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A Tangent Stiffness MLPG Method for Atom/Continuum Multiscale Simulation

Shengping Shen' and S. N. Atluri!

Abstract: The main objective of this paper is to de-
velop a multiscale method for the static analysis of a
nano-system, based on a combination of molecular me-
chanics and MLPG methods. The tangent-stiffness for-
mulations are given for this multiscale method, as well
as a pure molecular mechanics method. This method
is also shown to naturally link the continuum local bal-
ance equation with molecular mechanics, directly, based
on the stress or force. Numerical results show that this
multiscale method quite accurate. The tangent-stiffness
MLPG method is very effective and stable in multiscale
simulations. This multiscale method dramatically re-
duces the computational cost, but it still can provide rea-
sonable accuracy in some regions of the model.

keyword: Molecular mechanics, Multiscale method,
continuum mechanics, MLPG.

1 Introduction

Recently, an intense effort has been devoted to the mod-
eling and simulations of physical phenomena occurring
over a vast range of length scales. This endeavor has
prompted the development of multiscale modeling and
simulation strategies. Computational Nanotechnology
[Srivastava and Atluri (2002a, b)] has become an indis-
pensable tool not only in predicting, but also in engineer-
ing the properties of multi-functional nano-structured
materials. The nano-scale is the length scale of individ-
ual atoms, i.e. 1-10nm. At such length scales, continuum
models are not flexible enough to accommodate the indi-
vidual atomic scale processes. An alternative to contin-
uum analysis is the atomistic modeling and simulation,
in which individual atoms are explicitly followed during
their evolution. Even though this atomistic modeling can
trace all the details of an atomic-scale processe, it has its
own set of limitations. When the length-scale cannot be
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accessed by either continuum methods because it is too
small for averaging, or the atomistic methods because
it is too large for simulations on the present day com-
puters, these two approaches become inadequate, and
that has presented significant challenges to the scientific
community. A recent review of the computational nano-
mechanics can be found in Shen and Atluri (2004b).

For phenomena on a much larger space scale, one possi-
ble strategy is the multi-scale methods. The simulation of
large systems must be left to continuum methods. Con-
tinuum mechanics is used to predict the phenomena de-
scribed by uniform collective behavior of atoms, while
nano-mechanics is used to predict the phenomena de-
scribed by dramatic changes in the state of a few atoms.
Multiscale modeling and simulations are being used in
diverse fields, such as materials science, nano/micro-
electronics, environmental remediation, and biotechnol-
ogy. The overall goal of multiscale modeling is to pre-
dict the response of complex systems across all relevant
spatial scales. It is of interest to build models that can
seamlessly simulate multi-scale systems. Several meth-
ods have been developed for the multiscale simulations.

The quasicontinuum method, introduced by Tadmor et
al. (1996), and further developed by Chung and Nam-
buru (2003), gives a theory for bridging the atomistic
and continuum scales in quasistatic problems. In this
method, a set of atoms making up a Bravais lattice is se-
lected from a subset. A triangulation of this subset allows
the introduction of finite element-like shape functions at
lattice points, allowing the interpolation of quantities at
intermediate points in the lattice. Thus, the problem of
the minimization of energy to find equilibrium configura-
tions can be written in terms of a reduced set of variables.
The method is made practical by approximating summa-
tions over all atoms, by using summation rules analogous
to numerical quadrature. The rules rely on the smooth-
ness of the quantities over the size of the triangulation to
ensure accuracy. This method is limited to the case of a
zero temperature.
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Another approach to the coupling of the length scales
is the FE/MD/TB model of Abraham (2000). In this
method, three simulations are run simultaneously, using
the finite element method (FEM), molecular dynamics
(MD), and semi-empirical tight binding (TB). Each sim-
ulation is performed on a different region of the domain,
with a coupling imposed in “handshake” regions where
the different simulations overlap. The challenge for mesh
generation is that the mesh should smoothly transition
between the true atomic lattice in the MD region and
the closet-packed FE meshes. Too abrupt a crossover
leads to unphysical behavior, such as elastic wave reso-
nances at the interface. Wagner and Liu (2003) presented
a multiscale method for coupling molecular dynamics
and continuum mechanics by using “bridging scale” de-
composition and quasicontinuum method [Tadmor et al.
(1996)]. We developed a method for the seamlessly cou-
pling of continuum and MD simulation at finite temper-
ature [Shen, and Atluri (2004a)], where alternate interfa-
cial conditions between atomistic and continuum regions
were proposed by considering the fluctuation of atoms
in the continuum region. Its effectiveness in ensuring
the accurate passage of information between atomistic
and continuum regions was discussed [Shen, and Atluri
(2004a)].

This paper is the extension of Shen and Atluri (2004a),
which focused on the finite temperature, dynamic prob-
lems. A multiscale method for coupling the contin-
uum models with molecular models at the 0 ° temper-
ature are developed here for static problems, based on
the meshless local Petrov-Galerkin (MLPG) method. For
the static molecular mechanics, the tangent stiffness for-
mulation is used. A multiscale system is divided in to
two regions: an atomistic region, which may contain
inhomogeneities, and an equivalent continuum mechan-
ics (ECM) domain, which is defect-free. In the (ECM)
region, the deformation is homogeneous, and thus can
be approximated by an equivalent continuum mechanics
model as in the quasicontinuum method. However, in
contrast to quasicontinuum method, there is no “spurious
force” to appear near the interface in this method. The
material in ECM is discritized into a set of nodes, which
are not necessarily coincident with the atoms. The posi-
tions of the atoms in this region can be interpolated from
those of the nodes. The tangent stiffness MLPG method
is employed to solve for the displacements of the nodes
in the ECM region.
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2 The MLPG Method and Radial Basis functions

Due to their flexibility and potential in negating the need
for the human-labor intensive process of constructing ge-
ometric meshes, meshless methods, as alternative numer-
ical approaches to eliminate the well-known drawbacks
in the finite element and boundary element methods, have
attracted much attention in recent decades,.

