 0.01505 5.4000e-004 1.6953e-004
0.80 0.00919 0.00882 0.00929 3.7000e-004 1.0127e-004

t = 1 by direct and indirect methods are shown in Tables
3 and 4. As can be seen from the tables, with the same
number of collocation points, the IRBFN method using
either MQ or TPS outperforms the DRBFN method using
MQ while the number of time steps it uses (Nts = 10) is
only one-tenth of that required by the direct method with
MQ (Nts = 100). It is also noted that the solutions by the
IRBFN near the boundary points are of high accuracy
without any special treatment.

4.2 Example 2. Two-dimensional diffusion equation

Consider the 2D diffusion equation

∂u
∂t

= ∇2u+ f (x,y, t),

to be solved in the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The
forcing function is given by

f (x,y, t) = sinxsiny(2sint +cos t).

The initial and boundary conditions are appropriate to the
analytical solution

u = sinxsinysint.

In this example, the problem is solved by the BEM [In-
gber and Phan-Thien (1992)] and the present IRBFN
method. For the BEM, Ingber and Phan-Thien used two
numerical schemes, namely M1 and M2, where “gener-
alized” forcing functions can be approximated by radial
basis functions. For the IRBFN method, the fully discrete
scheme presented in section 3.1 is used with θ = 0.5. For
the purpose of comparing the two methods, the solution
to the problem at point (0.8,0.8) throughout the whole
time domain is considered. The solution by the BEM
is obtained by scheme M2 (which was reported to be
slightly more accurate than scheme M1) with a fine mesh
of 17 × 17 boundary points and 9 × 9 interior points.
As the IRBFN method uses a set of randomly generated
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Figure 3 : Solution profile of the problem given by the
MQ-IRBFN method in Example 1.2.

points, the solution at the point of interest can be post-
processed by simple function evaluation based on (6).
Figure 4.a presents the set of randomly generated collo-
cation points, and Figure 4.b shows the solution at point
(0.8,0.8) by the IRBFN method. The results in this exam-
ple show that the present IRBFN method yields accurate
solution not only at grid points but also at arbitrary points
in the domain. Table 5 shows that the IRBFN method us-
ing either MQ or TPS outperforms the BEM in terms of
accuracy and efficiency. As can be seen from the table,
the IRBFN method yields more accurate result even with
a coarser discretization (12 boundary points and 13 inte-
rior points) than the BEM does with a much finer mesh
(289 boundary points and 81 interior points). Further-
more, Figure 4.b shows that the IRBFN method main-
tains its higher accuracy compared to the BEM through-
out the whole time domain. In this example, both meth-
ods use the same time step size ∆t=0.25.

For the purpose of studying the sensitivity of the MQ-
IRBFN method to the network parameters, four regular
point densities (5 × 5), (7 × 7), (9 × 9) and (11 × 11)
are used together with a range of values of the user-
defined parameter β from 1 to 10 and two different num-
bers of time steps (16 and 32). Figure 5 shows that the
maximum absolute errors by the IRBFN method do not
change significantly within a range of β’s values from
1 to 10. Furthermore, it can be seen from the figures
that while “mesh” convergence can be observed at a very
coarse point density, the accuracy of the solution can
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Figure 4 : (a) A set of randomly generated points used by
the IRBFN method; (b) Solution at point (0.8,0.8) by the
IRBFN method; (c) An accuracy comparison between
the IRBFN method and the BEM [Ingber and Phan-Thien
(1992)] in Example 2. Using a coarser point density, the
IRBFN method maintains its higher accuracy compared
to the BEM throughout the whole time domain.
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Table 5 : Solution to the problem in Example 2 for the interior point x = 0.8, y = 0.8. With a coarser point density (12
boundary points and 13 interior points), still the IRBFN method (based on either MQ or TPS) yields more accurate
result compared to the BEM [Ingber and Phan-Thien (1992)] using a much finer mesh (289 boundary points and
81 interior points). Both methods use the same time step size ∆t=0.25. The L∞-norm of the error vector for BEM,
TPS-IRBFN and MQ-IRBFN are 3.9589e−3, 1.5474e−4 and 1.1788e−4, respectively.

