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Investigation on the Normal Derivative Equation of Helmholtz Integral Equation
in Acoustics

Zai You Yan1,2, Fang Sen Cui2, and Kin Chew Hung2

Abstract: Taking the normal derivative of solid an-
gles on the surface into account, a modified Burton and
Miller’s formulation is derived. From which, a more rea-
sonable expression of the hypersingular operator is ob-
tained. To overcome the hypersingular integral, the regu-
larization scheme developed recently is employed. Plane
acoustic wave scattering from a rigid sphere is computed
to show the correctness of the modified formulation with
the regularization scheme. In the computation, eight-
nodded isoparametric element is applied.

keyword: Boundary element method, solid angle, hy-
persingular integral, Helmholtz integral equation, regu-
larization

1 Introduction

Boundary element method for acoustic problems has
been studied for many years. It is well known that the
classical boundary element method for exterior acous-
tic problems fails to provide a unique solution at certain
frequencies, which are the characteristics of the associ-
ated interior problem. The nonuniqueness is a purely
mathematical problem arising from the boundary inte-
gral formulation rather than from the nature of the phys-
ical problem. Detailed description about the nonunique-
ness problem is presented by Schenck (1968), Burton and
Miller (1971), Ciskowski and Brebbia (1991), Benthien
and Scheck (1996). The composite Helmholtz integral
equation (CHIE) presented by Burton and Miller (1971)
is one of the most popular approaches to overcome the
well-known nonuniqueness problem. It involves a linear
combination of the surface Helmholtz integral equation
(HIE) and its normal derivative equation. It is a combined
use of dual integral representation for acoustic problem
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[Chen, Hong (1999)]. Burton and Miller proved that
CHIE would yield a unique solution for all frequencies
if a suitable complex multiplicative constant was chosen,
even if both the HIE and its normal derivative equation
suffered from the nonuniqueness problem. This method
appears to be more robust for numerical implementation.
However, it still suffers from a major drawback that a hy-
persingular integral is involved in the normal derivative
equation of the HIE.

For years, extensive research by Burton and Miller
(1971), Meyer, Bell and Zinn (1978), Terai (1980), Math-
ews (1986), Chien, Rajiyah and Atluri (1990), Wu, Sey-
bert and Wan (1991), Liu and Rizzo (1992), Luke and
Martin (1995), Hwang (1997), Wang, Atalla and Nicolas
(1997), Yang (1997, 1999), Chen and Liu (1999), Liu and
Chen (1999), Gennaretti, Giordani and Morino (1999),
Yan (2000), Yan Z.Y., Jiang, He and Yan M. (2001), Liu,
Cai, Zhao, Zheng and Lam (2002), Yan, Hung and Zheng
(2003) has been devoted to calculate the singular or hy-
persingular integrals involved in the Burton and Miller
(1971) formulation. Based on the different expressions
of the hypersingular operatorNd, these methods can be
generally divided into two kinds. For one kind, the re-
searchers, Burton and Miller (1971), Meyer, Bell and
Zinn (1978), Terai (1980), Mathews (1986), Wu, Sey-
bert and Wan (1991), Liu and Rizzo (1992), Luke and
Martin (1995), Wang, Atalla and Nicolas (1997), Chen
and Liu (1999), Liu and Chen (1999), Gennaretti, Gior-
dani and Morino (1999), Yan (2000) , Yan Z.Y., Jiang,
He and Yan M. (2001), Liu, Cai, Zhao, Zheng and Lam
(2002), Yan, Hung and Zheng (2003) took the operator
∂
/

∂np inside the integral directly. While for the other
kind, the researchers, Chien, Rajiyah and Atluri (1990),
Hwang (1997), Yang (1997, 1999) assumed that the nor-
mal derivative of the solid angles on the surface was zero.
Based on such an assumption, they transformed the inte-
gral kernel into an integrable form and then took the dif-
ferential operator into the integral. The numerical results
obtained using both of these two different expressions
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agreed well with the corresponding analytical solutions.

Taking the normal derivative of the solid angles on
the surface into consideration, Wu (2000) derived a
new formulation of the normal derivative of the surface
Helmholtz integral equation. He termed it as a global ap-
proach for the normal derivative integral equation. No
discussion was presented about the expression of the hy-
persingular operator Nd . Also taking the normal deriva-
tive of the solid angles on the surface into account, Liu,
Cai, Zhao, Zheng and Lam (2002) developed an im-
proved Burton and Miller’s formulation. However, in
their derivation, they still expressed the hypersingular op-
erator Nd by taking the operator ∂

/
∂np inside the integral

directly. Therefore, their final equation is not complete.