The MLPG method is a simple and less-costly alter-
native to the FEM and BEM [Atluri and Zhu (1998),
Atluri and Shen (2002a), Atluri (2004)]. The main objec-
tive of the meshless methods is to alleviate the difficulty
of, meshing and remeshing the entire structure; by only
adding or deleting nodes in the entire structure, instead.
The meshless local Petrov-Galerkin (MLPG) method is
truly meshless, as no finite element/or boundary element
meshes are required in this approach, either for purposes
of interpolation of the trial and test functions for the so-
lution variables, or for the purpose of integration of the
‘energy’. Remarkable successes of the MLPG method
have been reported in solving the convection-diffusion
problems; fracture mechanics; Navier-Stokes flows; and
plate bending problems. Recently, the MLPG method
has made some strides, and it is applied successfully in
studying strain gradient materials [Tang, Shen and Atluri,
(2003)), three dimensional elasticity problems [Li, Shen,
Han and Atluri (2003), Han and Atluri (2004a)], and
elstodynamics [Han and Atluri (2004b)]. The MLPG
method was also extended to solve the boundary integral
equations [Atluri, Han and Shen (2003), and Han, Atluri
(2003)].

Six different nodal-based local test functions may be
selected, which lead to six different MLPG meth-
ods. Based on the MLPG concept, these variants of
the MLPG method are labeled as MLPG1, MLPG2,
MLPG3, MLPG4, MLPGS, and MLPG6, respectively.
Among them, MLPGS does not involve either a domain,
or a singular integral, to generate the stiffness matrix; it
only involves the regular boundary integral. Thus, it is
a highly promising MLPG method while, numerical ex-
amples validate that the MLPGS5 method is fast, accurate
and robust.

In the conventional Galerkin method, the trial and test
functions are chosen from the same function-space. In
MLPG, the nodal trial and test functions can be differ-
ent: the nodal trial function may correspond to any one
of MLS, PU, Shepard function, or RBF types of inter-
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polations; and the test function may be totally different,
and may correspond to any one of MLS, PU, Shepard
function, RBF, a Heaviside step function, a Dirac delta
function, the Gaussian weight function of MLS, a spe-
cial form of the fundamental solution to the differential
equation, or any other convenient function, in the support
domain, €., of the test function. Furthermore, the physi-
cal sizes of the supports (€, and €., respectively) of the
nodal trial and test functions may be different. These fea-
tures make the MLPG method very flexible. The MLPG
method, based on a local formulation, can include all the
other meshless methods based on global formulation, as
special cases [see Atluri (2004)].

In this paper, we choose the /ocal radial basis functions
[Hardy (1971), Wendland (1999), Liu and Gu (2001)] to
interpolate the trial functions, because of its Kronecker
Delta property. Consider a continuous function u(x) de-
fined in a domain €, discretized by a set of nodes. An in-
terpolation of u(x) from the neighboring nodes of a point
Xo, Within the domain €, using RBFs and a polynomial
basis, can be written as

n
= Z Rl' (X
i=1

=R"a+P'b

>cu<xa>+-§izn<x>bj<xa>

ey

where R; () is the radial basis function, p; (x) is a mono-
mial in the space coordinates, n is the number of nodes in
the neighborhood of xq, m is the number of polynomial
basis functions (usually mjn), and a; (X¢) and b; (X, are
the coefficients for R; (x) and p; (x), respectively, corre-
sponding to the point X,. The number of the neighbor
nodes of X, is not greater than the total number of nodes
in the global domain.

The radial basis function has the following general form

Rl' (X) = Rl' (l"i) (2)
where r; = ||[x —X;||. The polynomial term is added to
ensure the consistency and the condition of the non-
singularity of the RBFs approximation, which should sat-
isfy the following constraints

3)
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The coefficients are determined by enforcing the interpo-
lation pass through all n scattered nodes within the influ-
ence domain:

n

:ZRi(Xk)ai‘i'ZPj(Xk)bja k=1,2,---,
i=1 =1

u (Xk) n (4)

Then, the interpolation is expressed as

=R P at{ el ewu ©

where

Sk
R] (X]) R2 (X]) Rn (X])

RO _ R] (Xz) R2 (Xz) Rn (Xz) (7)
R (xn) R2(xy) Ri(Xn) |00
p1(x1) p2(x1) Pm (X1)

P, — p1(x2) p2(x2) Pm (%2) )
p1(Xn) P2 (%) P (Xn) nxm

u = [ug,uz, -, un]" 9)

and the matrix of the shape functions ¢ (x) is defined by

o(x) = [0' (x),07 (%), ,0' (x),-+-, 0" (x)] (10)
with
¢"<x)—iRz lk+2p, (X) Ak (11)

where Aj represents the (i,k) element of matrix A=,
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The widely used RBFs include multiquadrics (MQ),
Gaussian (EXP), and thin plate splines (TPS) forms, and
so on. In this paper, we will employ the multiquadrics
(MQ) form:

R;(x) = (rl2 —I-cz)B

(12)
¢ and [ are the shape parameters. Here, we choose ¢ =1,
B=1.03 or c =2, B =1.99, that we denote RBF1 and
RBF2, respectively, hereafter in this paper.

3 The MLPG Method for Equivalent Continuum

In this section, a finite deformation model based on the
atomistic physics will be developed, for use in the ECM
region.

In continuum mechanics, the stress at a material point
is a function of the ‘state’ variables, such as strain, and
its gradients, at the same point. In order to formulate
a constitutive law for an equivalent continuum model
(ECM) from the atomic forces, a hypothesis to connect
the continuum displacement field and the motions of
atoms must be employed. The Cauchy-Born hypothe-
sis is the basis for developing the ECM elastic potentials,
from the atomistic description of the system. In the ab-
sence of slips, phase transitions, twinning or other inelas-
tic phenomena, the Cauchy-Born hypotheses for crystals
are equivalent for homogeneous deformations (Ericksen,
1984). Once the geometry of the deformed lattice vec-
tors is linked to the continuum deformation, a constitu-
tive model based on atomistic description can be con-
structed by equating the continuum strain energy density
to the potential energy of the atomic system for a repre-
sentative cell, divided by its volume, as in Tadmor et al.
(1996).