Numerical solution Relative Error
T Exact BEM TPS MQ BEM TPS MQ

0.3 0.127314 0.126800 0.127159 0.127196 4.037e-03 1.215e-03 9.259e-04
0.5 0.246712 0.245300 0.246626 0.246655 5.724e-03 3.497e-04 2.326e-04
0.8 0.350771 0.348500 0.350624 0.350664 6.475e-03 4.187e-04 3.059e-04
1.0 0.433021 0.430000 0.432912 0.432952 6.976e-03 2.512e-04 1.583e-04
1.3 0.488347 0.484800 0.488221 0.488260 7.264e-03 2.584e-04 1.796e-04
1.5 0.513311 0.509400 0.513220 0.513258 7.619e-03 1.776e-04 1.027e-04
1.8 0.506359 0.502400 0.506276 0.506306 7.818e-03 1.639e-04 1.053e-04
2.0 0.467924 0.464100 0.467878 0.467905 8.173e-03 9.778e-05 4.108e-05
2.3 0.400396 0.397000 0.400373 0.400387 8.482e-03 5.801e-05 2.351e-05
2.5 0.307974 0.305200 0.307987 0.307995 9.006e-03 4.404e-05 7.055e-05
2.8 0.196403 0.194400 0.196443 0.196437 1.020e-02 2.049e-04 1.761e-04
3.0 0.072620 0.071500 0.072691 0.072679 1.543e-02 9.775e-04 8.141e-04
3.3 -0.055677 -0.055800 -0.055584 -0.055608 2.206e-03 1.667e-03 1.234e-03
3.5 -0.180513 -0.179700 -0.180401 -0.180430 4.504e-03 6.193e-04 4.609e-04
3.8 -0.294125 -0.292300 -0.294003 -0.294040 6.206e-03 4.152e-04 2.891e-04
4.0 -0.389450 -0.386800 -0.389325 -0.389363 6.805e-03 3.226e-04 2.251e-04

be further improved by increasing the number of time
steps. In this particular example, as the number of col-
location points increases from Figures 5(a)(c) to more
than 2 times denser in Figures 5(b)(d), the maximum er-
rors do not decrease noticeably, indicating “mesh” con-
vergence. However, as the time step size decreases from
Figures 5(a)(b) to half the value in Figures 5(c)(d), the
errors decrease by an order of magnitude. It can also be
seen from Figure 6 that root-mean-squared errors by the
IRBFN method in Example 2 do not vary significantly
within a range of β’s values from 1 to 10 in figures (a)-
(g) for the case where the number of time steps Nts = 16,
and in figures (h)-(n) for Nts = 32.

4.3 Example 3. One-dimensional wave equation

Consider the 1D wave equation

∂2u
∂t2 (x, t)−α2 ∂2u

∂x2 (x, t) = 0, 0 < x < 1, t > 0,

subject to Dirichlet boundary conditions

u(0, t) = u(1, t) = 0, t > 0,

and initial conditions

u(x,0) = f (x), 0 ≤ x ≤ 1,

∂u
∂t

(x,0) = g(x), 0 ≤ x ≤ 1.

With f (x) = sinπx, g(x) = 0, α = 2 the problem has the
analytical solution

u(x, t) = sinπx cos2πt.

The problem is solved by semi-discrete schemes de-
scribed in section (3.2) using N = 11 collocation points
in space. In order to apply the semi-discrete scheme, the
problem is first reformulated as a system of first order
ODEs

∂u
∂t

(x, t) = v(x, t),

∂v
∂t

(x, t) = α2 ∂2u
∂x2 (x, t),
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Figure 5 : In Example 2, as the point density increases from figures (a)(c) to more than 2 times denser in figures
(b)(d), the maximum errors by the MQ-IRBFN method do not decrease noticeably, indicating “mesh” convergence.
The accuracy of the solution can be, however, improved by an order of magnitude by decreasing the time step size
in figures (a)(b) to half the value in figures (c)(d). In addition, the errors by the MQ-IRBFN method do not to vary
significantly within the range of β’s values from 1 to 10.

with initial conditions

u(x,0) = f (x),
v(x,0) = g(x),

and subject to the same boundary conditions as in the

original problem.