Recently, several novel boundary integral equations are
derived and implemented to avoid the hypersingular in-
tegral. Qian, Han, Atluri (2004) [see also Han & Atluri
(2003a,b)] derived the symmetric Galerkin boundary el-
ement formulations of the regularized forms of non-
hypersingular boundary integral equations. Meantime,
Qian, Han, Ufimtsev, Atluri (2004) presented the non-
hypersingular boundary integral equations by the collo-
cation based boundary element method. Yang (2004)
presented the numerical implementation for a boundary
integral equation method proposed by Krutitskii (2000).

In this paper, a modified composite Helmholtz integral
equation (MCHIE) is presented. The MCHIE takes into
account the normal derivative of the solid angles on the
surface. We find that the MCHIE is the same as that
derived by Chien, Rajiyah and Atluri (1990), Hwang
(1997). However, they applied the assumption that the
normal derivative of the solid angles on the surface is
zero. While in the MCHIE, the normal derivative of solid
angles on the surface is taken into consideration. At the
same time, a more reasonable explicit expression of the
hypersingular operator Nd is derived. The new expres-
sion for Nd will overcome the confusion that there are
two different expressions for one operator. An improved
regularization relationship developed by Yan (2000), Yan
Z.Y., Jiang, He and Yan M. (2001), Yan, Hung and Zheng
(2003) is successfully applied to overcome the hypersin-
gular integrals in the final equation. Plane acoustic wave
scattering from rigid sphere is presented to show the cor-
rectness of the MCHIE and the regularization scheme.
The numerical results obtained uisng MCHIE agree well
with corresponding analytical solutions.

2 Theoretical formulations

Consider the acoustic problem in the exterior domain.
The acoustic field is either radiated by a vibrating object
or scattered from a rigid structure. Here we assume that
the structure has smooth surface. The governing equation
for the acoustic pressure ϕ(p) is the Helmholtz integral
equation.

c(p)ϕ(p) =
∫ ∫

S

[
ϕ(q)

∂Gk(p,q)
∂nq

−Gk(p,q)
∂ϕ(q)
∂nq

]
dSq

(1)

The free-space Green’s function Gk for three-
dimensional acoustic problem is given by,

Gk(p,q) = e−ikr/4πr, r = |p−q| (2)

where p and q are respectively the source point and the
field point on the structure surface. k is the wave num-
ber. ⇀n represents the inward normal vector, as shown in
Fig. 1. c(p) represents the dimensionless solid angle
[Ciskowski and Brebbia (1991)] at point p.

c(p) = 1+
∫ ∫

S

∂G0 (p,q)
∂nq

dSq (3)

and

G0 (p,q) = 1
/

4πr (4)

E

S

n
1c p

1
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Figure 1 : Dimensionless solid angles along the normal
direction

For problems considered currently, we have

c(p) =

⎧⎨
⎩

1 p in the exterior domain
1/2 p on the surfaces
0 p in the interior domain

(5)
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See Fig. 1, the left and right limits of the normal deriva-
tive of the solid angle can be expressed as Eq. (6) and
(7). Obviously, the normal derivative of the solid angle
does not equal to zero. Strictly speaking, no derivative
exits if the function is discontinuous. However for some
special functions, general derivatives in some sense exist
even if the functions are discontinuous. For example, the
Heaviside step function.

lim
ε→0−

∂c(p)
∂n

=
1
/

2−0

ε
=

1
2ε

(6)

lim
ε→0+

∂c(p)
∂n

=
1−1

/
2

ε
=

1
2ε

(7)

In operator notation [Mathews (1986)], Eq. (1) can be
written as

[−c(p) I +Mk]ϕ =Lk
∂ϕ
∂n

(8)

where the integral operators Lk and Mk are defined as

Lkµ =
∫ ∫

S

µ(q)Gk(p,q)dSq (9)

Mkµ =
∫ ∫

S

µ(q)
∂Gk(p,q)

∂nq
dSq (10)

It is well known that the classical Helmholtz inte-
gral equation Eq. (1) for exterior acoustic problems
fails to provide a unique solution at certain character-
istic frequencies [Schenck (1968), Burton and Miller
(1971), Benthien and Scheck (1996)]. To overcome the
nonuniqueness problem, Burton and Miller (1971) devel-
oped the composite Helmholtz integral equation (CHIE),
which consists of a linear combination of the surface
Helmholtz integral equation and its normal derivative
equation. In operator notation [Mathews (1986)], it can
be expressed as