In this paper, first, we will develop an MLPG tangent-
stiffness method for the ECM region, in which it is as-
sumed that the state of deformation is homogeneous and
can be well-characterized by the local deformation gra-
dient F. The inhomogeneous deformation, such as near
defect cores, will be accounted for by the pure molecular
mechanics method. The whole idea is that: in the ECM,
MLPGS or MLPG 1 tangent-stiffness will be employed; in
the MDD region, the tangent-stiffness molecular mechan-
ics method will be employed.

Both of these, the ECM and MD regions, are linked
through the device of the meshless local Petrov-Galerkin
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(MLPG) method, which will thus offer the possibility
of carrying out uniformly valid simulations of material
properties for multi-scale systems at larger length scales
than direct atomistic calculations, and permits a reduc-
tion of the full set of atomic degrees of freedom; thus
reaching towards almost O(N) algorithms. This is illus-
trated of in Fig. 1. In the ECM region, the nodes can be
taken to be arbitrary, and not necessarily be coincident
with the atoms. In MD region, the nodes are taken to
be the atoms themselves. In the ECM region, the solid
points represent the atoms, while the open points repre-
sent the nodes of the MLPG method. MLPGS5 will be
implemented in “ECM” region and molecular mechanics
method will be implemented in MD region.

ECM Region

MD Region

Figure 1 : Illustration of multiscale simulation.

The atomic positions are governed by Newtonian me-
chanics and described by molecular mechanics. The
atomic forces are analytic derivatives of the inter-atomic
potential (Born-Oppenheimer expansion). In the ECM,
the atomic environment is characterized by the deforma-
tion gradient there. Each continuum point is taken to rep-
resent a large region on the atomic scale, which is homo-
geneously distorted according to the deformation gradi-
ent at the point. The constitutive response in this region
is obtained from the atomistic calculation rather than a
phenomenological rule, in a way similar to the quasicon-
tinuum method proposed by Tadmor et al. (1996).
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By means of the concept of the MLPG, a local weak form
(in subdomain €, as in Fig. 1) for the Newton’s law of
motion (conservation of linear momentum) will be used
to derive a system of equations for multi-scale materials
modeling. In this paper, we choose radial basis function
to be the interpolation scheme, due to its convenience in
this case and their Kroneck Delta property [Atluri (2004),
Atluri & Shen (2002a, b)].

In classical continuum mechanics, a point X in the un-
deformed body € in the reference frame is mapped to a
point X in its current shape €2 in the current frame. The
deformed configuration of the body is described by a dis-
placement function u(X), which represents the displace-
ment at point X, as

x =X+u(X)

The deformation gradient is defined by

_o0x Ju

to map infinitesimal material vector from the undeformed
body €2 into the deformed one €. Here, I is the identity
tensor.

In the molecular dynamics region, the initial position of
an atom / is denoted as X;. The current configuration of
the atom is described by a displacement u which depends
on X, and can be written as

x; =X+ (13)

where w;=u(X;).

The distance between two atoms / and J in the reference
configuration can be written as

Ry =X;—-X; (14)

The distance between two atoms / and J in the current
configuration can be written as

ry =Xy —X[ (15)
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According to the Cauchy-Born rule (Ericksen, 1984),
for simple Bravais lattice that has the centrosymmetric
atomic structure, we have

ryy :FRU (16)

However, it does not hold for a ccomplex Bravais lattice
which can be given by means of a number of interpene-
trating simple Bravais lattices (sub-lattices), and in case
which do not possess centrosymmetry, such as the hexag-
onal lattice. In this case, the Cauchy-Born rule gives
[Zanzotto (1996), Martin (1975), Cousins (1978), Born
and Huang (1954)]

r;; =FRyy +¢ (17)

where the internal variable ¢ are shift vectors, with k
ranging from O to some integer N (There are N+1 sub-
lattices in the complex Bravais lattice. If atoms I, J are
in the same sub-lattices, ¢y = 0). ¢ and F are the in-
dependent variables. At the static equilibrium state, the
vectors G are to be determined by the minimization of
the energy function, so as to reach an equilibrium con-
figuration in the deformed crystal. This means that the
equilibrium values of ¢; can be written as functions of F.

It is noted that, in order to apply the Cauchy-Born rule
to nanotubes or fullerenes, a more general exponential
mapping procedure like the one in Arroyo and Belytchko
(2002) should be used. Since nanotube is only a few
atom-thick, the continuum measures, such as stress and
strain, lose their meanings in such a situation. An alter-
native multiscale method for a nanotube, which abandons
the Cauchy-Born rule, as discussed in Shen and Atluri
(2004c¢), will be shown in an upcoming paper.

The right Cauchy-Green strain tensor is defined by

C=F'F (18)
and the Green strain tensor is defined by

1
E=(C-1) (19)

The kinematics of the deformation is characterized by the
deformation gradient. The constitutive nature of the ma-
terial is obtained through the strain energy density func-
tion W which relates the energy at a point to the local
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state of deformation there. It may be shown that W can
only be a function of F, from the hypothesis of locality
and use the entropy production inequality. Moreover, ac-
cording to the postulate of material frame indifference, it
can be shown that the dependence of W on F can only
be through the right Cauchy-Green tensor C. However,
in this paper, for convenience, we will employ the defor-
mation gradient F as the strain.

Following the classical continuum mechanics, the first
Piola-Kirchhoff stress T can be defined as

15144
T=— 20
oF 20)
The conservation of linear momentum leads to:
V- T+f=0 (21

where V- denotes the divergence taken with respect to the
material frame, f is the body force.

The conservation of angular momentum leads to:

FT = (FT)" (22)

The tangent stiffness material-moduli (Lagrangian elas-
ticity tensor) can be defined as

*wW

~ OFoF @9

More details about the finite strain analysis can be found
in Atluri (1979, 1980).

