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Local Integral Equations and two Meshless Polynomial Interpolations with
Application to Potential Problems in Non-homogeneous Media

V. Sladek1, J. Sladek1, and M. Tanaka2

Abstract: An efficient numerical method is proposed
for 2-d potential problems in anisotropic media with con-
tinuously variable material coefficients. The method is
based on the local integral equations (utilizing a fun-
damental solution) and meshfree approximation of field
variable. A lot of numerical experiments are carried out
in order to study the numerical stability, accuracy, con-
vergence and efficiency of several approaches utilizing
various interpolations.
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1 Introduction

In the past years, the functionally graded materials
(FGMs) are widely studied because of their excellent
properties [Miyamoto et al (1999)]. The phenomeno-
logical description of such modern engineering materi-
als within continuum theories is characterized by posi-
tion dependent material coefficients. Moreover, owing
to the composite structure the material properties are di-
rectionally dependent or anisotropic too. Hence, it fol-
lows the demand on the development of efficient numer-
ical methods and subsequently the computer codes in-
corporating the spatial variations of material coefficients.
Although the versatile and well established finite ele-
ment method (FEM) and the boundary integral equation
method (BIEM) or boundary element method (BEM) are
basically applicable to such problems, some difficulties
may occur in the numerical analysis. The material coef-
ficients in commercial FEM codes are usually assumed
to be constant within each domain cell, while the ad-
vantages of the integral equation formulations can be ex-
ploited only when the fundamental solution of the gov-
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erning differential operator is available.

Recently, an increasing attention has been devoted to the
extension of the applicability of integral equations based
formulations to the solution of boundary value prob-
lems (BVPs) when the proper fundamental solution is
not available in a simple form with aiming to get a for-
mulation resulting in sparse system matrix like in FEM.
One of such proposals concerns the utilization of the
local integral equations (LIE) or a combination of the
global and the local integral equations with implement-
ing them either by the standard finite-size discretization
elements or the moving least squares (MLS) approxi-
mation [Sladek, V. et al (2000), (2002), (2003), (2004),
Sladek, J. et al (2002), (2004a), (2004b)]. Mikhailov
(2002) and Mikhailov and Nakhova (2003) proposed to
use localized boundary-domain integral equations to the
solution of BVPs governed by PDEs with variable co-
efficients. The fundamental solution is replaced by a
parametrix (Levi function) in their formulations.

In the last decade, great attention is also paid to vari-
ous meshfree approximations in combination with both
the variational and the integral equation formulations.
The motivation consists in the main goal to avoid dif-
ficulties associated with the mesh generation especially
in 3-D problems, and remeshing for moving BVPs such
as fast crack propagation in fracture mechanics. The
Meshless Petrov-Galerkin (MLPG) method by Atluri and
Zhu (1998a, 1998b, 1999) proposed a family of new
integration methods based on a local weak formulation
[Atluri and Shen (2002a), (2002b), Atluri (2004)]. Ac-
cording to the choice of the test and trial functions, the
MLPG results into various meshless formulations includ-
ing the LBIE formulation [Zhu, Zhang & Atluri (1998),
Sladek, J. et al (2002), Li et al (2003)]. These meth-
ods are expected to replace the mesh-based finite-element
and boundary-element methods that are the basis of the
current computational-software. The monograph [Atluri
(2004)] presents, in a very self-contained fashion, the de-
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tails of the methodology as well as numerical implemen-
tation of meshless methods.

In this paper, we present a new formulation for numer-
ical solution of 2-D potential problems in continuously
nonhomogeneous media. Isolated knots are spread over
the whole analyzed domain including its boundary and
each knot is surrounded virtually by a small subdomain
of a simple geometrical form. The field variables are ap-
proximated by using meshfree Point Interpolation Meth-
ods (PIM) utilizing the polynomial basis functions as
well as the radial basis functions [Liu (2003)]. The pre-
scribed boundary conditions are collocated at boundary
knots while at interior knots we consider the local inte-
gral equations as coupling relationships among the po-
tential values at knots. The integral equations are non-
singular, the system matrix is sparse like in finite element
method formulations and the method is sufficiently sim-
ple and quite general. A lot of numerical experiments has
been carried out in order to test: 1) the numerical stabil-
ity with respect to certain free parameters of the formu-
lation as well as to distribution of knots; 2) the accuracy;
3) convergence of numerical results with increasing the
density of knots, and finally to compare the CPU-times
consumed by various numerical implementations includ-
ing also the polynomial interpolation within standard dis-
cretization elements.