{
−1

2
I +Mk +αNd

}
ϕ =

{
Lk +α

[
1
2

I +MT
k

]}
∂ϕ
∂n

(11)

where α usually takes the value −i/k. The integral oper-
ators MT

k and Nd can be expressed as

MT
k µ =

∫ ∫
S

µ(q)
∂Gk(p,q)

∂np
dSq (12)

Ndµ =
∂

∂np

∫ ∫
S

µ(q)
∂Gk(p,q)

∂nq
dSq (13)

To derive Eq. (11), Burton and Miller (1971) directly
took the normal derivative of the surface Helmholtz equa-
tion, which was derived from Eq. (1) as the dimension-
less solid angle c(p) equaled to 1

/
2. As a result, they

had

1
2

∂ϕ(p)
∂np

=
∂

∂np

∫ ∫
S

[
ϕ(q)

∂Gk(p,q)
∂nq

−Gk(p,q)
∂ϕ(q)
∂nq

]
dSq (14)

In Eq. (1), they applied the condition that the dimen-
sionless solid angles c(p) on surface were constant and
equaled to 1

/
2. Therefore, they implicitly applied the as-

sumption that on the surface ∂c(p)
/

∂np equaled to zero.
However, Eq. (6) and (7) have shown that ∂c(p)

/
∂np

does not equal to zero even though the dimensionless
solid angles c(p) are constant on the surface.

Now, the normal derivative of the dimensionless solid
angles will be taken into account to derive the normal
derivative equation of the surface Helmholtz integral
equation. The derivation is a little different from that pre-
sented by Wu (2000).

Taking the normal derivative of Eq. (1) at a point p on
the surface,

∂
∂np

[c(p)ϕ(p)]

=
∂

∂np

∫ ∫
S

[
ϕ(q)

∂Gk(p,q)
∂nq

−Gk(p,q)
∂ϕ(q)
∂nq

]
dSq (15)

Eq. (15) can be rewritten as

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∂

∂np

∫ ∫
S

∂Gk (p,q)
∂nq

ϕ(q)dSq − ∂c(p)
∂np

ϕ(p) (16)

Compared to the corresponding Eq. (1) in the Bur-
ton and Miller’s formulation (1971), an additional term
−ϕ(p)∂c(p)

/
∂np appears in the right hand side.

Substituting Eq. (3) into the third term on the right hand
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side, Eq. (16) can be rewritten as

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∂

∂np

∫ ∫
S

∂Gk (p,q)
∂nq

ϕ(q)dSq

−ϕ(p)
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq (17)

Then, to ensure the non-integrable singularity in second
term on the right hand side of Eq. (17) be integrable,
some operation is applied. That is,

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∂

∂np

∫ ∫
S

[
∂Gk (p,q)

∂nq
ϕ(q)− ∂G0 (p,q)

∂nq
ϕ(p)

]
dSq

+
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

ϕ(p)dSq

−ϕ(p)
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq (18)

Therefore

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∫ ∫

S

[
∂2Gk (p,q)

∂np∂nq
ϕ(q)− ∂2G0 (p,q)

∂np∂nq
ϕ(p)

]
dSq

− ∂ϕ(p)
∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq

+
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

ϕ(p)dSq

−ϕ(p)
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq (19)

Because

∂
∂np

∫ ∫
S

∂G0 (p,q)
∂nq

ϕ(p)dSq

= ϕ(p)
∂

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq

+
∂ϕ(p)

∂np

∫ ∫
S

∂G0 (p,q)
∂nq

dSq (20)

Eq. (19) can be re-written as

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∫ ∫

S

[
∂2Gk (p,q)

∂np∂nq
ϕ(q)− ∂2G0 (p,q)

∂np∂nq
ϕ(p)

]
dSq (21)

Furthermore,

c(p)
∂ϕ(p)

∂np
= −

∫ ∫
S

∂Gk (p,q)
∂np

∂ϕ(q)
∂nq

dSq

+
∫ ∫

S

[
∂2Gk (p,q)

∂np∂nq
− ∂2G0 (p,q)

∂np∂nq

]
ϕ(q)dSq

+
∫ ∫

S

[ϕ(q)−ϕ(p)]
∂2G0 (p,q)

∂np∂nq
dSq (22)

Then a modified Burton and Miller’s formulation
or a modified composite Helmholtz integral equation
(MCHIE) is developed by a linear combination of Eq.
(22) and Eq. (1) on the surface. In operator notation, it is

