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A new Singular/Hypersingular MLPG (LBIE) method for 2D elastostatics

E. J. Sellountos 1 , V. Vavourakis 2 and D. Polyzos 3

Abstract: A new meshless local Petrov-Galerkin
(MLPG) type method based on local boundary inte-
gral equation (LBIE) considerations is proposed for the
solution of elastostatic problems. It is called singu-
lar/hypersingular MLPG (LBIE) method since the repre-
sentation of the displacement field at the internal points
of the considered structure is accomplished with the
aid of the displacement local boundary integral equa-
tion, while for the boundary nodes both the displace-
ment and the corresponding traction local boundary in-
tegral equations are employed. Nodal points spread
over the analyzed domain are considered and the mov-
ing least squares (MLS) interpolation scheme for the
approximation of the interior and boundary variables is
employed. The essential boundary conditions are satis-
fied via the free terms of the singular and hypersingu-
lar LBIEs, respectively. This means that, for any distri-
bution of nodal points, displacements and tractions can
be treated as independed variables, avoiding thus deriva-
tives of the MLS shape functions. On the local bound-
aries of the hypersingular LBIEs, tractions are avoided
with the aid of an auxiliary local integral equation explic-
itly derived in the present work. Strongly singular and
hypersingular integrals are evaluated directly and with
high accuracy by means of advanced integration tech-
niques. Two representative numerical examples that de-
mostrate the achieved accuracy of the proposed singu-
lar/hypersingular MLPG (LBIE) method are provided.
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1 Introduction

The Boundary Element Method (BEM) is a well known
and powerful numerical tool successfully used the last
decades for the solution of both static and dynamic elas-
tic problems [Beskos (1987); Beskos (1997); Agnatiaris
and Polyzos (2003)]. However, problems associated with
the unsymmetric and full-populated matrices of the fi-
nal systems of linear equations taken by BEM confines
the use of the method to problems dealing with struc-
tures where no a large number of elements is required for
their numerical treatment. On the other hand, the require-
ment of using the fundamental solution of the differential
equation that describes the problem of interest renders
a BEM formulation questionable when non-linear, non-
homogeneous and anisotropic elastic problems are con-
sidered.
The recently developed meshless method of Local
Boundary Integral Equations (LBIE) proposed by [Zhu,
Zhang, and Atluri (1998a)] seems to circumvent the
aforementioned problems offering simultaneously the
advantages of a meshless method where neither domain
nor surface discretization is required. In this LBIE
methodology a cloud of properly distributed nodal points
covering the domain of interest as well as the surround-
ing global boundary is employed instead of any bound-
ary or finite element discretization. All nodal points
belong in regular sub-domains (e.g. circles for two-
dimensional problems) centered at the corresponding
collocation points. When non-linear elastic problems
or elastic problems with body forces are considered,
the displacement field at these sub-domains is described
through the same surface integral equation used in the
conventional static elastic BEM accompanied by volume
integrals coming from the non-linear terms and/or the
body forces appearing in the constitutive equations. The
displacements at the local and global boundaries as well
as in the interior of the sub-domains are usually approx-
imated by a moving least square (MLS) scheme. Ow-
ing to regular shapes of the sub-domains, both surface
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and volume integrals are easily evaluated. The local na-
ture of the sub-domains leads to a final linear system
of equations the coefficient matrix of which is sparse
and not full populated as in the case of the conven-
tional BEM. At the same time with the LBIE method,
Atluri and Zhu proposed a new meshless method [Atluri
and Zhu (1998)], called Meshless Local Petrov-Galerkin
(MLPG) method, as an alternative to the Finite Element
Method (FEM). Depending on the test functions used in
the weak formulation of the MLPG method, Atluri and
co-workers developed six different MLPG methodolo-
gies numbered from one to six [Atluri and Shen (2002a);
Atluri and Shen (2002b); Atluri, Han, and Shen (2003)].
The MLPG4 method utilizes as test functions, the fun-
damental solution of the differential equation (or part
of the differential equation) of the problem, resulting
thus to a MLPG approach that is equivalent to the LBIE
method. Adopting this nomenclature, in the present work
the LBIE method will be called from now and further
MLPG (LBIE) method.
After the pioneering paper of [Zhu, Zhang, and Atluri
(1998a)], several works on the MLPG (LBIE) method
have been appeared in the literature. The most repre-
sentative are those of [Zhu, Zhang, and Atluri (1998a);
Zhu, Zhang, and Atluri (1998b); Zhu, Zhang, and Atluri
(1999); Qian, Han, and Atluri (2004)], for linear and
non-linear acoustic and potential problems, the works
of [Sladek, Sladek, and Atluri (2000a); Atluri, Sladek,
Sladek, and Zhu (2000); Sladek, Sladek, and Keer
(2000); Atluri, Han, and Shen (2003); Han and Atluri
(2004)] dealing with non-homogeneous and linear elastic
problems, the works of [Long and Zhang (2002); Sladek,
Sladek, and Mang (2002a); Sladek, Sladek, and Mang
(2002b); Sladek, Sladek, and Mang (2003)] for plates,
the papers of [Sladek, Sladek, and Atluri (2001)] and
[Sladek, Sladek, Krivacek, and Zhang (2003)] concern-
ing thermoelastic and transient heat conduction prob-
lems, respectively, and the works of [Sladek and Sladek
(2003); Sladek, Sladek, and Bazant (2003)] for microp-
olar and non-local elastic problems. Details concern-
ing the numerical implementation of a LBIE, integra-
tion techniques and the representation of field variables
through meshless interpolation schemes can be found in
the works of [Atluri and Zhu (1998); Atluri, Kim, and
Cho (1999); Sladek, Sladek, and Keer (2000)]. Finally,
a comprehensive presentation on the application of the
LBIE method to different types of boundary value prob-
lems one can find in the review paper of [Sladek, Sladek,