In this example, the one-step fourth-order Runge-Kutta
(RK) with adaptive step control and the Adams predictor-
corrector (PC) schemes [Quarteroni, Sacco, and Saleri
(2000)] are applied to solve the problem in the IRBFN
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Figure 6 : The root-mean-squared errors by the MQ-IRBFN method in Example 2 do not vary significantly within
a range of β’s values from 1 to 10 in figures (a)-(j) where the number of time steps Nts = 16, and in figures (k)-
(t) for Nts = 32. An increase of the number of time steps from 16 to 32 results in a noticeable decrease in the
root-mean-squared errors.

framework. The solution profile is shown in Figure 7.
Tables 6 and 7 show the solution and absolute errors by
the two semi-discrete schemes using MQ and TPS, re-
spectively. There is no significant difference in the solu-

tions by RK and PC schemes using the same type of RBF
(MQ or TPS). The predictor-corrector scheme, however,
proved to be more efficient than Runge-Kutta for non-
stiff problems with stringent tolerances and when the
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Table 6 : Accuracy comparison in Example 3 between the two semi-discrete schemes, Runge-Kutta (RK) and
Predictor-Corrector (PC), based on MQ-IRBFN. The numerical and analytical solutions are shown at time t=1.0.
The L∞-norm of the error vector for MQ-IRBFN using RK and PC are 4.8788e−3 and 4.9064e−3, respectively.

MQ-IRBFN Absolute Error
T Exact RK PC RK PC

0.10 0.30901699 0.30901605 0.30899770 9.48658E-007 1.92943E-005
0.20 0.58778525 0.58776384 0.58779166 2.14102E-005 6.40824E-006
0.30 0.80901699 0.80902993 0.80902490 1.29361E-005 7.90858E-006
0.40 0.95105652 0.95106126 0.95104420 4.74844E-006 1.23145E-005
0.50 1.00000000 0.99997783 1.00001933 2.21743E-005 1.93331E-005
0.60 0.95105652 0.95106128 0.95104421 4.75879E-006 1.23049E-005
0.70 0.80901699 0.80902993 0.80902490 1.29347E-005 7.90928E-006
0.80 0.58778525 0.58776383 0.58779165 2.14231E-005 6.39342E-006
0.90 0.30901699 0.30901605 0.30899771 9.40765E-007 1.92876E-005

Table 7 : Accuracy comparison in Example 3 between the two semi-discrete schemes, Runge-Kutta (RK) and
Predictor-Corrector (PC), based on TPS-IRBFN. The numerical and analytical solutions are shown at time t=1.0.
The L∞-norm of the error vector for TPS-IRBFN using RK and PC are 5.2349e−3 and 5.2791e−3, respectively.

TPS-IRBFN Absolute Error
T Exact RK PC RK PC

0.10 0.30901699 0.30905179 0.30906749 3.47971E-005 5.04963E-005
0.20 0.58778525 0.58768745 0.58769273 9.78054E-005 9.25245E-005
0.30 0.80901699 0.80906449 0.80903911 4.74931E-005 2.21147E-005
0.40 0.95105652 0.95106175 0.95111521 5.23780E-006 5.86968E-005
0.50 1.00000000 0.99997721 0.99992776 2.27937E-005 7.22411E-005
0.60 0.95105652 0.95106176 0.95111531 5.24051E-006 5.87906E-005
0.70 0.80901699 0.80906450 0.80903899 4.75097E-005 2.19910E-005
0.80 0.58778525 0.58768744 0.58769281 9.78157E-005 9.24443E-005
0.90 0.30901699 0.30905177 0.30906750 3.47800E-005 5.05023E-005

right-hand-side functions are particularly expensive to
evaluate [Quarteroni, Sacco, and Saleri (2000)]. As can
be seen from the tables, MQ-IRBFN with β = 2 yields
more accurate solution than TPS-IRBFN in this exam-
ple.