2 Local integral equation formulation for solution
of boundary value problems

The potential problem (e.g. stationary heat conduction)
in anisotropic and continuouslynon-homogeneous media
is governed by the following partial differential equation
with variable coefficients [Wrobel (2002)]

(λik(x)u,k(x)),i = −Q(x),in Ω (1)

where u(x) is the unknown potential field, Q(x) is the
known body source density, and λik(x) describe the spa-
tial variation of the material coefficients related to the
flux vector qi(x) as

qi(x) = −λik(x)u,k(x) . (2)

Physically, Eq. (2) is known as the Fourier law for heat
conduction or also as the first Fick’s law in diffusion
problems.

The prescribed boundary conditions (b.c.) can be classi-
fied as

(i) Dirichlet b.c.: u(η) = u(η) at η ∈ ∂ΩD

(ii) Neumann b.c.: ni(η)qi(η) = q(η) at η ∈
∂ΩN

(iii) Robin b.c.: αu(η)+ βni(η)qi(η) = 0 at
η ∈ ∂ΩR , (α, β ∈ R)

where ∂Ω = ∂ΩD ∪∂ΩN ∪∂ΩR, ni(η) is the unit outward
normal vector to the boundary, and an over bar denotes
the prescribed quantities.

The use of methods based on integral equations utilizing
fundamental solutions is approved because of the exis-
tence and the uniqueness of the solution of BVPs. It is
well known that a pure boundary formulation is applica-
ble to solution of the above mentioned boundary value
problems only if the fundamental solution for the gov-
erning differential operator is available. Otherwise, the
degrees of freedom (DOF) on the boundary as well as
inside the analyzed domain are to be employed in the nu-
merical solution. Owing to the lack of the fundamental
solution for the differential operator with variable coeffi-
cients, it is appropriate to rewrite Eq. (1) as

λc
i ju,i j(x)+

(
λ̃i j(x)u, j(x)

)
, i

= −Q(x) , (3)

where λc
i j = λi j(xc), and λ̃i j(x) = λi j(x)−λc

i j is a fluctu-
ation of the material coefficients inside a sub-domain Ωc

surrounding the point xc.

Let G(x − y) be the fundamental solution of the gov-
erning equation with constant coefficients in an infinite
space

λc
i jG,i j(x−y) = −δ(x−y) . (4)

According to Chang et al. (1973), we may write in 2-d
case

G(x−y) = − 1

2π
√|Λc| ln

(√
R
)

, R = (λc)−1
i j rir j

ri = xi −yi (5)

where |Λc| denotes the determinant of the matrix ΛΛΛc

whose matrix elements are given by λc
i j. Starting from

the integral identity∫
Ωc

G(x−yc) (λi j(x)u, j(x)),i dΩ(x) =

−
∫
Ωc

G(x−yc)Q(x)dΩ(x) (6)
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and making use of the Gauss divergence theorem, we ar-
rive at the integral relationship

∫
∂Ωc

λi j(η)u, j(η)ni(η)G(η−yc)dΓ(η)−
∫
Ωc

λi j(x)u, j(x)G,i(x−yc)dΩ(x) =

−
∫
Ωc

Q(x)G(x−yc)dΩ(x) (7)

in which yc ∈ Ωc. This integral equation can be used as
a coupling equation for the evaluation of the unknown
nodal values when a domain-type approximation is em-
ployed for the field variable. It will be referred to as the
LIE (Local Integral Equation) of the 1st kind. Strictly
speaking, Eq. (7) is an integro-differential equation for
the unknown potential field.

Splitting λi j as λi j = λc
i j + λ̃i j in the second integral term

of Eq. (7), applying the Gauss divergence theorem to the
term involving λc

i j, and invoking of Eq. (4), we may write

∫
Ωc

λi j(x)u, j(x)G,i(x−yc)dΩ(x) =

∫
Ωc

λ̃i j(x)u, j(x)G,i(x−yc)dΩ(x)+

∫
∂Ωc

u(η)λc
i jn j(η)G,i(η−yc)dΓ(η)+u(yc) . (8)

Eventually, from Eqs. (7) and (8) we obtain the LIE of
the 2nd kind

u(yc) =
∫

∂Ωc

[λi j(η)u, j(η)ni(η)G(η−yc)−

u(η)λc
i jn j(η)G,i(η−yc)

]
dΓ(η)+∫

Ωc

[
Q(x)G(x−yc)− λ̃i j(x)u, j(x)G,i(x−yc)

]
dΩ(x).