and Atluri (2002)] and in the very recent book of [Atluri
(2004)].
Very recently, [Sellountos and Polyzos (2003); Sell-
ountos and Polyzos (2004a); Sellountos and Polyzos
(2004b)] proposed a new MLPG (LBIE) method for solv-
ing static, quasi-static and transient linear elastic prob-
lems. The new elements of this method as it is compared
to the corresponding ones proposed mainly by Atluri,
Sladek brothers and co-workers are (i) it employs either
the static or the frequency domain elastodynamic fun-
damental solution, (ii) on the global boundary displace-
ments and tractions are treated as independent variables,
avoiding thus derivatives of the MLS shape functions,
(iii) it utilizes relatively uniform distribution of nodal
points so that, in the global boundary, the MLS interpola-
tion scheme to posses δ-property [Gosz and Liu (1996)]
and the essential boundary conditions to be imposed di-
rectly on the fictitious nodal displacements and tractions,
(iv) the surface and volume integrals are evaluated accu-
rately with the aid of some practical and accurate tech-
niques and (v) the strongly singular integrals are com-
puted directly and with high accuracy by employing the
expansion technique of [Guiggiani and Casalini (1987)].
Although accurate, the above methodology appears the
problem of requiring a relatively uniform distribution
of nodal points throughout the analyzed domain. In
the present work a new version of the MLPG (LBIE)
method of [Sellountos and Polyzos (2003)], valid for any
distribution of points, is proposed. It is called singu-
lar/hypersingular MLPG (LBIE) method since the repre-
sentation of the displacement field at the internal points
of the considered structure is accomplished with the aid
of the displacement local boundary integral equation,
while for the boundary nodes both the displacement and
the corresponding traction local boundary integral equa-
tions are employed. The essential displacement and trac-
tion boundary conditions of the problem are satisfied via
the free terms of the singular and hypersingular local
boundary equations, respectively. For any distribution
of nodal points, displacements and tractions are treated
as independent variables, avoiding thus derivatives of
the MLS shape functions. On the local boundaries of
the hypersingular local boundary equations, tractions are
avoided with the aid of an auxiliary local integral equa-
tion explicitly derived in the framework of the present
work. The hypersingular integrals are evaluated directly
and with high accuracy by means of a direct integration
technique proposed by [Guiggiani, Krishnasamy, Rudol-
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phi, and Rizzo (1992); Guiggiani (1994)]. The paper is
organized as follows: in the next section the displace-
ment and traction local boundary integral equations are
presented. The MLS interpolation scheme used for the
representation of the unknown displacements and bound-
ary tractions is demonstrated in section 3. In the forth
section the numerical implementation of the proposed
methodology is explained. Finally, in section 5 the accu-
racy of the singular/hypersingular MLPG (LBIE) method
is demonstrated through two representative numerical ex-
amples.

2 Local Integral Equations

In this section the two local integral equations used
for the formulation of the proposed here Singu-
lar/Hypersingular LBIE method are explicitly derived.

2.1 Displacement Local Boundary Integral Equations

Consider a two-dimensional linear elastic domain of vol-
ume Ω with a smooth boundary Γ. Neglecting body
forces, the displacement field u at any point x satisfies the
well-known Navier-Cauchy equation [Timoshenko and
Goodier (1970)]

µ∇2u(x)+(λ+µ)∇∇ ·u(x) = 0 (1)

where λ and µ are the Lame constants and ∇ is the gra-
dient operator. The boundary conditions are assumed to
be

u(x) = u(x) ,x ∈ Γu

t(x) = t(x) ,x ∈ Γt
(2)

with u, t representing prescribed displacement and trac-
tion vectors, respectively, on the global boundary Γu ∪
Γt ≡ Γ.
The integral representation of the above described prob-
lem is [Brebbia and Dominguez (1989)]

au(x)+
∫

S
t̃∗ (x,y) ·u(y) dSy =∫

S
ũ∗ (x,y) · t(y) dSy (3)

where a = 1/2 for boundary points x and a = 1 for in-
ternal ones, u∗, t∗ are the fundamental displacement and
traction tensors, respectively, having the form [Brebbia

and Dominguez (1989)]

ũ∗ (x,y) = 1
2πµ

[
Ψ∗Ĩ−X∗ r̂⊗ r̂

]
(4)

t̃∗ (x,y) = − 1
2π

{(
X∗
r − dΨ∗

dr

)
(r̂ · n̂) Ĩ+

2
(

dX∗
dr − 2X∗

r

)
(r̂ · n̂) r̂⊗ r̂ +

(
X∗
r − dΨ∗

dr

)
n̂⊗ r̂−[

2ν
1−2ν

(
dΨ∗
dr − dX∗

dr − X∗
r

)− 2X∗
r

]
r̂⊗ n̂

}
(5)

with

Ψ∗ = 3−4ν
4(1−ν) ln 1

r

X∗ = − 1
4(1−ν)