A range of the user-defined parameter β is used together
with four point densities (5,7,9,11) and two different
numbers of time steps (25 and 50) to investigate their in-
fluence on the accuracy of the numerical solution. Figure
8 shows that the root-mean-squared errors by the IRBFN
method do not change significantly within a range of β’s
values from 1 to 3. Also, it can be seen from the figures
that while “mesh” convergence can be observed at a very
coarse point density, the accuracy of the solution can be
further improved by increasing the number of time steps.

4.4 Example 4. Two-dimensional wave equation

Consider the 2D wave equation

∂2u
∂t2 (x, t)−α2 ∇2u(x, t) = 0, x ∈ Ω ⊂ R2, t > 0,

subject to Dirichlet boundary conditions

u(x, t) = 0,x ∈ ∂Ω, t > 0,

and initial conditions

u(x,0) = f (x), x ∈ Ω,

∂u
∂t

(x,0) = g(x), x ∈ Ω,
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Table 8 : Comparison of accuracy and efficiency between the FEM and the MQ-IRBFN method in Example 4 at
points (0.8,:) at time t = 0.16. The FEM uses 177 nodes and 312 triangles while the MQ-IRBFN method uses 121
collocation points. The L∞-norm of the error vector for FEM and MQ-IRBFN are 7.9915e− 4 and 2.3697e− 4,
respectively.

Numerical solution Absolute Error
X Y Exact FEM MQ FEM MQ

0.80 0.10 0.001874 0.002213 0.001720 3.3933e-004 1.5402e-004
0.80 0.20 0.004222 0.004796 0.004229 5.7389e-004 6.9258e-006
0.80 0.30 0.007521 0.007719 0.007583 1.9771e-004 6.2266e-005
0.80 0.40 0.010127 0.010329 0.010149 2.0203e-004 2.2110e-005
0.80 0.50 0.010995 0.011122 0.011021 1.2658e-004 2.5854e-005
0.80 0.60 0.010127 0.010218 0.010149 9.1194e-005 2.2559e-005
0.80 0.70 0.007521 0.007961 0.007580 4.4046e-004 5.9521e-005
0.80 0.80 0.004222 0.004797 0.004231 5.7448e-004 8.3148e-006
0.80 0.90 0.001874 0.002177 0.001728 3.0315e-004 1.4563e-004

Table 9 : Comparison of accuracy and efficiency between the FEM and the TPS-IRBFN method in Example 4 at
points (0.8,:) at the point of time t = 0.16. The FEM uses 177 nodes and 312 triangles while the TPS-IRBFN
method uses 121 collocation points. The L∞-norm of the error vector for FEM and TPS-IRBFN are 7.9915e−4 and
2.4562e−4, respectively.

Numerical solution Absolute Error
X Y Exact FEM TPS FEM TPS

0.80 0.10 0.001874 0.002213 0.001702 3.3933e-004 1.7164e-004
0.80 0.20 0.004222 0.004796 0.004245 5.7389e-004 2.2934e-005
0.80 0.30 0.007521 0.007719 0.007588 1.9771e-004 6.6888e-005
0.80 0.40 0.010127 0.010329 0.010176 2.0203e-004 4.8762e-005
0.80 0.50 0.010995 0.011122 0.011045 1.2658e-004 4.9373e-005
0.80 0.60 0.010127 0.010218 0.010169 9.1194e-005 4.1971e-005
0.80 0.70 0.007521 0.007961 0.007548 4.4046e-004 2.7258e-005
0.80 0.80 0.004222 0.004797 0.004247 5.7448e-004 2.5058e-005
0.80 0.90 0.001874 0.002177 0.001769 3.0315e-004 1.0419e-004

where Ω = {(x,y) |0 ≤ x ≤ a, 0 ≤ y ≤ b}. With f (x) =
cx(a−x)y(b−y) and g(x) = 0, the problem has the ana-
lytical solution

u(x,y, t) =
∞

∑
m=1

∞

∑
n=1

Bmn sin
mπx

a
cos

(
απt

√
m2

a2 +
n2

b2

)
,

where

Bmn =
16a2b2c
π6m3n3 (1−cosmπ)(1−cosnπ).