(9)

Note here that Eq. (9) is the integral representation of
the potential at an interior point yc in terms of the bound-
ary densities of the potential u(η) and the flux q(η) as
well as the gradients of the potential field in the inte-
rior of the sub-domain Ωc ⊂ Ω. Some of the bound-
ary densities can be prescribed by boundary conditions

when ∂Ωc ∩∂Ω �= /0. Contrary to the pure boundary in-
tegral representation, the dimensionality of the problem
governed by (7) or (9) is not reduced because of the un-
known potential gradients in the domain.

3 Meshless polynomial basis interpolations

The aim is to create shape functions for approximation
of the field variable u(x) within a subdomain using only
nodes scattered arbitrarily in the analyzed domain with-
out any predefined mesh to provide connectivity of the
nodes. Assuming a finite series representation of the po-
tential field in a subdomain Ωq surrounding the nodal
point xq, we have the approximated field given as

u(x)|Ωq =
N

∑
a=1

Ba(x)ca(xq) (10)

where Ba(x) are the basis functions defined in the Carte-
sian coordinate space, N is the number of nodes in the
support domain of the point xq, and ca(xq) are the ex-
pansion coefficients corresponding to the given point xq.
Such an approximation belongs to Point Interpolation
Methods (PIM) [Liu (2003)]. Selecting the basis func-
tions as monomials or radial functions, one obtains the
Polynomial PIM or Radial PIM, respectively. The Poly-
nomial PIM exhibits excellent properties (consistency,
shape functions possess the Kronecker delta properties)
as long as the moment matrix is invertible [Liu (2003)].
Unfortunately, the singularity of the moment matrix is
dependent on the nodal points distribution. There are
proposed several techniques to avoid singular moment
matrix [Liu (2003)]. On the other hand, in the case of
Radial PIM the moment matrix is nonsingular but the
consistency is not guaranteed and the accuracy of the
approximation is sensitive with respect to the choice of
shape parameters.

One of the ways how to ensure the reproduction of the
linear field (C1 consistency) in Radial PIM as well as to
avoid singularity of the moment matrix in the Polyno-
mial PIM is to use Radial-Polynomial basis [Liu (2003)].
Usually, the number of nodes N is determined by the
number of the nodes in the support domain. In this pa-
per, we predefine the number N and the supporting nodes
are specified as N the nearest nodal points to the given
point xq. Two different kinds of the modification of the
polynomial basis by multiquadrics are employed in or-
der to avoid the singularity of the moment matrix and to
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stabilize the accuracy on the properly selected shape pa-
rameter involved in the multiquadrics.

3.1 PBF×MQ interpolation approach

Let n(q,k) be the global number of the k-th nearest nodal
point of N supporting nodes corresponding to xq. Thus,

n(q,1) = q and
∣∣xn(q,k)−xq

∣∣ ≤ ∣∣xn(q,k+1)−xq
∣∣

for k = 2, ... , N. Taking the basis functions in Eq. (10)
as Bn(x) = Pk(x)Rn(q,k)(x), we can write

u(x)|Ωq =
N

∑
k=1

Pk(x)Rn(q,k)(x)c(q,k), (11)

where the polynomial basis is given by monomials
Pk(x) ∈ {

1, x1, x2, x1x2, x2
1, x2

2

}
for k = 1, ... , (N = 6)

and the radial basis is given by multiquadrics [Hardy
(1990)]

Rn(x) =
(
|x−xn|2 +c2

)m/2
,

with c and m being the shape parameters. Usually, it is
appropriate to select a dimensionless shape parameter γ
by c = γh, where h is the characteristic length defined as
the shortest distance of any two nodal points distributed
over the closed domain Ω∪∂Ω. The choice N = 6 is cor-
responding to the use of complete quadratic polynomial
basis.

The expansion coefficients c(q,k) can be determined by
enforcing that Eq. (11) be satisfied at N supporting nodes
corresponding to xq. Thus, we have a system of N equa-
tions

N

∑
k=1

M jkc(q,k) = u(xn(q, j)) , ( j = 1, ... , N)

in which M jk := Pk(xn(q, j))Rn(q,k)(xn(q, j)). Hence, and
from Eq. (11), the potential field is approximated in
terms of its nodal values and the shape functions corre-
sponding to supporting nodes as

u(x)|Ωq =
N

∑
j=1

u(xn(q, j))ϕ(q, j)(x) , (12)

where the shape function is given by

ϕ(q, j)(x) =
N

∑
k=1

Pk(x)Rn(q,k)(x)
(
M−1

)k j
. (13)

Note that the matrix M jk is not given by the product
of matrices P jl = Pl

(
xn(q, j)) and Rlk = Rn(q,k)(xn(q,l)).