The local weak form of equation (21) can be written as

/ (V-T+£)VdQ =0 (24)

where V is the test function in the local domain € in the
reference frame. The local symmetric weak form can be
written as

—/ TKlVl,KdQ+/ TxingVidD
Qg Ly

+ / TiangVidl = — / Ty VidT 25)
rSl‘

st
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where n is the unite normal to the local boundary surface
I's of Q. The corresponding MLPGS5 weak-form (when
the test functions are taken to Heaviside functions) is:

/Tmnkdl“—i—/ TKandF:/ TxingdI' (26)
L; rsu rSl

Actually, the MLPGS5 [equation (26)] can be directly de-
rived from the conservation of linear momentum in an
arbitrary local domain, which is the basis of the finite
deformation theory. The physical basis of the MLPGS is
the conservation of linear momentum in an arbitrary lo-

cal domain, and that of the MLPG?2 is the conservation
of linear momentum on arbitrary point.

A corresponding continuous interpolation will replace
the piece-wise function for the position of the atom in
the ECM region,

N
X = Z q)a(X)Xoc

o=1

27

Xo,00=1,2,...,N, in equation (27), are the nodal values.
¢* (X) is the RBF shape function.

Assume that there are N; atoms in molecular mechanics
region (MM), and N, in ECM region (ECM). The dis-
placements of atoms / in the MM region are denoted by
q; (1 <1< Ny). The displacements of arom i in the ECM
region are denoted by u; (1 <i <N,), which are interpo-
lated from the displacements of the nodes in ECM region,
as

N
u; = U(Xi) = Z q)(x (Xl) Ug, (28)
o=1

Here, ugy, 0=1, 2,..., N, are the nodal values. It is noted
that N is less than the amount of atoms of ECM region,
i.e., N < N,, and the node is not necessarily an atom.
The displacement u; of an atom in ECM region implies
an average value of the atomic displacement, and can not
catch the thermal fluctuations.

4 The Atomistic Constitutive Law in ECM and
MLPGS

In classical MD, each atom moves and acts simply as
a particle that is moving in a many-body force field of



A Tangent Stiffness MLPG Method for Multiscale Simulation

other similar particles. The atomic and molecular inter-
actions describing the dynamics are given by classical
many-body force-field functions, and the interatomic po-
tential I as an infinite sum over pair, triplet, etc.. The
potential of the atoms is calculated by building the ap-
propriate complement of neighbors in the molecular me-
chanics region. As is well known, it is computationally
expensive to calculate the interatomic potential and the
atomic force, since we should visit each atom.

In this paper, an important procedure is to estimate the
strain energy density in the ECM If we sum over all
the atoms as in the classical molecular dynamics, we
can certainly get the energy density by evaluating I' / Q.
However, this is very expensive. In the quasicontinuum
method [Tadmor et al. (1996)], for a homogeneously dis-
torted crystal, the continuum strain energy density is ob-
tained by equating to the potential energy of the atomic
system for a representative cell divided by its volume,
which means that the calculation of the interatomic po-
tential and the atomic force is limited to a single unit
cell. In the ECM regions, the energy is calculated using a
single representative cell in the center of a uniformly de-
formed crystal. This crystal is always made sufficiently
large or periodic that there are no boundary effects there
either. In practice, the calculation of the energy is per-
formed separately from the real model in a virtual rep-
resentative cell. Suppose there is a point (for example,
the Gaussian point in the local domain) where the defor-
mation gradient is F. Then we take a large crystallite of
the material (periodic or infinite structure) and apply the
deformation gradient F to the crystallite, i.e., we move
the atoms of a single representative cell to the positions
given by the deformation gradient. Now, based on this,
we can calculate the energy of the single representative
cell in this large crystallite, stress tensor, and elasticity
tensor, etc.. In this treatment, we do not need consider
the real atomic structure of the model, neither need visit
every atom. The energy only depends on the gradient F.
The energy density on a point (Gaussian point) is then
given by

o Hr HrO

1%
Q QO

(29)

where €, is the volume of the single representative cell
(in the undeformed configuration), I,y is the potential
energy in the unstrained state, and I1, is the potential en-
ergy of the representative cell when its atomic position
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moved according to F. It is noted that both the inter-
atomic potential energy and the strain energy, involve
reference states. The former is referenced to infinitely
separated atoms, and the latter is referenced to the un-
strained configuration. Hence, the constant offset energy
I1,9, representing the potential energy in the unstrained
state, which does not affect the dynamics is subtracted in
equation (29). Howeyver, the energy of a point near a free
surface is not computed correctly - this is one of the ap-
proximations inherent to the method. After obtaining the
strain energy density by the Cauchy-Born rule for certain
gradient F, the corresponding first Piola-Kirchhoff stress
T, and the tangent stiffness moduli D, in the ECM can
be obtained from equations (20) and (23), respectively.
In Chung, Namburu, and Henz (2004), the calculation of
the energy of each element still needs to visit each atom.

The equations from the nonlinear local Petrov-Galerkin
formulation (25), can be solved by employing Newton-
Raphson method. Assuming that the equation (25) is at
iteration step n, then from step n to step (n+1), the incre-
mental constitutive relation in the ECM can be expressed
as

AT = D:AF =D:VAu (30)
or

ATk; = DgimnAum N (31)
where Au is the increment of the displacement, i.e.,
Au=""u—"u (32)

with "u denotes the displacement u at iteration step n.
Equation (25) at iteration step (n+1) can be linearized as

—/ ATK[‘/Z,KdQ+/ ATgingVidT
Q L

n / ATngVidl = O (33)
T

su

and
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0=~ [ Tumpviar— [ fivide
rst QS
—/ ATKII’IKVldF—/ AflVldQ
rst QS
-I-/ TKlVl,KdQ_/ TxingV,dll
Q L

_ / TengVidT (34)
rSll

If we adopt the MLPGS method, equation (33) and (34)
can be rewritten as

/ ATKandF—I—/ ATgingdl = Q; 35
LS rSll
and
le —/ T[andr—/ fldQ
rst QS
—/ ATKandF—/ AfldQ
rst QS
—/ TKandF—/ TKandF (36)
LS rSll

By using the natural boundary on I, Tx;nx = P;, equa-
tion (36) can be written as

Ql:—/ Edr—/ £dQ

rSl QS

—/ Aﬁldr—/ AfdQ
rSl QS

—/ TKandF—/ TKandF
LS rSll

According to equation (4.2), equation (33) or (35) is a
linear equation in terms of Au. The increment of dis-
placement, Au, can be interpolated in the MLPG method
as