The IRBFN method with a semi-discrete scheme based
on fourth-order Runge-Kutta scheme is used to solve the

problem, and the numerical solution at time step = 5
with time step size ∆t = 0.04 is shown in Figure 9 where
α2 = 3, a = 1, b = 1 and c = 1. It is noted that in order
to apply the semi-discrete scheme, the problem is refor-
mulated in to a system of first order ODEs as in Example
3. Comparisons of accuracy and efficiency between the
FEM and the IRBFN method using both MQ and TPS are
also performed in this example. With the FEM, a mesh
of 177 nodes and 312 triangles is generated to solve the
problem whereas for the IRBFN method, 121 collocation
points are used. The accuracy comparison between the
two methods is shown in Table 8 and 9 for the case of MQ
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Table 10 : Example 5: Comparison of accuracy and efficiency between the MQ-IRBFN method and the TPS-
DRBFN method [Zerroukat, Djidjeli, and Charafi (2000)] at t = 1. With the same number of collocation points,
the MQ-IRBFN method outperforms the TPS-DRBFN method while the number of time steps it uses (Nts=25) is
half as many as that required by the TPS-DRBFN method. The L∞-norm of the error vector for TPS-DRBFN and
MQ-IRBFN are 9.8935e−3 and 5.9243e−5, respectively.

Numerical solution Absolute Error
X Analytical DRBFN MQ-IRBFN DRBFN MQ-IRBFN

0.2500 0.737486 0.747380 0.737494 9.89e-003 7.76e-006
0.3125 0.666554 0.675000 0.666578 8.45e-003 2.38e-005
0.3750 0.602444 0.608810 0.602454 6.37e-003 9.92e-006
0.5000 0.492129 0.493910 0.492116 1.78e-003 1.22e-005
0.6250 0.402014 0.400190 0.401988 1.82e-003 2.59e-005
0.7500 0.328400 0.324740 0.328358 3.66e-003 4.19e-005
0.8750 0.268266 0.264260 0.268207 4.01e-003 5.92e-005

Table 11 : Example 5: Comparison of accuracy and efficiency between the TPS-IRBFN method and the TPS-
DRBFN method [Zerroukat, Djidjeli, and Charafi (2000)] at t = 1. With the same number of collocation points,
the TPS-IRBFN method outperforms the TPS-DRBFN method while the number of time steps it uses (Nts=25) is
half as many as that required by the TPS-DRBFN method. The L∞-norm of the error vector for TPS-DRBFN and
TPS-IRBFN are 9.8935e−3 and 1.2150e−3, respectively.

Numerical solution Absolute Error
X Analytical DRBFN TPS-IRBFN DRBFN TPS-IRBFN

0.2500 0.737486 0.747380 0.737512 9.89e-003 2.50e-005
0.3125 0.666554 0.675000 0.666701 8.45e-003 1.47e-004
0.3750 0.602444 0.608810 0.602286 6.37e-003 1.58e-004
0.5000 0.492129 0.493910 0.491800 1.78e-003 3.28e-004
0.6250 0.402014 0.400190 0.401410 1.82e-003 6.03e-004
0.7500 0.328400 0.324740 0.327574 3.66e-003 8.26e-004
0.8750 0.268266 0.264260 0.267051 4.01e-003 1.22e-003

and TPS, respectively. As can be seen from the tables, the
IRBFN method gives more accurate result with a smaller
number of points. It should be noted that for the FEM, a
numerical interpolation is required to calculate the solu-
tion at some non-nodal points after obtaining the solution
on the triangulated mesh. For the IRBFN method, with
its unstructured configuration, particular points of inter-
est can be inserted into the computational grid at early
stages before solving the PDEs so that interpolation is
not needed. This can be done with the IRBFN method
at no additional cost. Alternatively, the solution at any
point x at time tn can be obtained simply by evaluating
(6) after the solving process has been completed for time
level tn.