Hence, the possible singularity of the matrix P jl does not
yield singularity of the matrix M jk. Moreover, the in-
vertibility of the matrix R jk [ Liu (2003) ] gives rise to
anticipation of the invertibility of the matrix M jk.

The shape and size of the subdomain Ωq can be chosen
arbitrarily. In numerical calculations, we have consid-
ered circular subdomains of radius h.

The gradients of the potential field are approximated as

u,i(x)|Ωq =
N

∑
j=1

u(xn(q, j))ϕ(q, j)
,i (x) (14)

where

ϕ(q, j)
,i (x) =

N

∑
k=1

[
Pk

,i(x)Rn(q,k)(x)+Pk(x)Rn(q,k)
,i (x)

](
M−1

)k j

Pk
,i(x) ∈ {0, δi1, δi2, x2δi1 +x1δi2, 2x1δi1, 2x2δi2} ,

if N = 6

Rn
,i(x) = m

xi −xn
i(

|x−xn|2 +c2
)1−m/2

Apparently, ϕ(q, j)(xn(q,l)) = δ jl , i.e. the shape functions
possess the Kronecker delta property and the potential
field is expressed according to (12) in terms of its nodal
values.

3.2 PBF+MQ and PBF interpolation approaches

In this approach, the field variable is approximated as

u(x)|Ωq =
N

∑
k=1

Rn(q,k)(x)α(q,k) +
M

∑
k=1

Pk(x)β(q,k), (15)

where N is again the number of supporting nodes while
M can be different from N, in general. Liu (2003) se-
lects M on the reproduction requirement and advices to
use M < N for better stability. Let us consider M ≤ N
with M corresponding to the number of monomials for
a complete polynomial interpolation with selected order.
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Collocating Eq. (15) at supporting nodes, one can get the
system of equations

N

∑
k=1

R jkα(q,k) +
M

∑
k=1

P jkβ(q,k) = u(xn(q, j))

( j = 1, ... , N),
(16)

where R jk = Rn(q,k)
(
xn(q, j)

)
and P jk = Pk

(
xn(q, j)

)
. In

order to determine the expansion coefficients in (15)
uniquely, extra constraint equations are required [Liu
(2003), Golberg et al (1999)]. It will be seen that the
choice of the constraint equation as

N

∑
k=1

α(q,k)Pk j = 0 , ( j = 1, ... , M) (17)

yields the Kronecker delta property for the resulting
shape function.

In order to express the expansion coefficients in terms of
the nodal values of the field variable, we shall assume
q to be fixed and the summation rule over the repeated
superscripts. Thus, Eqs. (16) and (17) can be written
briefly as

R jkαk +P jkβk = u j , ( j = 1, ... , N) (16∗)

αkPk j = 0 , ( j = 1, ... , M) . (17∗)

In view of Eq. (16∗), we have

αk = (R−1)k j
(

u j −P jlβl
)

(18)

hence and from (17∗),

βl = Ql ju j, (19)

where

Ql j := (S−1)lm(PT )mk(R−1)k j,

Sml := (PT )mk(R−1)k jP jl .

Finally, from (18) and (19), we obtain

αk = T k ju j, T k j := (R−1)k j − (R−1)kmPmlQl j . (20)

Substituting the expansion coefficients α(q,k) and β(q,k)

from (20) and (19) into (15), we obtain the approximation
of the field variable in terms of the nodal values

u(x)|Ωq =
N

∑
j=1

u(xn(q, j))ϕ(q, j)(x), (21)

in which the shape functions are given as

ϕ(q, j)(x) =
N

∑
k=1

Rn(q,k)(x)T k j +
M

∑
k=1

Pk(x)Qk j. (22)

The approximation of potential gradients is given by Eq.
(14) with

ϕ(q, j)
,i (x) =

N

∑
k=1

Rn(q,k)
,i (x)T k j +

M

∑
k=1

Pk
,i(x)Qk j (23)

and Rn(q,k)
,i (x), Pk

,i(x) being given at the end of the previ-
ous subsection.

Let us evaluate the shape function at a local supporting
node. According to (22) and the definition (20), we may
write, using the brief notation for matrix elements,

ϕ(q, j)(xn(q,l)) = RlkT k j +PlkQk j =

Rlk
[
(R−1)k j − (R−1)kmPmsQs j

]
+PlkQk j = δl j.

Thus, the shape functions possess the Kronecker delta
property.