(6)

where ν is the Poisson ratio, r̂ = (x−y)/ |x−y|, n̂ is the
outward unit normal vector to boundary Γ, Ĩ is the unit
tensor and the symbol ⊗ denotes dyadic product.
Since both u∗ and t∗ become singular only when y ap-
proaches x, it is easy to see one that the integral Eq.(3)
can also be written in the form

au(x)+
∫

∂Ωx∪Γx

t̃∗ (x,y) ·u(y) dSy =∫
∂Ωx∪Γx

ũ∗ (x,y) · t(y) dSy (7)

where ∂Ωx is the boundary of a small circle Ωx ⊂ Ω,
called support domain, centered at the field point x and
Γx is the part of Γ intersected by the subdomain Ωx, as
shown in Fig.1.
As it is explained in the work of [Atluri and Zhu (2000)],
the integral Eq.(7) can be further simplified by eliminat-
ing the unknown traction vectors defined on the circular
local boundaries ∂Ωx. This can be accomplished with the
aid of a companion solution ũc, as it is explained below.
Consider a regular function of r satisfying the following
boundary value problem:

Dyũc (x,y) = 0, y ∈ Ωx (8)

Dy ≡ µ∇2
y +(λ+µ)∇y∇y· (9)

ũc (x,y) = ũ∗ (x,y) , y ∈ ∂Ωx (10)

The solution of this problem is called companion solution
[Atluri and Zhu (2000)] and has the form [Sellountos and
Polyzos (2003)]

ũc (x,y) =
1

2πµ

[
ΨcĨ−Xc r̂⊗ r̂

]
(11)

with

Ψc = 1
4(1−ν)

[
5−4ν

2(3−4ν)

(
1− r2

r2
0

)
+(4ν−3) lnr0

]
Xc = − 1

4(1−ν)
r2

r2
0

(12)
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where r0 is the radius of the local circular subdomain Ωx

(see Fig.1).
Applying Betti’s reciprocal identity for the fields u and
ũc one obtains∫

Ωx

[Dyũc (x,y) ·u(y)− ũc (x,y) ·Dyu(y)]dVy =∫
∂Ωx∪Γx

[
t̃c (x,y) ·u(y)− ũc (x,y) · t(y)

]
dSy (13)

Making use of Eq.(8) and taking into account that ũc sat-
isfies the Navier-Cauchy Eq.(1), Eq.(13) is reduced to∫

∂Ωx∪Γx

ũc (x,y) · t(y)dSy =∫
∂Ωx∪Γx

t̃c (x,y) ·u(y)dSy (14)

On the other hand, it is easy to see one that Eq.(7) can be
written as

au(x)+
∫

∂Ωx∪Γx

t̃∗ (x,y) ·u(y) dSy =∫
∂Ωx∪Γx

ũc (x,y) · t(y) dSy +∫
∂Ωx∪Γx

[ũ∗ (x,y)− ũc (x,y)] · t(y) dSy (15)

In view of Eqs.(10) and (14), Eq.(15) leads to the follow-
ing set of local integral equations:

u(x)+
∫

∂Ωx

[
t̃∗ (x,y)− t̃c (x,y)

] ·u(x) dSy = 0 (16)

au(x)+
∫

∂Ωx∪Γx

[
t̃∗ (x,y)− t̃c (x,y)

] ·u(x) dSy =∫
Γx

[ũ∗ (x,y)− ũc (x,y)] · t(x) dSy (17)

where Eq.(16) represents the displacement local bound-
ary integral equation of an internal point whose support
domain does not intersect the global boundary Γ, while
Eq.(17) is referred to a boundary or internal point that its
circle ∂Ωx intersects Γ.

2.2 Traction Local Boundary Integral Equations

The traction vector t at a boundary point x can be ob-
tained by applying Hooke’s law on Eq.(7) and taking the
inner product with the unit vector n̂x being normal to the
global boundary Γ at point x, i.e.

a t(x)+
∫

∂Ωx∪Γx

p̃∗ (x,y) ·u(y) dSy =∫
∂Ωx∪Γx

ṽ∗ (x,y) · t(y) dSy (18)

Ω

Γ

x

∂Ωx

Ωx

x

r0

∂Ωx

Γx

x

r0

∂Ωx

Γx

Figure 1 : Local domains (support domains) for internal
and boundary nodes.

where the kernels ṽ∗ and p̃∗ have the form [Polyzos,
Tsinopoulos, and Beskos (1998); do Rego Silva (1994)]:

ṽ∗ (x,y) = 1
2π

{(
X∗
r − dΨ∗

dr

)[
n̂x ⊗ r̂ +(n̂x · r̂) Ĩ

]
+

2
(

dX∗
dr − 2X∗

r

)
(n̂x · r̂) r̂⊗ r̂−[

2ν
1−2ν

(
dΨ∗
dr − dX∗

dr − X∗
r

)− 2X∗
r

]
r̂⊗ n̂x

}
(19)

p̃∗ (x,y) = µ
2π [α1(r) (n̂y · r̂) n̂x ⊗ r̂+

α2(r) (n̂y · r̂) (n̂x · r̂) Ĩ+α2(r) (n̂y · r̂) r̂⊗ n̂x−
α3(r) (n̂y · r̂)(n̂x · r̂) r̂⊗ r̂ +α2(r) (n̂y · n̂x) r̂⊗ r̂+

