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An Implicit Integration Scheme for a Nonisothermal Viscoplastic, Nonlinear
Kinematic Hardening Model

M. Akamatsu 1, K. Nakane 2, and N. Ohno 1,2

Abstract: In this study, a fully implicit integration
scheme is developed for a nonisothermal viscoplastic,
nonlinear kinematic hardening model. Nonlinear dy-
namic recovery in addition to strain hardening is assumed
for the evolution of multiple back stresses so that ratch-
eting and mean-stress relaxation can be properly simu-
lated. Temperature dependence of back stress evolution
is also taken into account in the constitutive model. By
discretizing a set of such advanced constitutive relations
using the backward Euler method, a tensor equation is
derived and linearized to iteratively achieve the implicit
integration of constitutive variables. The fully implicit
integration scheme developed is programmed as a sub-
routine in a finite element code by assuming a power-law
of dynamic recovery. Nonisothermal numerical exam-
ples are then given to demonstrate the performance of
the implicit integration scheme.

keyword: Implicit integration, Viscoplasticity, Nonlin-
ear kinematic hardening, Nonisothermal loading.

1 Introduction

Engineering has been demanding the implementation of
advanced constitutive models in finite element methods.
This needs to be done in accordance with the frame-
work adopted for solving a global system of nonlin-
ear, nodal force equilibrium equations. The Newton-
Raphson method is usually employed to solve the nonlin-
ear, nodal force equilibrium equations, since this method
allows quadratic convergence. Then, the so-called con-
sistent tangent modulus, i.e., the tangent derivative of
discretized constitutive relations, is necessary to real-
ize the quadratic convergence afforded by the Newton-
Raphson method [Simo and Taylor (1985, 1986); Simo
and Hughes (1998)]. Moreover, appropriate schemes for

1 Department of Mechanical Science and Engineering, Nagoya Uni-
versity, Chikusa-ku, Nagoya 464-8603, Japan

2 Department of Computational Science and Engineering, Nagoya
University, Chikusa-ku, Nagoya 464-8603, Japan

implicitly integrating stress, such as return mapping al-
gorithms, are desired to attain the computational stability
for large increments in finite element analysis [Simo and
Taylor (1985, 1986); Simo and Hughes (1998)]. The im-
plicit formulation based on consistent tangent operators
is also effective for boundary element methods [Miers
and Telles (2004)].

One of the well-known models of cyclic plasticity is the
nonlinear kinematic hardening model proposed by Arm-
strong and Frederick (1966), which was also derived by
Watanabe and Atluri (1986) using the endochronic the-
ory. This model is highly rated, because it is based on
a physical mechanism of strain hardening and dynamic
recovery, and because it has the capability of represent-
ing well the shapes of stress-strain hysteresis loops. The
Armstrong and Frederick model, however, has a seri-
ous drawback with respect to simulating ratcheting and
mean-stress relaxation, which are fundamental phenom-
ena in cyclic plasticity: their model may overpredict
ratcheting up to a factor of ten [Ohno (1990)]. This
problem can be overcome by reducing the effect of dy-
namic recovery relative to that of strain hardening, as
was demonstrated by Chaboche (1991), Ohno and Wang
(1993, 1994), Jiang and Sehitoglu (1996), and so forth.
Hence, it is necessary to consider a more sophisticated
form of nonlinear kinematic hardening than the Arm-
strong and Frederick model.

There have been two distinctive approaches for the im-
plicit integration of nonlinear kinematic hardening mod-
els based on strain hardening and dynamic recovery. One
is to reduce discretized constitutive relations to a non-
linear scalar equation. Such a nonlinear scalar equa-
tion was derived for the Armstrong and Frederick model
by Hartmann and Haupt (1993) and was recently em-
ployed to implement more sophisticated nonlinear kine-
matic hardening models by Kobayashi and Ohno (2002).
This approach was applied to rate-dependent models
[Hartmann, Lührs and Haupt (1997); Kobayashi et al.
(2003)]. It is however noted that the nonlinear scalar
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equation becomes seriously complicated if dynamic re-
covery is nonlinear, resulting in inapplicability of the
Newton-Raphson method to solving it [Kobayashi and
Ohno (2002); Kobayashi et al. (2003)]. The other ap-
proach is to linearize discretized constitutive relations so
that the plastic corrector in return mapping can be itera-
tively determined. This linearization approach was intro-
duced for the Armstrong and Frederick model by Doghri
(1993) and Sawyer, Wang and Jones (2001) and then ex-
tended to a specific case of weighted dynamic recovery
by Hu and Wang (2003), yet restricted to isothermal rate-
independent models. It is therefore of interest to employ
the linearization approach for implementing nonisother-
mal rate-dependent, nonlinear kinematic hardening mod-
els.