Note that even P jk is a square matrix provided that M =
N. Then, in the approach based on the choice of the con-
straint equation (17), we have

(S−1)lm = (P−1)lkRk j(PT−1) jm ,

hence Ql j = (S−1)lm(PT )mk(R−1)k j = (P−1)l j and T k j =
0. Thus, the PBF+MQ interpolation approach reduces
to simple polynomial basis PBF interpolation with the
shape functions

ϕ(q, j)(x) =
N

∑
k=1

Pk(x)
(
P−1)k j

, j = 1, 2, ... , N . (24)

Though the PBF interpolation approach yields good ac-
curacy, the numerical stability of this approach is not
guaranteed because of the possible singularity of the ma-
trix P jk.

The other approach based on the use of the Least Square
Method (LSM) instead of the constraint equation (17)
does not give reasonable numerical results.
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4 System of discretized equations

The local integral equations are assumed to be collocated
at interior nodal points xc with the sub-domain Ωc being
a circle of the radius h and centered at xc. Then, the
discretized LIE is given by

N

∑
a=1

Hcau(xn(c,a)) = V c (25)

where

V c = −
∫
Ωc

Q(x)G(x−yc)dΩ(x)

and the H-matrix takes the form

Hca =
∫

∂Ωc

λi j(η)ϕ(c,a)
, j (η)ni(η)G(η−yc)dΓ(η)−

∫
Ωc

λi j(x)ϕ(c,a)
, j (x)G,i(x−yc)dΩ(x) (26)

for the LIE of the 1st kind, and

Hca = −δa1 +
∫

∂Ωc

[
λi j(η)ϕ(c,a)

, j (η)ni(η)G(η−yc)−

ϕ(c,a)(η)λc
i jn j(η)G,i(η−yc)

]
dΓ(η)−∫

Ωc

λ̃i j(x)ϕ(c,a)
, j (x)G,i(x−yc)dΩ(x) (27)

for the LIE of the 2nd kind.

Now, we need to discretize the boundary conditions. On
the Dirichlet part of the boundary, we may write

u(ηb) = u(ηb) at ηb ∈ ∂ΩD ,

since
N

∑
a=1

u(xn(b,a))ϕ(b,a)(ηb) = u(ηb (28)

while on the Neumann part of the boundary, we have

nk(ηb)
N

∑
a=1

u(xn(b,a))ϕ(b,a)
,k (ηb) = q(ηb)

at ηb ∈ ∂ΩN (29)

5 Numerical examples

In order to test the proposed numerical method, we
shall consider examples for which analytical solutions
are available. The considered domain is either a square
L×L or an angular section of the cross section of a thick-
walled tube (see Fig. 3). In the case of square domain,
we assume the Dirichlet boundary conditions on both the
bottom and top sides

u = uo if x2 = 0; u = uL if x2 = L

and the Neumann conditions on the lateral sides

q(x) = −λi j(x)ni(x)uex
, j (x) if x1 = 0 or x1 = L,

while the BVP in a thick-walled tube is specified by the
Dirichlet boundary conditions on the inner and outer radii

u = ua if r = a; u = ub if r = b

and the Neumann boundary condition on the radial sec-
tions

q = 0 if r ∈ (a, b) and ϕ = 0 or ϕ = α.

The body source density is vanishing in Ω and the ten-
sor of the material coefficients takes the form λi j(x) =
Li jλ(x) with L11 = L22 = 2, L12 = L21 = 1 in anisotropic
case, while Li j = δi j in isotropic case. The exact solu-
tions will be specified in particular examples according
to chosen material coefficients λi j(x). In the case of thick
walled-tube only isotropic medium is considered.

In the numerical experiments for the accuracy of the nu-
merical results, we have used the average % error defined
as

APEt = 100

√
Nt

∑
a=1

[uc(xa)−uex(xa)]2 /
Nt

∑
a=1

[uex(xa)]2,

(30)

where Nt is the total number of nodes on closed domain
Ω∪∂Ω.

In this paper, we assume the radial basis function shape
parameter m = −2 and the polynomial basis is given
by np = 6 monomials. The number of the radial basis
functions nr = np in the case of PBF×MQ interpolation,
while nr > np in the case of PBF+MQ interpolation.
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Example 1

Since the radial basis functions involve the shape param-
eters m and c, it is interesting to know the influence of
such parameters on the accuracy of numerical results ob-
tained by PIM utilizing the radial basis functions.
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Figure 1 : Influence of the shape factor c on the accu-
racy of the numerical solution of the considered BVP
in a square by using the LIE of the 1st kind and the
PBF ×MQ interpolation with nr = np=6

In this example, we investigate the sensitivity of numer-
ical results on the shape parameter c = γh, expressed
by the dimensionless parameter γ and the characteris-
tic length h defined as the shortest distance of any two
nodal points distributed over the closed domain Ω∪∂Ω.
We assume homogeneous and isotropic medium. Fig-
ures 1 and 2 show the c-sensitivities in the square do-
main Ω = [0, L]× [0, L] with a uniform distribution of
nodal points. The characteristic length h = 0.25L when
Nt = 25 and h = 0.1L when Nt = 121.