4.5 Example 5. One-dimensional advection-diffusion
equation

Consider the 1D advection-diffusion equation

∂u
∂t

= κ
∂2u
∂x2 +v

∂u
∂x

, 0 < x < 1, t > 0,

subject to boundary and initial conditions

u(0, t) = aebt, t > 0,

u(1, t) = aebt−c, t > 0,

u(x,0) = ae−cx.
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Figure 7 : Solution profile of the problem in Example 3
by the MQ-IRBFN method.

The analytical solution is given by

u(x, t) = aebt−cx,

c =
v±√

v2 +4κb
2κ

> 0.

The DRBFN and IRBFN methods are used to solve the
problem in this example. For comparison purposes, the
solution to the problem by the DRBFN method is ob-
tained from [Zerroukat, Djidjeli, and Charafi (2000)]
where the implicit scheme, namely ICNTPS, was re-
ported to be the most efficient among the other schemes.
The ICNTPS scheme uses TPS for spatial discretization
and θ-scheme with θ = 0.5 for time integration. For
the IRBFN method, a semi-discrete scheme based on the
fourth-order Runge-Kutta scheme is used together with
either MQ or TPS to solve this problem. Solutions at
time t = 1.0 by direct and indirect methods are shown in
Tables 10 and 11 where κ = 0.1, b = 0.1, c = 1.61803,
a = 1.0, and v = 0.1. It can be seen from the tables that,
with the same number of collocation points, the semi-
discrete scheme using either MQ or TPS outperforms the
ICNTPS scheme while the number of time steps used in
the present IRBFN method is half as many as that re-
quired by the DRBFN method.

5 Conclusions

A recent development of the IRBFN method for solving
transient problems has been discussed in this paper. Two

numerical schemes combining the IRBFN method with
different time integration schemes based on either fully
or semi-discrete framework have been proposed. The
IRBFN method is implemented and verified with Hardy’s
multiquadrics and Duchon’s thin plate splines. For the
problems considered in this work, the method shows its
superiority over other numerical methods such as FDM,
FEM, BEM and the DRBFN method in term of accu-
racy and efficiency. In particular, the IRBFN method can
still give more accurate solutions even with coarser dis-
cretization. It is also observed that no special treatment is
required in order to capture the boundary layers. In other
words, the point density near the boundary is the same
as in the rest of the domain and the solution there is well
behaved.

Although the MQ scheme can yield better results than
TPS, its accuracy depends on a user-defined parameter,
β. Sensitivity studies of the IRBFN method to the shape
parameter as well as other network parameters such as
point density and time step size, have been performed
extensively in this work. It is recommended that the TPS-
IRBFN method be used for most problems, and the MQ-
IRBFN method be used for problems with more stringent
tolerances.

The results obtained in this work show the present
IRBFN method is promising and further development is
being undertaken. As in DRBFN method, the present
method might face difficulties with ill-conditioned sys-
tem in large scale problems. An implementation of the
IRBFN method using domain decomposition for tran-
sient problems is in progress in which the original com-
putational domain can be decomposed into a number
of subdomains with associated system matrices having
smaller condition number and the problem can be solved
in a parallel manner. In addition, a combination between
the IRBFN and level set method is preliminarily im-
plemented for tracking moving interfaces [Mai-Cao and
Tran-Cong (2003)] and simulating multi-phase flows.
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Figure 8 : Sensitivity analysis of the MQ-IRBFN method for the problem in Example 3. The numerical solution
yielded by the proposed method maintains its high accuracy with the root-mean-squared error remaining within an
order of magnitude for the range of β’s values from 1 to 3.
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Figure 9 : Numerical solution by the MQ-IRBFN
method at time step 5 for the problem in Example 4.
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Appendix 1: The first and second order antiderivatives
of Hardy’s multiquadrics

This appendix presents the symbolic integrations of 2D
MQ-RBF

ϕi =
√

r2
i + s2

i ,

where ri =
√

(x−xi)2 +(y−yi)2 and si is a shape param-
eter associated with the ith center. Only the antideriva-
tives are described here. The constants of integration are
presented in Appendix 3.