{
−1

2
I +Mk +α [(Nk −N0)+N0 −N0cI]

}
ϕ

=
{

Lk +α
[

1
2

I +MT
k

]}
∂ϕ
∂n

(23)

where N0c is a function of point p rather than an integral
operator,

N0c =
∫ ∫

S

∂2G0 (p,q)
∂np∂nq

dSq (24)

An improved regularization relationship developed by
Yan (2000), Yan Z.Y., Jiang, He and Yan M. (2001), Yan,
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Hung and Zheng (2003) can be applied in the numeri-
cal computation of Eq. (23). Because Eq. 24 has a hy-
persingular integral kernel and the integral does not exist
in either conventional or Cauchy-principal value sense,
it should be obtained in the Hadamard finite part sense
[Hwang (1997), Chen J.T., Chen C.T., Chen K.H. and
Chen I.L. (2000), Yan, Hung and Zheng (2003), Qian,
Han and Atluri (2004)]. Discretized operator matrix D0

for the hypersingular integral operator N0 is

D0 = B−1
0 (A2

0 −
1
4

I) (25)

where

B0i,m = ∑
m= f ( j,l)

∫ ∫
∆S j

NlG0i j(p,q)dSq (26)

A0i,m = ∑
m= f ( j,l)

∫ ∫
∆S j

Nl
∂G0i j

∂n
dSq (27)

While for the discretized matrix D0c about function N0c,
it can be found by take the shape functions Nl in Eq. (25)
equals to 1. For structures with smooth surfaces, it is
easy to obtain that

A0c = [c(p)−1]I = −1
2

I (28)

Therefore

D0c = B−1
0c (A2

0c−
1
4

I) = 0 (29)

Eq. (29) turns out that after regularization the term about
N0c is a zero matrix.

After regularization, the weakly singular integrals are
solved using the scheme proposed by Lachat and Watson
(1976).

The original regularization relationship improved by
Yan (2000), Yan Z.Y., Jiang, He and Yan M. (2001),
Yan, Hung and Zheng (2003) can be derived using the
Calderon projector [Chen and Zhou (1992); Chen and
Chiu (2002)]. Review of regularization techniques ap-
plied to boundary element methods or dual boundary ele-
ment methods can found in the papers by Tanaka, Sladek
V. and Sladek J. (1994), Chen and Hong (1999).

3 Expression of the hypersingular operator Nd

As mentioned in the introduction, in the past decades, a
lot of research has been performed on how to calculate
the hypersingular integrals involved in the Burton and
Miller’s formulation (1971). According to the different
expressions of the hypersingular operator Nd defined by
Eq. (13), these methods can be broadly divided into two
kinds. For one kind, the researchers, Burton and Miller
(1971), Meyer, Bell and Zinn (1978), Terai (1980), Math-
ews (1986), Wu, Seybert and Wan (1991), Liu and Rizzo
(1992), Luke and Martin (1995), Wang, Atalla and Nico-
las (1997), Liu and Chen (1999), Chen and Liu (1999),
Gennaretti, Giordani and Morino (1999), Yan (2000),
Yan Z.Y., Jiang, He and Yan M. (2001), Liu, Cai, Zhao,
Zheng and Lam (2002), Yan, Hung and Zheng (2003)
took the operator ∂

/
∂np inside the integral directly and

they had

Ndϕ =
∫ ∫

S

∂2Gk (p,q)
∂np∂nq

ϕ(q)dSq (30)

While for the other kind, the researchers, Chien, Rajiyah
and Atluri (1990), Hwang (1997), Yang (1997, 1999) as-
sumed that the normal derivative of the solid angles on
the surface was zero. Based on such an assumption, they
transformed the integral kernel into an integrable form
and then took the differential operator into the integral.
Finally, they had

Ndϕ =
∫ ∫

S

(
∂2Gk (p,q)

∂np∂nq
ϕ(q)− ∂2Gk (p,q)

∂np∂nq
ϕ(p)

)
dSq

(31)

The numerical results obtained using both of these two
different expressions agreed well with the corresponding
analytical solutions. Then we want to know which one is
more reasonable.

From Eq. (16) and (21), we have

∂
∂np

∫ ∫
S

∂Gk (p,q)
∂nq

ϕ(q)dSq =
∂c(p)
∂np

ϕ(p)

+
∫ ∫

S

[
∂2Gk (p,q)

∂np∂nq
ϕ(q)− ∂2G0 (p,q)

∂np∂nq
ϕ(p)

]
dSq (32)
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That is

Ndϕ =
∂c(p)
∂np

ϕ(p)

+
∫ ∫

S

[
∂2Gk (p,q)

∂np∂nq
ϕ(q)− ∂2G0 (p,q)

∂np∂nq
ϕ(p)

]
dSq (33)

Even though the results obtained using Eq. (30) and (6)
are the same, we must point out that both Eq. (30) and
(6) are not very strict expressions for operator Nd. The
MCHIE method developed here and Eq. (33) may help
the researchers to get a better understanding on the well-
known hypersingular integral operator Nd .