α2(r) (n̂x · r̂) n̂y ⊗ r̂ +α1(r) (n̂x · r̂) r̂⊗ n̂y+
α4(r) (n̂y · n̂x) Ĩ+α4(r)n̂y ⊗ n̂x −α5(r)n̂x⊗ n̂y

]
(20)

where

α1(r) = 4
r

dX∗
dr − 8X∗

r +
4ν

1−2ν

(
d2X∗
dr2 − d2Ψ∗

dr2 + 1
r

dΨ∗
dr − 2X∗

r2

)
α2(r) = −d2Ψ∗

dr2 + 1
r

dΨ∗
dr + 3

r
dX∗
dr − 6X∗

r2

α3(r) = −4
(

d2X∗
dr2 − 5

r
dX∗
dr + 8X∗

r2

)
(21)

α4(r) = −2
r

dΨ∗
dr + 2X∗

r2

α5(r) = −4X∗
r2 − 8ν

1−2ν
(

1
r

dX∗
dr − 1

r
dΨ∗
dr + X∗

r2

)
+(

2ν
1−2ν

)2
(

d2Ψ∗
dr2 − d2X∗

dr2 − 2
r

dX∗
dr + 1

r
dΨ∗
dr

)
In order to get rid of the tactions defined on the lo-
cal boundary ∂Ωx, the following auxiliary local integral
equation, derived in Appendix, is exploited∫

∂Ωx∪Γx

p̃aux (x,y) ·u(x) dSy =∫
∂Ωx∪Γx

ṽaux (x,y) · t(x) dSy−∫
Ωx

b̃aux (x,y) ·u(y)dVy (22)



Singular/Hypersingular MLPG (LBIE) method for 2D elastostatics 39

where the kernels ṽaux, p̃aux and b̃aux are given in the
Appendix.
Subtracting Eq.(22) from Eq.(18) one obtains

a t(x)+
∫

∂Ωx∪Γx

[p̃∗ (x,y)− p̃aux (x,y)] ·u(x) dSy =∫
∂Ωx∪Γx

[ṽ∗ (x,y)− ṽaux (x,y)] · t(x) dSy−∫
Ωx

b̃aux (x,y) ·u(y)dVy (23)

Making use of the property of ṽaux (see Appendix)

ṽaux (x,y) = ṽ∗ (x,y) , y ∈ ∂Ωx (24)

the hypersingular local boundary integral Eq.(23) is fi-
nally written as

a t(x)+
∫

∂Ωx∪Γx

[p̃∗ (x,y)− p̃aux (x,y)] ·u(x) dSy =∫
Γx

[ṽ∗ (x,y)− ṽaux (x,y)] · t(x) dSy−∫
Ωx

b̃aux (x,y) ·u(y)dVy (25)

3 MLS approximation of displacements and trac-
tions

The Moving Least Squares (MLS) approximation is the
most widely used interpolation scheme in the mesh-free
numerical methods, appearing to date in the literature.
Details on the subject can be found in the papers of
[Lancaster and Salkauskas (1981); Krysl and Belytschko
(1997); Atluri, Kim, and Cho (1999)]. In this section the
MLS approximation is presented in brief.
Consider a set of properly distributed nodal points cov-
ering the boundary and the interior space of the analyzed
domain Ω. At each point x(k) corresponds a circular sub-
domain Ω(k) ⊂ Ω of radius r(k)

0 called support domain
of node x(k), as shown in Fig.2. For any given internal
or boundary point x, the support subdomains Ω( j) of the
adjacent nodes x( j), j = 1, . . ., n that contain the point x
define a non-circular subdomain Ω̂x = Ω(1) ∪ · · · ∪Ω(n)
called domain-of-definition of the MLS approximation
field at x. For any internal nodal point x( j) ∈ Ω(k) each
component ui(x), i = 1, 2 of the above function is ap-
proximated as

ui (x) = p(x) ·a(i) (x) (26)

with p being a vector the m components of which form
a complete basis of monomials of the spatial variables xi

and a(i) is a coefficient vector. The m unknown coeffi-
cients of a(i) are determined by minimizing the weighted
discrete L2-norm

Ji =
n

∑
j=1

w
(

x−x( j)
)[

p
(

x( j)
)
·a(i) (x)− ûi

(
x( j)

)]2

(27)

where ûi
(
x( j)) is the unknown fictitious nodal displace-

ment component at node x( j) and w
(
x−x( j)

)
is the

Gaussian weighted function [Atluri and Zhu (2000)].
The minimization of Ji leads to the linear relation:

Ã
(

x,x( j)
)
·a(i) (x) = B̃

(
x,x( j)

)
· û(i) (28)

where

û(i) =
[
ûi

(
x(1)) . . . ûi

(
x(n))]T

(29)

Ã
(

x,x( j)
)

=
n

∑
l=1

w
(

x−x(l)
)

p
(

x(l)
)
⊗p

(
x(l)

)
(30)

B̃
(

x,x( j)
)