∫
ϕi dx =

1
2

(x−xi)
√

r2
i + s2

i +
1
2

(
(y−yi)2 + s2

i

)
ln

(
(x−xi)+

√
r2

i + s2
i

)
,
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∫
ϕi dy =

1
2

(y−yi)
√

r2
i + s2

i +
1
2

(
(x−xi)2 + s2

i

)
ln

(
(y−yi)+

√
r2

i + s2
i

)
,

∫ ∫
ϕi dxdx =

1
6

(
(x−xi)2 −2(y−yi)2 −2s2

i

)√
r2

i + s2
i +

1
2

(x−xi)
(
(y−yi)2 + s2

i

)
ln

(
(x−xi)+

√
r2

i + s2
i

)
,

∫ ∫
ϕi dydy =

1
6

(
(y−yi)2−2(x−xi)2 −2s2

i

)√
r2

i + s2
i +

1
2

(y−yi)
(
(x−xi)2 + s2

i

)
ln

(
(y−yi)+

√
r2

i + s2
i

)
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∫ ∫
ϕi dxdy =

− 1
18

(y−yi)
(

(y−yi)2 +6s2
i −6(x−xi)

√
r2

i + s2
i

)

+
1
3

s3
i

⎛
⎝tan−1 y−yi

si
− tan−1 (x−xi) (y−yi)
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1
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Appendix 2: The first and second order antiderivatives
of Duchon’s thin plate splines

This appendix presents the symbolic integrations of 2-
dimensional first order TPS-RBF

ϕi = r2
i ln(ri),

where ri =
√

(x−xi)2 +(y−yi)2. Only the antideriva-
tives are described here. The constants of integration are
presented in Appendix 3.

∫
ϕi dx =

2
3

(y−yi)3 tan−1
(

x−xi

y−yi

)

− 1
9

(x−xi)
(
(x−xi)2 +6(y−yi)2)

+
1
3

(x−xi)
(
(x−xi)2 +3(y−yi)2) ln(ri),

∫
ϕi dy =

2
3

(x−xi)3 tan−1
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)

− 1
9

(y−yi)
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+
1
3
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(
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∫ ∫
ϕi dxdx =

− 1
144

(x−xi)2 (7(x−xi)2 +78(y−yi)2)
+

2
3

(x−xi) (y−yi)3 tan−1
(

x−xi

y−yi

)

− 1
3

(y−yi)4 ln

(
1+

(x−xi)2

(y−yi)2

)

+
1
12

r2
i

(
(x−xi)2 +5(y−yi)2) ln(ri),

∫ ∫
ϕi dydy =

− 1
144

(y−yi)2 (78(x−xi)2 +7(y−yi)2)
+

2
3

(x−xi)3 (y−yi) tan−1
(

y−yi

x−xi

)

− 1
3

(x−xi)4 ln

(
1+

(y−yi)2

(x−xi)2

)

+
1
12

r2
i

(
5(x−xi)2 +(y−yi)2) ln(ri),

∫ ∫
ϕi dxdy =

1
6

(x−xi)4 tan−1
(

y−yi

x−xi

)

+
1
6

(y−yi)4 tan−1
(

x−xi

y−yi

)

+
1
18

(x−xi) (y−yi) r2
i (6 ln(ri)−5) .
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Appendix 3: Procedure for calculating constants of in-
tegration

The computational procedure is described for 3-
dimensional problems which can be applied easily to
lower-dimensional problems. The computation is started
with (10) where the second-order derivative of φ is cho-
sen to be a radial basis function. In order to describe the
computation in full details where the constants of inte-
gration and their corresponding intermediate values can
be obtained, (8) is rewritten in the form of a combination
of basis functions taking into account (5) and (10) to give

ũn
, jk(ξ1,ξ2,ξ3) =

N

∑
i=1

wn
i ϕi(ξ1,ξ2,ξ3), j,k = 1,2,3,

(34)