In this study, using the linearization approach mentioned
above, a fully implicit integration scheme is developed
for a nonisothermal viscoplastic, nonlinear kinematic
hardening model with multiple back stresses. Nonlin-
ear dynamic recovery is assumed for the evolution of
each back stress to simulate well ratcheting and mean-
stress relaxation. Temperature dependence of back stress
evolution is also taken into account, as was discussed by
Chaboche (1986), Ohno and Wang (1991), and McDow-
ell (1992). A set of such sophisticated constitutive rela-
tions are discretized using the backward Euler method.
A resulting tensor equation is linearized by introducing
the derivatives of discretized inelastic strain and multiple
back stresses so that the implicit integration of constitu-
tive variables can be iteratively achieved. The implicit
integration scheme developed is programmed as a sub-
routine in a finite element code by assuming the nonlin-
earity of dynamic recovery suggested by Ohno and Wang
(1993, 1994). Nonisothermal numerical examples are
then given to verify the implicit integration scheme.

Throughout the paper, ( · ) indicates the differentiation
with respect to time t, ( : ) the inner product between ten-
sors, ⊗ the tensor product, and ‖‖ the Euclidean norm of
second rank tensors, i.e., ‖x‖ = (x : x)1/2.

2 Constitutive relations

We deal with elastic-viscoplastic materials which are ini-
tially isotropic and subjected to nonisothermal loading.
Let us assume that strain ε is small and consists of ther-
mal and mechanical parts, and that the mechanical part
εm is additively further decomposed into elastic and vis-
coplastic parts, εe and εp. Moreover, it is assumed that εe

obeys Hooke’s law, while the temporal development of
εp is viscoplastically driven by effective stress

y = s−a, (1)

where s and a denote the deviatoric parts of stress σ and
back stress α, respectively. We thus consider the follow-
ing elastic and viscoplastic equations, in which tempera-
ture T appears as a state variable:

σ = De(T ) : (εm −εp), (2)

ε̇p =
√

3
2 g(y, p, T )n with n = y

/‖y‖, (3)

where De indicates elastic stiffness, g is a viscoplastic
function, and y and p denote the equivalent effective
stress and accumulated inelastic strain defined, respec-
tively, as

y =
√

3
2 ‖y‖ , (4)

ṗ =
√

2
3 ‖ε̇p‖ . (5)

Here, it is noted that neither stress rate nor temperature
rate can be, in general, an argument of the viscoplastic
function g [Lemaitre and Chaboche (1990)].

For back stress, let us assume the following: (1) back
stress consists of several parts, i.e., α = ∑α(i) [Chaboche
and Rousselier (1983)], (2) the evolution of each part is
caused by strain hardening and nonlinear dynamic re-
covery [Ohno and Wang (1993, 1994); Ohno (1998)],
and (3) this evolution has dependence on temperature but
no dependence on temperature history [Ohno and Wang
(1991); McDowell (1992)]. We thus consider

a = ∑ r(i)(T )b(i), (6)

ḃ(i) = 2
3ξ(i) ε̇p −ζ(i)b(i) ṗ(i), (7)

where r(i)(T ) expresses the temperature dependence of
back stress evolution, b(i) is a back stress compensat-
ing for temperature dependence, ξ(i) and ζ(i) are the
temperature-independent material parameters for strain
hardening and dynamic recovery, respectively, and ṗ(i) is
an inelastic strain rate causing the dynamic recovery of
b(i). Here and from now on, the superscript (i) will indi-
cate the concern with the ith part of back stress.
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As seen from Eqs. 6 and 7, b(i) is defined up to a numer-
ical factor. This allows us to take ξ(i) = ζ(i) without loss
of generality, so that Eq. 7 becomes

ḃ(i) = ζ(i) ( 2
3 ε̇p −b(i) ṗ(i)

)
. (8)

The nonlinearity of dynamic recovery is incorporated in
ṗ(i) so that ratcheting and mean-stress relaxation can be
properly simulated. According to Ohno and Wang (1993,
1994), ṗ(i) can be written as

ṗ(i) = (b
(i)

)k(i)
ṗ, (9)

where k(i) is a material parameter for the evolution of b(i),
and

b
(i)

=
√

3
2

∥∥∥b(i)
∥∥∥ . (10)

Then, if k(i) = 0, we have ṗ(i) = ṗ, so that Eq. 8 reduces
to the Armstrong and Frederick model; if k(i) = ∞, Eqs. 8

and 9 render ṗ(i) nonzero only in a critical state of b
(i)

=
1, leading to the multilinear model derived by Ohno and
Wang (1993). Incidentally, these models were discussed
using a group-theoretical approach by Liu (2005).