In the case of the BVP in thick-walled tube, we have con-
sidered an angular section of the cross section as shown
in Fig. 3 with α = 4◦ and a = 10, b = 11. Figures 4 and 5
show the c-sensitivities for PBF + MQ and PBF ×MQ,
respectively, when uniform distributions of nodal points
are used with Nt = 25 or 81. Note that the uniform distri-
bution is considered in the sense of uniform distribution
in the radial and angular coordinates. The corresponding
characteristic lengths are h = 0.17453 when Nt = 25 and
h = 0.08726 when Nt = 81.
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Figure 2 : Influence of the shape factor c on the accu-
racy of the numerical solution of the considered BVP
in a square by using the LIE of the 1st kind and the
PBF +MQ interpolation with np=6 and nr=16

Figure 3 : Angular section of the thick-walled tube cross
section with 25 uniformly distributed nodal points

As can be seen from both the analyzed examples, the
c-sensitivity is inexpressive and accuracy acceptable for
γ ≥ 104 in the case of PBF×MQ interpolation, while for
γ ≤ 1 in the case of PBF +MQ interpolation.

Example 2

In this example, we study the stability of numerical re-
sults with respect to the distribution of nodal points.
Three different meshfree interpolations are applied to
the considered BVP in the square domain. Six poly-
nomial basis functions (np = 6) are employed for in-
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Figure 4 : Influence of the shape factor c on the accuracy
of the numerical solution of the considered BVP in the
thick-walled tube by using the LIE of the 1st kind and the
PBF +MQ interpolation with np=6 and nr=10
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Figure 5 : Influence of the shape factor c on the accuracy
of the numerical solution of the considered BVP in the
thick-walled tube by using the LIE of the 1st kind and the
PBF ×MQ interpolation with nr = np=6

terpolation at any point by using each of the interpola-
tions (PBF, PBF × MQ, PBF + MQ). The number of
the radial basis functions nris equal to np if PBF ×
MQinterpolation is used, while in the case of PBF +MQ
interpolation it is variable with nr > np. For illustration,
we present the numerical results for four different distri-
butions of nodal points denoted as DNP(i) and shown in

Fig. 6.

          

Figure 6 : Distributions of nodal points in a square do-
main

Recall that DNP(1) is a uniform distribution, while the
rest ones are non-uniform with the total numbers of
nodes Nt = 25, 25, 16, 19, respectively.

As can be seen from Fig. 7, the accuracies of the numer-
ical solution of the BVP in a square domain by the PBF
and/or PBF ×MQ interpolations are not stable with re-
spect to variations of the nodal points distribution. On
the other hand, an acceptable accuracy is achieved by
PBF + MQ interpolation for each distribution of nodal
points when a sufficient number of radial basis functions
is employed.

The instability of the accuracy by using the PBF and/or
PBF ×MQ interpolations can be confirmed also by fail-
ure of the patch tests when non-uniform distributions of
nodal points are utilized. Fig.8 shows the maximal rela-
tive error of the approximated field u(x1, x2) = x1x2 over
the square [1, 2]× [1, 2] when four different distributions
of nodal points are used. Strictly speaking

max error = max
x1,x2

{∣∣∣∣uappr −x1x2

x1x2

∣∣∣∣
}

, x1, x2 ∈ [1, 2].
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Figure 7 : Accuracies of numerical results obtained by
using three different meshfree interpolation approaches
and four different distributions of nodal points. Depen-
dence of the accuracy by PBF + MQ on the number of
employed radial basis functions

Example 3

In this example, we study the accuracy of numerical so-
lutions of the BVP in a square domain filled with a ho-
mogeneous medium λ(x) = const by using various im-
plementations of the LIE. Then, the analytical solution is
given as

uex(x) = uo +(uL −uo)x2/L,

qex
i (x) = −Li2(uL−uo)/L. (31)

Note that the flux on the lateral sides of the square do-
main (Neumann parts of the boundary) vanishes only in
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Figure 8 : Maximal errors for patch tests in a square
achieved by PBF, PBFxMQ, PBF+MQ interpolations
with np=6 and further specifications as: γ = 107 for
PBF×MQ; γ = 2 and nr=10 for PBF+MQ

the case of an isotropic medium. Fig. 9 is a compar-
ison of accuracies by three meshfree interpolations as
well as by using the mesh of quadrilateral elements with
quadratic approximation [Sladek et al (2004)]. The ac-
curacy in each numerical solution is evaluated by Eq.
(30) with using the exact solution as a benchmark so-
lution. Only the uniform distribution of nodal points is
employed with using h/L as a dimensionless parameter
for characterization of the density of the nodal point dis-
tribution. The meshfree interpolations are specified as:
np = 6; nr = np and γ = 107in the case of PBF × MQ
interpolation, while nr = 16 and γ = 2 in the case of
PBF +MQ interpolation.