Integrating (34) twice in j and k directions yields

ũn
,k(ξ1,ξ2,ξ3) =

N

∑
i=1

wn
i

∫
ϕi(ξ1,ξ2,ξ3)dξ j

+Cn
1(ξp,ξq), p �= q, p �= j, q �= j, (35)

ũn(ξ1,ξ2,ξ3) =
N

∑
i=1

wn
i

∫ ∫
ϕi(ξ1,ξ2,ξ3)dξ jdξk

+Cn
1(ξp,ξq)ξk +Cn

2 (ξr,ξs), r �= s, r �= k, s �= k,
(36)

where ξi, i = 1,2,3 is the ith coordinate (for example,
(ξ1,ξ2,ξ3)≡ (x,y, z) in Cartesian coordinate system); ũn,
ũn

,k and ũn
, jk are the IRBFN approximations to the function

u and its derivatives at time t = tn, respectively. Formula-
tions for the antiderivatives of Hardy’s multiquadrics and
Duchon’s thin plate splines are presented in Appendix 1
and 2. It should be noted that Cn

1, Cn
2 are the constants

of integration along the jth and kth directions at time tn,
respectively. As they can be calculated in the same way,
only Cn

1 is presented here. Since Cn
1 is a function in terms

of (ξp,ξq), this “constant”, in turn, can be approximated
by integrating twice in direction l,m �= j using IRBFN
approximants as follows

Cn
1,lm(ξp,ξq) =

Npq

∑
i=1

ŵn
i ϕi(ξp,ξq),

l,m = 1,2,3; l,m �= j, (37)

Cn
1,m(ξp,ξq) =

Npq

∑
i=1

ŵn
i

∫
ϕi(ξp,ξq)dξl

+ Ĉn
1(ξv), v �= j, l, (38)

Cn
1(ξp,ξq) =

Npq

∑
i=1

ŵn
i

∫ ∫
ϕi(ξp,ξq)dξldξm

+Ĉn
1 (ξv)ξm +Ĉn

2 (ξw), w �= j,m, (39)

where Npq is the number of distinct points in (ξp,ξq)
coordinates.

The computation of Ĉn
1 and Ĉn

2 is performed in the same
manner as in steps (37)-(39). This time however, because
Ĉn

1 (or Ĉn
2) depends on only one spatial variable ξv (or ξw),

it will be determined by integrating twice in direction v
(or w) as follows

Ĉn
1,vv(ξv) =

Nv

∑
i=1

w̃n
i ϕi(ξv), v = 1,2,3; v �= j, l, (40)

Ĉn
1,v(ξv) =

Nv

∑
i=1

w̃n
i

∫
ϕi(ξv)dξv +C̃n

1 , (41)

Ĉn
1(ξv) =

Nv

∑
i=1

w̃n
i

∫ ∫
ϕi(ξv)dξvdξv +C̃n

1 ξv +C̃n
2 , (42)

where Nv is the number of distinct points in ξv coordi-
nate, v �= j, l.

It is noted that for 3D problems, C̃n
1 and C̃n

2 are really con-
stants having arbitrary values at time tn. For simplicity,
one can choose C̃n

1 = C̃n
2 = 0. In that case, Ĉn

1 is reduced
to

Ĉn
1 =

Nv

∑
i=1

w̃n
i

∫ ∫
ϕi(ξv)dξvdξv. (43)

Ĉn
2 is approximated in the same manner as Ĉn

1 is. As a
result, Cn

1 can be calculated by substitutingĈn
1 and Ĉn

2 into
(39). The same procedure can be applied to calculate Cn

2 .
Finally, Cn

1 and Cn
2 are substituted into (36) which can be

rewritten into the compact form (6).

It should be noted that for lower-dimensional problems,
the computational procedure is much simpler. In partic-
ular, for 2-D problems, Cn

1 and Cn
2 can be approximated
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directly from (39) in the same manner as in (43) whereas
for 1-D problems, one doesn’t have to do any computa-
tion for C̃n

1, C̃n
2 , Ĉn

1 and Ĉn
2 because Cn

1 and Cn
2 are already

constants at time tn.