(37

Au = i % (X) Aug,

o=1

(38)

Aug, o0 =1,2,....N, in equation (38), are the nodal val-
ues. Again, it is noted that N is less than the amount of
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atoms of the system, and the node is not necessarily the
atom. For convenience, we rewrite equation (38) as

N
Auy = Z 0% (X) Augy (39)
o=1

with q)?l = q)OLSU‘
Substitution of equation (39) into equation (35), for all

nodes, leads to the following discretized system of linear
equations:

N
le ["KopAup] ="Qq (40)

where "Kg is defined as the tangent stiffness at step n,

["Ka[s} y= /L DKlmNan)?nj,Ndr

+ /r DszNan)?n,,NdF 41)
{"Qu}; = / PdT + / fdQ+ / AP,dT’
Ty Qg Ty
+/ AfldQ—/ TKandF—/ TKandF (42)
QS Ly Cou

The integration in equations (41) and (42) can employ
the Gaussian quadrature. At each Gaussian point, the
deformation gradient F can be obtained by deriving the
interpolation with respect to X, then, by deforming the
representative cell according to the deformation gradient
F, the stress and tangent stiffness tensors can be obtained
readily, as described previously. It is shown that no do-
main integration in involved in equation (3.35), which
is an important advantage of MLPGS5. In the Newton-
Raphson method, the displacement at each iteration are
updated by

n-‘rlu — "u—l—Au

The procedure continues until ||"Qy]| (or ||Aul|) is re-
duced sufficiently for all nodes.

It is noted that in ECM region, atoms implicitly con-
tribute to the problem only through the material property
tensor.
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5 Tangent Stiffness Formulation for Molecular Me-
chanics

In the inhomogeneous-deformation region, we will em-
ploy pure molecular mechanics method. Assume that
there are N atoms in this region (MD). The displacement
of atom [ in this region is denoted as q; (1 <1 < Ny).
Now, the control equation will be

fi=0 (43)

oIl

oIl _Jil
Jq;

f=——
! 8X1

(44)

The force f; is computed, as it would be in a standard
atomistic calculation. In molecular calculation, the eval-
uation of the interatomic potential energy, and forces, is
performed by taking advantage of the neighbor-list of
atoms, so that the time for the computation scales with
the number of atoms in region A, i.e. it is of order-Nj.

Similar to that in section 3, we can also linearize equa-
tion (43) by employing Newton-Raphson method, which
was described in Shen and Atluri (2004) for the classical
molecular dynamics. Here, we still list these equations
for the molecular mechanics. Equation (43) at iteration
step (n+1) can be rewritten as

" =0 (45)
Then, equation (45) is written as
of
SRR RS (—1>A =0 (46)
1= Y

J; dqy
where Aq is the increment of the displacement, i.e.,
Aq=""'q-"q (47)

with "q denotes the displacement q at iteration step n.
The above equation can be rewritten as

N
Y 'KiyAgqy] ="Q
J=1

(48)
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where the molecular tangent stiffness matrix "K;; at iter-
ation step n is defined as

of,
"Kiy = - (49)
aq,
and
"Qr =" (50)
The displacement are iteratively updated by
"lq="q+Aq (51)

The procedure continues until ||"Qy]| (or ||Aq||) is re-
duced sufficiently for all atoms. It is noted that the neigh-
bor list should be renewed every several iteration steps.
Now, a unified formulation for the multiscale system can
be developed, based on the MLPG method, and the tan-
gent stiffness concept. The equation (40) and (48) can be
merged as

"KAu ="Q (52)
The continuum MLPGS5 and molecular mechanics share
a common ground of Newton’s second law, in the subdo-
mains of each node and to the atoms, respectively. The
positions of all nodes in the ECM region are determined
by seeking a configuration for which the force in the sub-
domain of each node is zero. This is similar to the molec-
ular mechanics calculations of atom position, which is
based on seeking a configuration for which the force on
each atom is zero.

This method should be very effective due to the fact
that adaptive remeshing, which is an important factor in
multiscale dynamics, is very convenient in the MLPG
method. This computational methodology provides a
unified method for simulation in MD and equivalent con-
tinuum mechanics regions.

6 Interfacial Conditions between Atom and ECM
Regions

In the multiscale simulation, the atomistic method is em-
ployed where the displacement field varies on an atomic
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scale, and the continuum approach is employed else-
where. Then, the problem is how to link these tow scales
together? In dynamic cases, for the seamless multiscale
simulation, it is important to ensure that the elastic waves
generated in the atomistic region can propagate into the
continuum region. Since the continuum region cannot
support modes of short wavelength, which is less than
the spacing of the nodes, the short waves are reflected
back unphysically from an artificial interface or bound-
ary, which may also produce uneven heating across the
interface. In order to minimize such reflections, some in-
terfacial conditions are proposed [Cai et al. (2000), E and
Huang (2001), Wagner and Liu (2003), Shen and Atluri
(2004a)].

As mentioned before, the displacement u; of an atom in
region B implies an average value of the atomic displace-
ment. As in Shen and Atluri (2004a), to describe it more
accurately, we assume that the “real” displacement q; of
the atom in the region B can be expressed as:

q; = u; +Ou; (53)
where du; denotes the difference between the atomic dis-
placement and the continuum displacement, and it is as-
sumed that du; << u; in region B. Now, the total poten-
tial energy of the system (A+B) can be written as:

N

I(qr, -, QN +a) %H(“i?‘m"’.zl g_g q—u;
i= i=U;

6111'
% an o B8

=TIlp+ Z] Suoou; =1Tlo (up;qa) + 55 - dug
=

U=1,---,NjinA;i=1,--- /N, in B)

Here Tl denotes the zeroth-order approximation of the
potential energy; qsand up are the atomic displacement
vectors with dimensions 3N; (for 3 dimensions) in re-
gion A, and 3N, in region B, respectively; dugp is a vector
with dimension 3N,. Effectively, the MLPG algorithm
involves an average over the atomic degrees of freedom
that are missing from the nodes in region B. The second
term in right side of equation (54) accounts for the miss-
ing degrees of atomic freedom.