=

⎧⎪⎨
⎪⎩

w
(
x−x(1))p

(
x(1))

...
w

(
x−x(n))p

(
x(n))

⎫⎪⎬
⎪⎭

T

(31)

If the Ã matrix is non-singular and n ≥ m then

a(i) (x) = Ã−1
(

x,x( j)
)
· B̃

(
x,x( j)

)
· û(i) (32)

Taking Eqs.(26) and (32) someone obtains the MLS ap-
proximant of the displacement field

ui (x) = p(x) · Ã−1
(

x,x( j)
)
· B̃

(
x,x( j)

)
· û(i) (33)

Thus, it is easy for one to see that the MLS approximation
of the displacement vector is

u(x) =
n

∑
j=1

φ j

(
x,x( j)

)
û

(
x( j)

)
(34)

where û
(
x( j)

)
is the unknown fictitious displacement

vector at node x( j) and

φ j

(
x,x( j)

)
=

m

∑
l=1

pl (x)
[
Ã−1

(
x,x( j)

)
· B̃

(
x,x( j)

)]
l j

(35)
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Eq.(34) represents the MLS approximation of the dis-
placement vector at the neighborhood of node x.
Besides the displacement vectors, in the present work
the traction vectors, defined at the points of the global
boundary Γ, are considered as independed variables of
the problem. Thus, their MLS approximation can be ac-
complished by means of the relation

t(x) =
n

∑
j=1

φ j

(
x,x( j)

)
t̂
(

x( j)
)

(36)

where the fictitious nodal tractions t̂
(
x( j)) are zero for

internal nodes and unknown vectors for the nodes ly-
ing on the boundary Γ. In other words, the approxi-
mation Eq.(36) utilizes all the nodal points belonging in
the domain-of-definition of x in order to define the shape
functions φ j

(
x,x( j)), it employs, however, only the trac-

tion vectors of the adjacent boundary nodes to approxi-
mate the traction vector at x.

ΩΓ x(k)

r(k)
0

Ω(k)

∂Ω(k)

Γ(k)

x(1)

x(2)

x(3)x(k)

Ω̂(k)

Ω(1)

Ω(2)

Ω(3)

Figure 2 : The circular domain-of-influence Ω(k) and the
non-circular domain of definition Ω̂(k) used for the ap-
proximation of the field at x(k).

4 Numerical implementation

In this section the numerical formulation of the proposed
singular/hypersingular LBIE method is presented. Con-
sider a set of N and M properly distributed points cov-
ering the internal domain Ω and the global boundary Γ,
respectively, of the analyzed elastic body.
As it is mentioned in the previous section, the displace-
ment LBIE (16) for an internal node x(k) with a support
domain Ω(k) belonging entirely to Ω is (see Figs.1 and 2)

u
(

x(k)
)

+
∫

∂Ω(k)

T̃∗
(

x(k),y
)
·u(y)dSy +

∫
Γ(k)

T̃∗
(

x(k),y
)
·u(y)dSy = 0 (37)

while for internal nodes the local domain of which inte-
sects with the global boundary Γ, their LBIE (17) has the
form

u
(

x(k)
)

+
∫

∂Ω(k)

T̃∗
(

x(k),y
)
·u(y)dSy +

∫
Γ(k)

T̃∗
(

x(k),y
)
·u(y)dSy =

∫
Γ(k)

Ũ∗
(

x(k),y
)
· t(y)dSy (38)

with the kernels Ũ∗, T̃∗ representing Ũ∗ = ũ∗ − ũc and
T̃∗ = t̃∗ − t̃c.
Expanding both u and t according to the MLS approxi-
mation scheme of Eqs.(34) and (36), Eqs.(37) and (38)
obtain the form

n

∑
j=1

φ j

(
x(k),x( j)

)
û
(

x( j)
)
+

n

∑
j=1

H̃(k, j) · û
(

x( j)
)

= 0 (39)

n

∑
j=1

φ j

(
x(k),x( j)

)
û
(

x( j)
)
+

n

∑
j=1

[
H̃(k, j) + F̃(k, j)

]
· û

(
x( j)

)
=

n

∑
j=1

G̃(k, j) · t̂
(

x( j)
)

(40)

where the tensors H̃(k, j), F̃(k, j), G̃(k, j) correspond to inte-
grals

H̃(k, j) =
∫

∂Ω(k)

T̃∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (41)

F̃(k, j) =
∫

Γ(k)

T̃∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (42)

G̃(k, j) =
∫

Γ(k)

Ũ∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (43)

For the k-th boundary node, both displacement and trac-
tion LBIEs, given by Eq.(17) and (25), respectively, are
employed in the present formulation. More precisely, af-
ter the expansion of u and t according to the MLS ap-
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proximation, Eqs.(17) and (25) are written as follows

1
2

[
ε̃u ·u

(
x(k)

)
+

(
Ĩ− ε̃u

) · n

∑
j=1

φ j

(
x(k),x( j)

)
û
(

x( j)
)]

+

n

∑
j=1

[
H̃(k, j) + F̃(k, j)

]
· û

(
x( j)

)
=

n

∑
j=1

G̃(k, j) · t̂
(

x( j)
)

(44)

and
1
2

[
ε̃t · t

(
x(k)