3 Backward Euler discretization

Let us consider the step from a state n to n + 1. Let us
signify the increments in the step by a prefix ∆, and let us
denote the constitutive variables at n and n+1 by the sub-
scripts n and n + 1, respectively. Then, using the back-
ward Euler method, the constitutive relations given in the
preceding section are discretized as

yn+1 = sn+1−an+1, (11)

σn+1 = De(Tn+1) :
(
εm

n+1−εp
n+1

)
, (12)

εp
n+1 = εp

n +∆εp
n+1, (13)

∆εp
n+1 =

√
3
2g(yn+1, pn+1, Tn+1)nn+1∆tn+1, (14)

yn+1 =
√

3
2 ‖yn+1‖ , (15)

nn+1 =
√

3
2 yn+1

/
yn+1, (16)

pn+1 = pn +∆pn+1, (17)

∆pn+1 =
√

2
3

∥∥∆εp
n+1

∥∥ , (18)

an+1 = ∑ r(i)(Tn+1)b(i)
n+1, (19)

b(i)
n+1 = θ(i)

n+1

(
b(i)

n + 2
3ζ(i)∆εp

n+1

)
, (20)

θ(i)
n+1 =

[
1+ζ(i)(b

(i)
n+1)

k(i)
∆pn+1

]−1
, (21)

b
(i)
n+1 =

√
3
2

∥∥∥b(i)
n+1

∥∥∥ , (22)

where ∆tn+1 = tn+1− tn.

4 Implicit integration

In this section, an implicit integration scheme is devel-
oped for the elastic-viscoplastic model described in Sec-
tion 2. The problem considered here is stated as follows:
Given ∆εm

n+1, ∆tn+1 and ∆Tn+1 in addition to all constitu-
tive variables at n, find σn+1 satisfying the discretized
constitutive relations, Eqs. 11-22. The so-called lin-
earization approach is employed to iteratively determine
σn+1.

4.1 Linearization and local iterations

Substitution of Eq. 13 into Eq. 12 gives

σn+1 = σ∗
n+1 −De

n+1 : ∆εp
n+1, (23)

where De
n+1 = De(Tn+1), and σ∗

n+1 denotes elastic tenta-
tive stress

σ∗
n+1 = De

n+1 : (εm
n+1−εp

n). (24)

The deviatoric part of Eq. 23 is

sn+1 = s∗n+1− Id : De
n+1 : ∆εp

n+1, (25)

where s∗n+1 is the deviatoric part of σ∗
n+1, and Id indicates

the following deviatoric operator defined in terms of the
fourth and second rank unit tensors, I and 1:

Id = I− 1
3 (1⊗1). (26)

Then, subtracting an+1 from the both sides in Eq. 25, and
using Eqs. 11 and 19, we have

yn+1 = s∗n+1− Id : De
n+1 : ∆εp

n+1 −∑ r(i)
n+1b(i)

n+1, (27)

where r
(i)
n+1 = r(i)(Tn+1).
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The above equation can be regarded as a nonlinear tensor
equation to determine yn+1, because ∆εp

n+1 and b(i)
n+1 non-

linearly depend on yn+1 and ∆εp
n+1, respectively, as seen

from Eqs. 14-18 and 20-22. Here it is noted that εm
n+1,

Tn+1 and ∆tn+1 are known, since they are prescribed in
the integration from n to n+1, as aforementioned. Thus,
let us linearize Eq. 27 as

yn+1 +dyn+1

= s∗n+1− Id : De
n+1 : (∆εp

n+1 +d∆εp
n+1)

−∑ r(i)
n+1(b(i)

n+1 +db(i)
n+1), (28)

and let us suppose that d∆εp
n+1 and db(i)

n+1 are represented
as

d∆εp
n+1 = Pn+1 : dyn+1, (29)

db(i)
n+1 = H(i)

n+1 : d∆εp
n+1, (30)

where Pn+1 and H(i)
n+1 are fourth rank tensors (see Section

6). Substitution of Eqs. 29 and 30 into Eq. 28 gives

An+1 : dyn+1 = λn+1, (31)

where

An+1 = I+
(

Id : De
n+1 +∑ r(i)

n+1H(i)
n+1

)
: Pn+1, (32)

λn+1 = s∗n+1−yn+1− Id : De
n+1 : ∆εp

n+1−∑ r(i)
n+1b(i)

n+1.