In many of the existing multiscale modeling methods,
only the continuum displacements of the atoms, near the
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interface in the region B, are considered. In this case, in
region A, the Newton’s Second law can be written in a
matrix form as

il =~ /dqs =0 (55)
where the force vector tﬁ is of dimension 3N;. Equa-
tion (55) will be solved by using the Newton-Raphson
method, as discussed in Section 4. Here, the atoms in
region B near the atom/ECM interface, we denote them
“continuum atom”, are needed to calculate the atomic
forces in equation (55). The position of these atoms is
not calculated from the molecular mechanics (55), but
interpolated by the continuum MLPG solution. On the
interface of region A and B, the nodes of the ECM re-
gion are chosen from the atoms, however, these nodes
are only for the interpolation, their position is calculated
from the molecular mechanics. Thus, the atomistic gov-
erning equations (48) couple the ECM governing equa-
tion (40) through the “continuum atom”, and the ECM
governing equation (40) couple the atomistic governing
equations (48) through the interfacial nodes. The degrees
of freedom (DOF) N; in A are in general greater than
these in B, viz., N, [i.e., N7 >> N,]. Thus, this case is
computationally inexpensive. The increment of the dis-
placement of “continuum atom” i can be obtained by in-
terpolation as

N

Ag; =Y, 0™ (X;)Auy (56)
o=1

In this case, the equation (48) is modified to

Ny N N

Y 'KyAgy]+ Y, Ky Y [0% (X)) Aug] ="Q;  (57)

J=1 j=1 a=1

(£,J=1,--- ,NyinA; j=1,---,N, in B)

However, if we only consider the continuum displace-
ment of the continuum atoms, it will obviously contribute
errors to the solution. To improve the performance, Shen
and Atluri (2004a) used the first-order approximation of
the potential energy, i.e. Il in equation (54), to replace
Iy in equation (55), which leads to:
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£} — K 38u3 =0 (58)

where

KAB = azno/auBan.

It is noted that the tangent stiffness matrix K, is of order
3N x 3N,, and its entries are nonzero only for atomic
pairs in the cutoff of the interface. dug can be obtained
from the equation of atomistic balance in region B, viz.,

fp =13 — Kpgdug =0 (59)
with the3N, x 3N, tangent stiffness matrix

KBB = azﬂo/augaug

and £} of dimension 3N, is approximated as

f% = —aHO/auB (60)

Thus, by combining equations (58) and (59), we can get
the governing equations for the atomic region A:

] — KapKaf =0 (61)
Comparing equation (55) with (61), it can be found
that the term —KABKggt% is missing in equation (55),
which contributes the errors to the solution. In fact, al-
though the interfacial conditions are very important for
dynamic problems (to diminish the reflection of the short
wave from the interface) as discussed in Shen and Atluri
(2004a), it is unnecessary for static problems. For static
problem, the errors can be controlled by properly adjust-
ing the interface where the atom/ECM regions are assem-
bled, or the size of the atomic region. Therefore, in this
paper, we just consider equation (55), the effect of the
dimension of the atomic region on the accuracy of the
solution will be discussed in numerical examples.

The quasicontinuum method [Tadmor et al. (1996)] is
based on a well-defined energy functional for the entire
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system, which lead to spurious forces near the interface,
the equilibrium of the system is derived by minimizing
the energy functional. These forces arise due to the fact
that there is an inherent mismatch between the continuum
and atomistic regions in the problem, where different the-
ory is employed to sum the energy in the continuum and
atomistic regions, which leads the force on each atom is
inconsistent with its status. The multiscale method devel-
oped in this paper is directly based on the stress (ECM)
and force (atom), the equilibrium of the system is derived
by seeking a configuration for which the force on each
degree of freedom is zero. In this method, there are no
spurious forces to appear near interface between atom-
istic and ECM regions: forces on atoms in the atomistic
region near the atom/ECM interface are the same as those
of other atoms in the atomistic region, and the stresses of
a point in the ECM region near the atom/ECM interface
are the same as those of other points in the ECM region.

In general, the combined equations from the nonlinear
local Petrov-Galerkin formulation (26), and the atom-
istic governing equation (43) are solved simultaneously
by employing an incremental algorithm. At each incre-
mental load step, a standard Newton-Raphson procedure,
as described in Section 4 and 5 for MLPG and molecu-
lar mechanics respectively, is used. The total Lagrangean
method (T. L.) is employed in this paper.

7 Numerical Examples

This multiscale method can be generalized to multiaxial
problems. In this subsection, a planar problem is consid-
ered to demonstrate the method without loss of general-
ity. The formulations can be extended to more compli-
cated 3-D systems. The problem is of a graphene sheet
of one-atom thickness.

In this example, the Tersoff-Brenner potential [Tersoff
(1988), Brenner (1990)] is used for the energy associated
with the deformation of the atoms. It is given as a sum
over bonds as

0= [Vk(riy) —BVa(ry)]

I J(>1)

(62)

which has repulsive and attractive terms, respectively,

D) ]
u () D _/asp(r-r)

Vr(r1y) = 5-1)

(63)
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_ fu()DOS - fGp(r-r)

v, 4
A (r1y) S-1 64)
with the functions of the bond angle
— 1
B= 3 (Biy+Bir) (65)
-9
By=|1+ Y G(0yk)fix (’”11()] (66)
K(#1T)
ct ct
G(®)=aps 1+-3— 0 67
(©) O{ dy  d3+(1+cosB)’ ©7

and the cut-off function which limits the rang of the in-
teractions

1, r<RW

r—RD
Ju(r) = %4’ %COS [(1je(<z>_RR<f>))‘] , R <r <R

0, r>R?
(68)

where the constants for carbon are

R© =139A, D =6.0ev, S=122,
B=2.1A"", §=05RD =17A, R® =2.0A,
ap=2.0813x107%, ¢y =330, dy=3.5

and 1 ev=1.602x 10"197J.