The increase of the nodal point density and/or the or-
der of the interpolation can improve the approximation
of both the geometrical and field variables in some prob-
lems. On the other hand, the increase of the number of
nodal points (nodal unknowns) gives rise to calculation
errors. In the analyzed simple problem in homogeneous
medium, the exact solution is linear dependent on the x2-
coordinate. The integration along straight lines is exact
and the domain integrals are not involved. Thus, no im-
provement of the accuracy is expected with increasing
the number of nodal points as compared with the accu-
racy achieved by using the coarsest distribution of nodal
points. This expectation is confirmed in Fig. 9.

It is interesting to compare the CPU-times consumed in
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Figure 9 : Dependence of accuracy on the density of
the distribution of nodal points in: (a) isotropic; (b)
anisotropic homogeneous medium

numerical solutions by particular interpolation schemes.
Fig. 10 corresponds to solution of the BVP in ho-
mogeneous anisotropic medium but the CPU-times are
changed only negligibly in the case of isotropic medium.
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Figure 10 : Dependence of CPU-times on the density of
nodal point distribution

It can be seen that the meshfree interpolation schemes re-
quire approximately by one order longer CPU-time than
the standard discretization approach utilizing quadrilat-
eral mesh. Moreover, the use of PBF + MQ interpo-
lation with nr = 16 needs another enhancement of the
CPU-time by one order. On the other hand, the CPU-
times corresponding to the approaches based on the LIE
of the 2nd kind take approximately one third of the CPU-
times corresponding to the LIE of the 1st kind. This is
so because the former approach does not involve any in-
tegration over subdomains. In the case of nonhomoge-
neous media, the domain integration is required in each
approach and the CPU-times are almost independent on
the material properties. Thus, the CPU-times for the LIE
of the 1st kind shown in Fig. 10 represent also the CPU-
times using either the LIE of the 1st or 2nd kind in non-
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homogeneous, isotropic and/or anisotropic media.

Example 4

Now, we consider a non-homogeneous medium with
exponentially graded material coefficients described by
λ(x) = eδx2/L. Then, the analytical solution in the square
domain is given as

uex(x) = uo +(uL −uo)(1−e−δx2/L)/(1−e−δ),
qex

i (x) = −Li2(uL −uo)δ/(1−e−δ)L. (32)
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Figure 11 : Dependence of accuracy on the density
of the distribution of nodal points in: (a) isotropic (b)
anisotropic non-homogeneous medium with exponential
gradation

In contrast to the previous example, the accuracy is now
improved with increasing the density of nodal point dis-

tribution. The error due to the numerical treatment of
the domain integral contribution of the non-homogeneity
term is dominant and the accuracy by the LIE of the 1st

kind is the same as that by the LIE of the 2nd kind.

As can be seen, the convergence rate with increasing the
nodal point distribution density is almost the same for
any of the studied interpolation.

Example 5

In order to test the proposed computational techniques
also for another kind of continuous non-homogeneity, let
us consider the same BVP as in the previous example but
with a power-law gradation of the material coefficient.

Assuming the quadratic variation of the material coeffi-
cient given by λ(x) = (1 + δx2/L)2, we may write the
analytical solution as

uex(x) = uo +(uL −uo)
(1+δx2/L)−1 −1

(1+δ)−1 −1
,

qex
i (x) = Li2

δ
L

uL −uo

(1+δ)−1 −1
. (33)

The Dirichlet boundary conditions on the bottom and the
top of the square have been specified as uo = 1 and uL =
20. Te results of the convergence study are shown in Fig.
12.