)
+

(
Ĩ− ε̃t

) · n

∑
j=1

φ j

(
x(k),x( j)

)
t̂
(

x( j)
)]

+

n

∑
j=1

[
K̃(k, j) + Ẽ(k, j) + B̃(k, j)

]
· û

(
x( j)

)
=

n

∑
j=1

D̃(k, j) · t̂
(

x( j)
)

(45)

where the tensors K̃(k, j), Ẽ(k, j), D̃(k, j), B̃(k, j) correspond
to integrals

K̃(k, j) =
∫

∂Ω(k)

P̃∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (46)

Ẽ(k, j) =
∫

Γ(k)

P̃∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (47)

D̃(k, j) =
∫

Γ(k)

Ṽ∗
(

x(k),y
)

φ j

(
y,x( j)

)
dSy (48)

B̃(k, j) =
∫

Ω(k)

b̃aux
(

x(k),y
)

φ j

(
y,x( j)

)
dVy (49)

with Ṽ∗ = ṽ∗ − ṽaux, P̃∗ = p̃∗ − p̃aux and

ε̃̃ε̃εu, t =
[

εu,t
1 0
0 εu, t

2

]
(50)

The Greek indicators εu, t
1 , εu, t

2 are equal to one for pre-
scribed displacement or traction components and equal
to zero when displacement or traction components are
unknown on Γ.
For all N internal nodes, Eq.(39) and Eq.(40) are col-
located while for the M boundary nodes Eq.(44) and
Eq.(45) are employed. Thus, a system of linear algebraic
equations is formed, i.e.

W̃I · û+ Q̃I · t̂ = 0, for internal nodes
W̃B · û+ Q̃B · t̂ = f, for boundary nodes

(51)

where û and t̂ vectors denote the fictitious nodal displace-
ment and traction vectors, respectively, while the vec-
tor f contains the free displacement and traction terms
of Eqs.(44) and (45), respectively, which correspond to
the prescribed displacements and tractions on the global
boundary Γ. The matrix W̃I contains the H̃(k, j), F̃(k, j)

tensors and the MLS interpolation functions of the dis-
placements appearing in Eqs.(39) and (40). The matrix
Q̃I contains only the G̃(k, j) tensor, while the matrix W̃B

contains the tensors: H̃(k, j), F̃(k, j), K̃(k, j), Ẽ(k, j), B̃(k, j)

and the MLS interpolation functions of the unknown dis-
placements in Eq.(44). Finally, the matrix Q̃B contains
the G̃(k, j), D̃(k, j) tensors and the MLS interpolation func-
tions of the unknown tractions in Eqs.(45).
In view of Eqs.(51), the following final system is ob-
tained

Ã · z = b (52)

with the vector z comprizing all the unknown fictitious
displacements and tractions, while the vector b contains
the components of the prescribed vector f.
This system can be solved numerically through a typical
LU decomposition solver. As soon as, all the nodal ficti-
tious displacements and tractions are calculated, the cor-
responding nodal values are retrieved through Eqs.(34),
(36).
The integrals H̃(k, j) and K̃(k, j) are always regular since
the collocation point x(k) never gets close to the source
point y ∈ ∂Ω(k). Similarly, volume integrals B̃(k, j) are
regular due to the regular nature of the kernel b̃aux. On
the contrary, integrals G̃(k, j) are weakly singular, F̃(k, j)

and D̃(k, j) are strongly singular in the sense of Cauchy
Principal Value, while integrals Ẽ(k, j) appear a hyper-
singular behaviour. In the present work all the strongly
singular and hypersingular integrals are evaluated with
high accuracy by means of the advanced direct inte-
gration techniques proposed by [Guiggiani and Casalini
(1987); Guiggiani, Krishnasamy, Rudolphi, and Rizzo
(1992); Guiggiani (1994)]. Details on the evaluation of
regular, singular, hypersingular and volume integrals can
be found in the recent work of [Sellountos and Polyzos
(2003)].
As soon as the fictitious displacements û and the ficti-
tious traction t̂ vectors defined at the global boundary Γ
are evaluated, the MLS expansion schemes of Eqs.(34)
and (36) are employed for the determination of the real
displacement and traction vectors.
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5 Examples

In this section, the accuracy of the proposed here Singu-
lar/Hypersingular LBIE method is demonstrated with the
solution of two representative static elastic problems.
The first problem deals with a cylinder, of inner and outer
radius a = 1.2 and b = 2.0, respectively, subjected to a
uniform internal pressure pi = 100. The material proper-
ties are taken E = 103 for Young modulus and ν = 0.25
for Poisson ratio. Because of the symmetry only a quar-
ter part of the cylinder is analyzed. In order to have a
comparison with the MLPG (LBIE) method proposed re-
cently by [Sellountos and Polyzos (2003)], the model is
treated with 353 points, uniformly distributed along the
boundary and inside to the body (Fig.3). The radii of the
support domains is taken to be the same for all points
and equal to 0.14177. The analytical radial displace-
ments and stresses of this problem, expressed in polar
coordinates (r,θ), is given by [Timoshenko and Goodier
(1970)]

ur = pi
a2b2

b2 −a2

1+ν
E

[
1
r

+
(1−2ν) r

b2

]
(53)

σrr = pi
a2b2

b2 −a2

(
1
b2 −

1
r2

)
(54)