7.1 The full ECM method

To validate the ECM method, the same examples in
Chung, Namburu, and Henz (2004) are calculated in this
subsection. The example is that of a 2D graphene sheet of
one-atom thickness, the thickness of the sheet is taken to
be 3.4 A, which is the standard layer separation thickness
for graphite. At the equilibrium sate, which is taken to be
the reference frame, the nearest neighbor bond length is
b=1.4507 A. The displacement is prescribed on the right
edge of the graphite sheet, and the left edge is constrained
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in the Xj-direction and is free in the X,-direction. As
shown in Fig. 2, two loading cases are considered along
the right edge of the sheet: a uniform (Case I) and non-
uniform (Case II) displacement loading. Case II starts at
zero at the top end and linearly increasing to the bottom
end. Two sheets are considered: one has 66 atoms with
dimensions 1.25632 Ax11.6054 A, another has 1952
atoms with dimensions 75.3794 A x68.1819A.

X5

P

Figure 2 : Graphene under displacement load. Case I is a
uniform displacement loading and case II is non-uniform
displacement loading.

All the displacement loads are applied in increments.
Newton-Raphson iteration is performed in each load in-
crement until nodal displacement increments between it-
erative steps satisfy ||Au|| = vAu-Au < 10714, The
numerical results are compared with the corresponding
results from quenched molecular dynamics in Chung,
Namburu, and Henz (2004). We also consider the conver-
gence of this method by using varying node refinements.
For the 66-atom sheet, we use 4x4, 6x6, and 10x10
nodes. For the 1952-atom sheet, we use 8x8, 10x 10,
and 15x15 nodes. The nodes are distributed evenly. In
these calculations, the RBF2 is used. For 4x4 and 6x6
nodes, the radius of the trial function domain is taken
to be 1.8h, where h represents the distance between the
nodes. For 8 x8, 10x10, and 15x 15 nodes, the radius of
the trial function domain is taken to be 3.2A. For all these
node refinements, the radius of the test domain is kept to
be 0.83h.

Fig. 3 shows the strain energies for 66-atom sheet un-
der uniform displacement load. The results from the
quenched MD [Chung, Namburu, and Henz (2004)] are
also plotted in this figure, for comparison. The same con-
clusions as in Chung, Namburu, and Henz (2004) can be
reached: the results from this method agree with the re-
sults from the quenched MD very well at small strains;
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Figure 3 : Strain energy for 66-atom sheet under uniform
load.

when the edge displacement becomes larger (about 3A,
approximately 25% strain), the MLPG and the quenched
MD results diverge significantly, which is due to the
larger cut-off zone used in the quenched MD simulation
[Chung, Namburu, and Henz (2004)]. The results for
4x4, 6x6, and 10x10 nodes are nearly identical; thus
demonstrating the viability of the present method.

— —e —-quenched MD
ECM64
ECM 100
ECM 225

0.5 4

Strain energy (ev/atom)

-0.5

Edge displacement (Angstroms)

Figure 4 : Strain energy for 1952-atom sheet under uni-
form load.

Fig. 4 shows the strain energies for 1952-atom sheet un-
der uniform displacement load. The same trend as in
66-atom sheet can be found: the MLPG results and the
quenched MD results agree very well at small strains, and
show good agreement up to approximately 25% strain.
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Also, the results for the different node refinements are
nearly identical.

The comparison of strain energy between the MLPG
method and quenched MD under the non-uniform dis-
placement loads are shown in Fig. 5 and Fig. 6 for 66-
atom and 1952-atom sheet, respectively. Same as in uni-
form load case, the MLPG results and the quenched MD
results agree very well at small strains. Again, there are
no distinguishable differences among the different node
refinements.

0.6

— —e& - -quenched MD
ECM 16

ECM 36

ECM 100

0.5

04 1

03 1 e

0.2 4

Strain energy (ev/atom)

0.1 1

0 1 2 3 4
Bottom corner displacement (Angstroms)

Figure 5 : Strain energy for 66-atom sheet under non-
uniform load.

It should be pointed out that, compared with the method
in Chung, Namburu, and Henz (2004), the method devel-
oped in this paper is computationally faster. Similar to
Chung, Namburu, and Henz (2004), the numerical con-
vergence is defined as the point where doubling the num-
ber of displacement increments changes the final energy
of the system by less than 0.05%. In this method, the
number of displacement increment steps needed for the
convergence at 20% strain is 20, and at each increment
step, the number of the Newton-Raphson iterative steps is
less than 10. In Chung, Namburu, and Henz (2004), the
number of displacement increment steps is 200, and at
each increment step, the number of the Newton-Raphson
iterative steps is less than 10.

We also consider the stability of this method. The ef-
fects of the RBF shape parameters and the radius of the
trial and test function domain on the results are discussed
by using the 1952-atom sheet with 10x 10 nodes. The
dependences of the strain energy on the RBF shape pa-
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Figure 6 : Strain energy for 1952-atom sheet under non-
uniform load.

rameters are shown in Fig. 7 and Fig. 8 for uniform and
non-uniform displacement loads, respectively. In these
cases, the radius of the trial function domain is taken to
be 3.2h, and the radius of the test domain is taken to be
0.85h. These figures indicate that different shape param-
eters produce the same results, which demonstrate the vi-
ability of the present MLPG method again.

0.8

~—e - —RBF1
RBF2

o o
IS >

Strain energy (ev/atom)
o
S

Edge displacement (Angstroms)

Figure 7 : Effect of the RBF shape parameters on strain
energy for 1952-atom sheet under uniform load.

The effect of the radius of sub-domain (the support of
the test function) is shown in Fig. 9 for non-uniform dis-
placement load. Here, RBF2 is used. The radius of the
support of the trial function is 3.24, and the radius of the
test function domain is varying from 0.55/ to 0.95k. This
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Figure 8 : Effect of the RBF shape parameters on strain
energy for 1952-atom sheet under non-uniform load.

figure shows that in the range [0.55h, 0.95h], the present
method is almost independent of radius of the test func-
tion domain. The effect of the radius of the support of
the trial function is shown in Fig. 10 for non-uniform
displacement load. Here, RBF2 is used. The radius of
the support of the test function is 0.75k, and the radius
of the trial function domain is varying from 1.5k to 5.5h.
Fig. 10 states that the present method is insensitive to the
varying of the radius of the trial function domain from
1.5h to 5.5h. In general, the radius of the trial function
domain is recommended to take from 2.0k to 3.5k, due
to the computational cost. Once again, these results il-
lustrate that the present tangent stiffness MLPG method
is very stable, thus it is viable.