4 Numerical examples

Plane acoustic wave ϕI = ϕ0e−ikz scattering from a rigid
sphere of radius a is calculated to show the correct-
ness and feasibility of the modified Burton and Miller’s
formulation with the improved regularization scheme.
Eight-nodded isoparametric element is applied in the
computation. Some commercial FEM-codes are avail-
able to generate meshes as shown in Fig. 2. In this study,
the 832-element model is generated using ANSYS with
the element type SHELL93. This example is computed
using the in-house developed code, SSFI (Sound Struc-
ture Fluid and their Interaction).

For plane acoustic wave scattering from a rigid sphere,
the analytical solution [Junger (1952)] of the scattered
acoustic pressure ϕs(r,θ) at a distance r from the center
of the sphere and at an angle θ from the direction of the
incoming wave is given by

ϕs(r,θ)
ϕ0

=
∞

∑
m=0

[
−(−i)m(2m+1)

j′m(ka)
h′m(ka)

]
hm(kr)Pm(cosθ) (34)

where jm is spherical Bessel function of the first kind and
hm is spherical Hankel function of the second kind. Pm

denotes Legendre polynomial of order m.

The surface Helmholtz integral equation (HIE) for the
scattering of a plane acoustic wave from a rigid sphere is
given by

[
−1

2
I +Mk

]
ϕ = ϕI (35)

Figure 2 : Discretization for half of a sphere surface with
416 elements

The modified composite Helmholtz integral equation
(MCHIE) for the scattering of a plane acoustic wave from
a rigid sphere is given by

[
−1

2
I +Mk +α[(Nk −N0)+N0 −N0cI]

]
ϕ

= ϕI +α
∂ϕI

∂n
(36)

where the acoustic pressure ϕ = ϕs +ϕI .

Dimensionless scattered surface acoustic pressures at
points θ = 0 and θ = π are presented as function of the
reduced wave number ka in Fig. 3 and 4. Numerical re-
sults obtained using HIE and MCHIE are compared with
the corresponding analytical solutions. It is clear that at
certain characteristic frequencies the HIE can not provide
unique solutions. More numerical examples to show the
nonuniqueness problem can be found in the papers by
Chen J.T., Chen C.T., Chen K.H. and Chen I.L. (2000)
, Yan, Hung and Zheng (2003), Qian, Han and Atluri
(2004), Qian, Han, Ufimtsev and Atluri (2004). To show
the directivity of the scattered acoustic field, dimension-
less scattered acoustic pressures on the surface of the
sphere are displayed in Fig. 5 to 8 as reduced wave num-
ber ka = 10, 4π, 5π and 6π. Numerical results obtained
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Figure 3 : Dimensionless scattered acoustic pressure at
θ = 0 as a function of ka
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Figure 4 : Dimensionless scattered acoustic pressure at
θ = π as a function of ka

using MCHIE are compared with the corresponding an-
alytical solutions. Since ka = 10 is not a characteristic
frequency, the numerical results obtained using HIE also
displayed in Fig. 5 for comparison with that obtained us-
ing MCHIE and analytical solutions. Clearly, all the nu-
merical results obtained using MCHIE agree well with
the corresponding analytical solutions.
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Figure 5 : The angular dependence of scattered acoustic
as ka = 10
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Figure 6 : The angular dependence of scattered acoustic
pressures as ka = 4π

5 Conclusion

In this paper, taking the normal derivative of the solid
angles on the surface into consideration, a modified Bur-
ton and Miller’s formulation (MCHIE) is derived. From
which, a more reasonable expression of the hypersingu-
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Figure 7 : The angular dependence of scattered acoustic
pressures as ka = 5π
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Figure 8 : The angular dependence of scattered acoustic
pressures as ka = 6π

lar operator Nd is derived. This expression will help re-
searchers to avoid the confusion from different expres-
sions for the same integral operator. An improved regu-
larization formulation is successfully employed to over-
come the hypersingular integrals. Plane acoustic wave

scattering from a rigid sphere is computed to validate the
MCHIE with the improved regularization scheme. The
numerical results obtained using MCHIE agree well with
the corresponding analytical solutions.
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