The radial displacement and the corresponding traction
field on the side θ = 0o of the quarter part of the cylinder
are numerically evaluated with both the MLPG (LBIE)
method proposed by [Sellountos and Polyzos (2003)]
and the singular/hypersingular MLPG (LBIE) technique
demonstrated in the present paper. The obtained results
are depicted in Figs.4 and 5. As it is evident, the aggre-
ment with the analytical solution is very good for both the
MLPG (LBIE) methodologies, except fot a small region
near to the corner. This is due to the fact that there is no
point exactly on the corner but two nodes from both sides
and close each other. Thus, at these two points problems
related to nearly singlularities are observed.
The second problem conserns a 10×10 plate with a cir-
cular hole of radius a = 1 at the center, subjected to a
uniform tensile load p = 10. The material properties
are assumed to be E = 2.4×103 and ν = 0.25. Due to
the symmetry, only the upper right quadrant of the plate
is analyzed. For the solution of this problem 92 non-
uniformly distributed points are considered (Fig.6). The
support domain of each point is taken in such a way so
as a well-defined integration star to be ensured [Liszka,
Duarte, and Tworzydlo (1996)]. The exact solutions for

displacement and stresses in polar coordinates are [Tim-
oshenko and Goodier (1970)]

ux = P
1+ν

E

[
(1−ν)r cosθ+

a2

2r
cos3θ+

2(1−ν)
a2

r
cosθ− a4

2r3 cos3θ
]

(55)

uy = P
1+ν

E

[
−νr sinθ+

a2

2r
sin3θ−

(1−2ν)
a2

r
sinθ− a4

2r3 sin3θ
]

(56)

σxx = P

[
1+

3a4

2r4 cos4θ−

a2

r2

(
3
2

cos2θ+cos 4θ
)]

(57)

τxy = P

[
3a4

2r4 sin4θ− a2

r2

(
1
2

sin2θ+ sin4θ
)]

(58)

σyy = P

[
a2

r2

(
cos4θ− 1

2
cos2θ

)
− 3a4

2r4 cos4θ
]

(59)

The radial displacement ur at θ = 45o and the normal
traction tx for θ = 90o are calculated and depicted in
Figs.7 and 8, respectively. The obtained results are com-
pared to the corresponding ones as well as to those taken
by the MLPG (LBIE) method of [Sellountos and Polyzos
(2003)]. It is observed that, except the corners, the ag-
grement between the numerical and analytical results is
very good, with the results of the singular/hypersingular
MLPG (LBIE) method being better than those provided
by the MLPG (LBIE) methodology of [Sellountos and
Polyzos (2003)].

6 Conclusions

A new singular/hypersingular MLPG (LBIE) method for
solving two dimensional problems has been proposed. It
employs the displacement local boundary integral equa-
tion for the internal points, while for the boundary ones
utilizes both the displacement and the corresponding
traction local boundary integral equations. Thus, the es-
sential displacement and traction boundary conditions of
the problem are imposed by means of the free terms of
the singular and hypersingular local boundary equations,
respectively. This means that, for any distribution of
nodal points, displacement and tractions can be treated
as independent variables, avoiding thus calculating the
derivatives of the MLS shape functions for the approxi-
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Figure 3 : Quarter cylinder being discretized with a uni-
form distribution of 353 nodes.

Figure 4 : Analytical versus numerical results of dis-
placements for a 353 node distribution in the quarter
cylinder at y = 0 and at θ = 0.

mation of traction vectors.
Comparing the MLPG (LBIE) method of [Sellountos and
Polyzos (2003)] with the present singular/hypersingular
MLPG (LBIE) method, one can say that both method-
ologies provide accurate results for a uniform distribu-
tion of nodal points, while for non-uniform distributions
the proposed here singular/hypersingular MLPG (LBIE)
methodology is in general more accurate.

Figure 5 : Analytical versus numerical results of trac-
tions for a 353 node distribution in the quarter cylinder at
y = 0 and at θ = 0.

Figure 6 : Geometry and node distribution of the 92-
node model of the plate with a hole.
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Figure 7 : Analytical versus numerical results of dis-
placements for the 92-node distribution in the plate with
a circular hole at θ = π/4

Figure 8 : Analytical versus numerical results of trac-
tions for the 92-node distribution in the plate with a cir-
cular hole at θ = π/2
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Appendix A: Auxiliary Local Integral Equation

In this appendix the auxiliary local integral equation,
used for the elimination of tractions of Eq.(18) on the
local boundary ∂Ωx, is explicitly derived.
Consider the displacement tensor function

ũaux =
1

2πµ

(
Ψaux Ĩ−Xaux r̂⊗ r̂

)
(60)

where Ψaux and Xaux are regular functions of r, i.e.