7.2 The ECM/molecular
method

mechanics multiscale

A 2D graphene sheet of one-atom thickness, with
72.8680 A length, 37.7182 A width, is studied in this
example. There are 1060 atoms in this sheet with a 2-
atom defect in the center. The molecular mechanics re-
gion is in the middle of the sheet, and two ECM regions
are on the two sides of the molecular mechanics region.
We study the behavior of the method for different lengths
of the molecular mechanics (MM) region. Two different
lengths of the MM region, 7.5380 A and 12.5634 A, are
considered. The smaller MM region contains 124 atoms,
and the larger one contains 196 atoms. The ECM region
is discretized into a set of nodes. Three sets of nodes
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Figure 9 : Effects of the radius of the test function do-
main on strain energy for 1952-atom sheet under non-
uniform load.
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Figure 10 : Effects of the radius of the trial function do-
main on strain energy for 1952-atom sheet under non-
uniform load.
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are used in this example: 176, 84, and 40 nodes. Fig.
11 is a part of the distribution of the atoms and nodes in
the reference frame for the 84-node case, where the solid
circles represent the atoms, and the open triangles rep-
resent the MLPG nodes. The nodes in the region B are
distributed evenly, although it is unnecessary. However,
on the interface of region A and B, the nodes are taken to
be the atoms, as show in Fig. 11. Actually, these nodes
are only used for the interpolation, their motions are still
governed by atomic balance equation (43). A uniform
displacement is prescribed on the left and right edges. In
the ECM region, RBF2 is used. The radius of the sup-
port of the test function is 0.83/, and the radius of the
trial function domain is 2.2h. We also consider different
radii of the support of the test and trial function domains;
and the same conclusion as the full ECM/MLPG method
can be reached. Hence, in this subsection, these results
are not listed again.

Figure 11 : The distribution of the atoms and nodes in
the reference frame.

The convergence of this multiscale method is studied by
using [, error in displacement, which is defined as

L(u—u,)

Rerr ==
12 (um)

where
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L(u)= <2 u12>

N is the number of the atoms in the MM region (only the
positions of the atoms in the MM region are includes in
the error measure), u are the displacements of the atoms
in the MM region from the multiscale method, u,, are
the displacements of the same atoms from a full molecu-
lar mechanics calculation, which is implemented by em-
ploying the tangent stiffness formulation as discussed in
Section 5. The results are shown in Fig. 12 for two dif-
ferent lengths of the MM region, 7.5380 A and 12.5634
A. In this example, the edge displacement is 4.554 A (ap-
proximately 6% strain along the edge). The distance be-
tween the nodes along X;-direction is normalized by the
distance between the nodes along X,-direction in 176-
nodes case. It is obvious that the larger MM region gives
less error in the displacements. For both sizes of the MM
region, the present method is convergent. The conver-
gence for the 12.5634 A MM region is 3.10, and that for
the 7.5380 A MM region is 2.91.

—e—7.54A MM region
—a— 12.56A MM region

0.1

L2 norm

0.001 T T T
0.5 1 1.5 2 25

Normalized distance between nodes (along X2)

Figure 12 : Convergence of the multiscale method for
different dimensions of an atom region.

Fig. 13 shows the variation of the /, error in displace-
ment during the whole loading procedure. Here, the MM
region is 12.5634 A, and 176 nodes are used in the ECM
region. From this figure, it is found that with the in-
crease of the edge displacement, the /, error increases.
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This is reasonable. For large edge displacements, the de-
formation near the defect becomes very large. Then, the
strain gradient also becomes very large in a bigger re-
gion than that for small edge displacement. In such a
situation, to get more accurate results, a larger MM re-
gion is needed (the ECM region is only appropriate for
the homogeneous deformation, where the strain gradient
is near zero). If the molecular mechanics region is large
enough, accurate enough results could be achieved. The
dimension of the MM region should be adjusted accord-
ing to the deformation. Hence, an adaptive scheme for
this multiscale method is necessary, which will be pre-
sented in an upcoming paper.

0.05

0.04 4

0.03 -

L2 norm

0.02 4

0.01 4

0.025 0.05 0.075 0.1 0.125 0.15

Edge displacement/Initial length

Figure 13 : The [, error in displacement during the whole
loading procedure.

Fig. 14 shows the deformation configuration of the de-
fected graphene sheet during the displacement procedure
(only the part around the defect is plotted), which is ob-
tained from the multiscale method. Here, the deforma-
tion is defined as e=edge displacement/initial length. Fig.
15 is the analogous full molecular mechanics solution.
These figures demonstrate that the multiscale method is
quite accurate, but its computational cost is far less than
that of the molecular mechanics.

In this example, for the multiscale method, the number of
displacement increment steps needed for the convergence
at 13% strain is 20, and at each increment step, the num-
ber of the Newton-Raphson iterative steps is less than 40;
for the full molecular mechanics method, the number of
displacement increment steps is 40, and at each incre-
ment step, the number of the Newton-Raphson iterative
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Figure 14 : Deformation configurations from the multiscale method.
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Figure 15 : Deformation configurations from the full molecular mechanics method.
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steps is from 100 to 3000. This multiscale method dra-
matically reduces the computational time, but it still has
the capability to represent the details of certain atoms.

8 Conclusion

A multiscale simulation technique, based on a combi-
nation of molecular mechanics and MLPG methods has
been implemented and tested. Good agreements between
this multiscale method and the full molecular mechanics
method are observed in numerical examples. The lin-
earized models are given for this multiscale method, as
well as the pure molecular mechanics method, when a
Newton-Raphson method is used. The tangent-stiffness
MLPG method is found to be very effective and stable in
multiscale simulations. This multiscale method dramati-
cally reduces the computational cost, but it still can pro-
vide reasonable accuracy in some regions of the model.
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