Example 6

Finally, in this example we apply all the considered in-
terpolation approaches to solution of the Dirichlet BVP
in a thick-walled tube. The BVP is considered in a nar-
row angular section of the cross section of the tube as
shown in Fig. 3. The material medium is isotropic either
homogeneous or continuously nonhomogeneous with ex-
ponential and/or power-law gradation of the material co-
efficient in the radial direction. The analytical solution is
given [Sladek et al (2004)]:

(i) for homogeneous material medium λi j(x) = δi jλo as

u(r) = u(a)+
u(b)−u(a)
lnb− lna

[lnr− lna] , (34)

(ii) for exponentially graded material coefficient

λi j(x) = δi jλoeδ(r−a)/(b−a) as

u(r) = u(a)+
u(b)−u(a)

E1(γb)−E1(γa)
[E1(γr)−E1(γa)] , (35)
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Figure 12 : Dependence of accuracy on the density
of the distribution of nodal points in: (a) isotropic (b)
anisotropic non-homogeneous medium with power-law
gradation

where E1(z) is the Exponential integral function
[Abramowitz and Stegun (1964)],

(iii) for the power-law graded material coefficient

λ(r) =
(
1+δ r−a

b−a

)n
with n = 2 as

u(r) = u(a)+
u(b)−u(a)
I(b)− I(a)

[I(r)− I(a)] , (36)

where I(r) is expressed in terms of elementary functions
by

I(r) =
1

A2

[
A

A+ γr
+ ln

r
A+ γr

]
,

A = 1− γa , γ =
δ

b−a
.

For the numerical evaluation of the Exponential integral
function, one can use its continued fraction representa-
tion together with the modified Lentz’s algorithm [Press
et al (1988)].

Fig. 13 shows the accuracy of numerical solutions of the
considered BVP in the tubes of various material prop-
erties. In the case of nonhomogeneous media, there is
no difference between the results by the LIE of the 1st

and 2nd kinds. Convergence of the numerical results to
the exact ones can be observed in nonhomogeneous me-
dia and partially also in solutions for the homogeneous
medium.
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Figure 13a : The dependence of accuracy on the den-
sity of the distribution of nodal points in homogeneous
medium

Finally, note that the CPU-times shown in Fig. 14 exhibit
the same character as in the case of square domain

6 Conclusions

A new numerical method is developed for the solution of
2-d potential problems in anisotropic and continuously
non-homogeneous media. The method is based on the
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Figure 13b : The dependence of accuracy on the density
of the distribution of nodal points in non-homogeneous
medium with exponentially graded material coefficient
and the grade parameter δ = 3
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Figure 13c : The dependence of accuracy on the density
of the distribution of nodal points in c) nonhomogeneous
medium with power-law graded material coefficient and
the grade parameter δ = 3

local integral equations and meshfree approximations by
using three different point interpolation methods. The in-
tegral equations are nonsingular and the shape functions
of the applied interpolations possess the Kronecker-delta
property.

The use of the polynomial basis functions combined with
radial basis multiquadrics exhibits sensitivity of the ac-
curacy of numerical results on the shape parameter c in-
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Figure 14 : Dependence of CPU-times on the density of
nodal point distribution in homogeneous tube

volved in the multiquadrics. Nevertheless, in both the
combinations PBF ×MQ and PBF + MQ one can spec-
ify a wide range of c-values on which the accuracy is
rather insensitive.

The study of the stability of numerical results as well as
patch tests on the distribution of nodal points within the
sample indicates the instability when using PBF and/or
PBF×MQ interpolations with non-uniform distributions
of nodal points. On the other hand, the PBF +MQ inter-
polation with sufficient amount of radial basis functions
yields stable numerical results.

As regards the accuracy achieved by the LIE of the 1st

and 2nd kinds, there is a difference only in the case of the
BVP in a square domain of homogeneous media. Re-
markably shorter CPU-times are consumed with using
the LIE of the 2nd kind in homogeneous media because
of the absence of domain integrations. In the case of non-
homogeneous media, the domain integration is required
in both the approaches and the CPU-times are almost in-
dependent on the material properties. The domain in-
tegral seems to be dominant also for determination of
the accuracy in nonhomogeneous media, since various
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meshfree interpolations result in almost the same accu-
racy. The convergence rate with increasing the density
of nodal points distribution in meshfree interpolations is
very close to that achieved by using standard domain dis-
cretization with using quadrilateral quadratic serendipity
elements.

Despite of the instability, the accuracy obtained in nu-
merical solution of the considered BVPs by either the
PBF or PBF × MQ interpolation appears to be very
reasonable when uniform distribution of nodal points
is employed. The stability of numerical results by the
PBF +MQ interpolation is achieved in price of a remark-
able increase of the CPU-time. Finally, the CPU-times
consumed by the meshfree interpolations are substan-
tially longer than those by using the domain discretiza-
tion approach.

The proposed method is quite general and a satisfactory
accuracy is achieved in our numerical tests. The system
matrix is sparse like in the finite element method and the
solution is fast.

The method is open for the use of other meshfree approx-
imations. The extension of the method to three dimen-
sions as well as to other applications is straightforward.
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