Ψaux = ∑n Anrn, n ≥ 2
Xaux = ∑n Bnrn, n ≥ 2

(61)

Applying Betti’s reciprocal identity for the displacement
vector u and the tensor ũaux in the support domain Ωx,
one obtains∫

Ωx

[ũaux (x,y) ·Dyu(y)−Dyũaux (x,y) ·u(y)−]dVy =∫
∂Ωx∪Γx

[
ũaux (x,y) · t(y)− t̃aux (x,y) ·u(y)

]
dSy (62)

where the differential operator Dy is given by Eq.(9) and

t̃aux = − 1
2π

{(
Xaux

r − dΨaux

dr

)
(r̂ · n̂) Ĩ+(

Xaux

r − dΨaux

dr

)
n̂⊗ r̂−[

2ν
1−2ν

(
dΨaux

dr − dXaux

dr − 2Xaux

r

)− 2Xaux

r

]
r̂⊗ n̂+

2
(

dXaux

dr − 2Xaux

r

)
(r̂ · n̂) r̂⊗ r̂

}
(63)

Taking into account that

Dyu(y) = 0 (64)

and

Dyũaux (x,y) = B̃aux (x,y) (65)

where

B̃aux =
1

2π
[
Qaux Ĩ−Raux r̂⊗ r̂

]
(66)

with

Qaux = d2Ψaux

dr2 + 1
r

dΨaux

dr − 2Xaux

r2 +
1

1−2ν
(

1
r

dΨaux

dr − 1
r

dXaux

dr − Xaux

r2

)
Raux = −d2Xaux

dr2 − 1
r

dXaux

dr + 4Xaux

r2 +
1

1−2ν

(
d2Ψaux

dr2 − 1
r

dΨaux

dr − d2Xaux

dr2 + 2Xaux

r2

) (67)

the integral Eq.(62) obtains the form∫
∂Ωx∪Γx

[
t̃aux (x,y) ·u(y)− ũaux (x,y) · t(y)

]
dSy =∫

Ωx

B̃aux (x,y) ·u(y) dVy (68)

The application of the operator n̂x ·∇x on Eq.(68) yields∫
∂Ωx∪Γx

[p̃aux (x,y) ·u(y)− ṽaux (x,y) · t(y)]dSy =∫
Ωx

b̃aux (x,y) ·u(y) dVy (69)

where

ṽaux (x,y) = 1
2π

{(
Xaux

r − dΨaux

dr

)[
n̂x ⊗ r̂ +(n̂x · r̂) Ĩ

]−[
2ν

1−2ν
(

dΨaux

dr − dXaux

dr − Xaux

r

)− 2Xaux

r

]
r̂⊗ n̂x+

2
(

dXaux

dr − 2Xaux

r

)
(n̂x · r̂) r̂⊗ r̂

}
(70)

p̃aux (x,y) = µ
2π [β1(r) (n̂y · r̂) n̂x ⊗ r̂+

β2(r) (n̂y · r̂) (n̂x · r̂) Ĩ+β2(r) (n̂y · r̂) r̂⊗ n̂x−
β3(r) (n̂y · r̂)(n̂x · r̂) r̂⊗ r̂ +β2(r) (n̂y · n̂x) r̂⊗ r̂+

β2(r) (n̂x · r̂) n̂y ⊗ r̂ +β1(r) (n̂x · r̂) r̂⊗ n̂y+
β4(r) (n̂y · n̂x) Ĩ+β4(r)n̂y⊗ n̂x −β5(r)n̂x⊗ n̂y

]
(71)

with

β1(r) = 4
(

1
r

dXaux

dr − 2Xaux

r

)
+

4ν
1−2ν

(
d2Xaux

dr2 − d2Ψaux

dr2 + 1
r

dΨaux

dr − 2Xaux

r2

)
β2(r) = −d2Ψaux

dr2 + 1
r

dΨaux

dr + 3
r

dXaux

dr − 6Xaux

r2

β3(r) = −4
(

d2Xaux

dr2 − 5
r

dXaux

dr + 8Xaux

r2

)
(72)

β4(r) = 2
(

Xaux

r2 − 1
r

dΨaux

dr

)
β5(r) = −4Xaux

r2 − 8ν
1−2ν

(
1
r

dXaux

dr − 1
r

dΨaux

dr + Xaux

r2

)
+(

2ν
1−2ν

)2
(

d2Ψaux

dr2 − d2Xaux

dr2 − 2
r

dXaux

dr + 1
r

dΨaux

dr

)
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and

b̃aux (x,y) = dQaux

dr (n̂x · r̂) Ĩ+ Raux

r (r̂⊗ n̂x + n̂x ⊗ r̂)+(
dRaux

dr − 2Raux

r

)
(n̂x · r̂) r̂⊗ r̂ (73)

On the local boundary ∂Ωx, the tensor function ṽaux is
imposed to satisfy the condition

ṽaux (x,y) = ṽ∗ (x,y) , y ∈ ∂Ωx (74)

where ṽ∗ the kernel provided by Eq.(19).
In view of Eq.(19) and Eqs.(61), (70), it is easy to find
one that Eq.(74) is satisfied when

A2 = − 3
4(1−ν)

1
r2

0

A3 = 1
2(1−ν)

1
r3

0

A4 = A5 = · · ·= 0
B2 = − 3−4ν

8(1−ν)
1
r2

0

B3 = B4 = · · ·= 0

(75)

Thus, the specific values of Xaux and Ψaux, i.e.

Xaux = − 3
4(1−ν)

r2

r2
0
+ 1

2(1−ν)
r3

r3
0

Ψaux = − 3−4ν
8(1−ν)

r2

r2
0

(76)

in conjuction with Eq.(69), form the auxiliary local
boundary equation used in section 2.2 for the elimination
of tractions on the local boundary ∂Ωx.