(33)

By solving Eq. 31 for dyn+1, yn+1 is updated to yn+1+
dyn+1 so that yn+1 can be iteratively determined. This
iteration method is expected to have quadratic conver-
gence, because it is based on the linearization as in the
Newton-Raphson method. Thus, σn+1 can be computed
after iteratively determining yn+1 as well as ∆εp

n+1 and

b(i)
n+1 as follows:

(1) Estimate the initial value of yn+1 (Section 4.2).

(2) Evaluate ∆εp
n+1 by inputting yn+1 to Eqs. 14-18.

(3) Evaluate b(i)
n+1 by inputting ∆εp

n+1 to Eqs. 20-22.

(4) Compute Pn+1 and H(i)
n+1 using Eqs. 52 and 59.

(5) Solve Eq. 31 for dyn+1.

(6) If dyn+1 satisfies the convergence condition for
yn+1, go to step (8). 3

(7) Update yn+1 to yn+1+dyn+1, and go to step (2).

(8) Compute σn+1 using Eqs. 23 and 24.

In step (2), ∆pn+1 needs to be evaluated using the fol-
lowing equation, if pn+1 appears in the function g in Eq.
14:

∆pn+1 = g(yn+1, pn +∆pn+1, Tn+1)∆tn+1. (34)

Moreover, if k(i) �= 0, it is necessary to figure b
(i)
n+1 in

advance in step (3) using the following equation based
on Eqs. 20-22:

[
1+ζ(i)(b

(i)
n+1)

k(i)
∆pn+1

]
b
(i)
n+1 =

√
3
2

∥∥∥b(i)
n + 2

3ζ(i)∆εp
n+1

∥∥∥ .

(35)

The iterations based on steps (1)-(8), which are per-
formed at each integration point in finite elements, will
be referred to as local iterations henceforth, while the it-
erations to solve nodal force equilibrium equations will
be called global iterations.

4.2 Initial value in local iterations

The initial value of yn+1, y0
n+1, in local iterations is es-

timated by assuming ∆εm
n+1 to be either elastic or vis-

coplastic. If ∆εm
n+1 is assumed to be elastic, we have

y0e
n+1 = s∗n+1−an(Tn+1), (36)

where s∗n+1 is given by the deviatoric part of Eq. 24, and

an(Tn+1) = ∑r(i)(Tn+1)b(i)
n . On the other hand, if ∆εm

n+1
is completely viscoplastic, we have

y0v
n+1 =

√
2
3y0v

n+1Id : ∆εm
n+1

/∥∥Id : ∆εm
n+1

∥∥. (37)

Here y0v
n+1 is obtained from the following equation based

on Eq. 14 with ∆εp
n+1 replaced by Id : ∆εm

n+1:
√

2
3

∥∥Id : ∆εm
n+1

∥∥ = g(y0v
n+1, pn

+
√

2
3

∥∥Id : ∆εm
n+1

∥∥ , Tn+1)∆tn+1. (38)

The Euclidean norms of y0e
n+1 and y0v

n+1 are then compared
to choose the smaller one as y0

n+1 between the two.

3 In the case of no convergence after a prescribed number of itera-
tions, a warning message is generated, and step (8) is coerced.
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5 Consistent tangent modulus

Fourth rank tensors Pn+1 and H(i)
n+1 have been introduced

to represent d∆εp
n+1 and db(i)

n+1, respectively, in the last
section. Here, by following a previous study [Kobayashi
et al. (2003)], it is shown that these tensors are read-
ily incorporated in deriving consistent tangent modulus
∂σn+1

/
∂∆εm

n+1.

Let us consider the variations in discretized variables due
to the change in ∆εm

n+1, d∆εm
n+1. Here it is noted that no

variations in Tn+1 and ∆tn+1 need to be considered for
deriving ∂σn+1

/
∂∆εm

n+1. Then, Eqs. 23-25 provide

dσn+1 = De
n+1 : d∆εm

n+1−De
n+1 : d∆εp

n+1, (39)

dsn+1 = Id : De
n+1 : (d∆εm

n+1−d∆εp
n+1). (40)

Moreover, substitution of Eq. 11 into Eq. 29 gives

d∆εp
n+1 = Pn+1 : (dsn+1−dan+1). (41)

Eqs. 19 and 30 allow the above equation to become

Mn+1 : d∆εp
n+1 = Pn+1 : dsn+1, (42)

where

Mn+1 = I+Pn+1 : ∑ r(i)
n+1H(i)

n+1. (43)

By further substituting Eq. 40 into Eq. 42, and by ar-
ranging the resulting equation, we have

d∆εp
n+1 = (Mn+1 +Pn+1 : Id : De

n+1)
−1

: Pn+1 : Id : De
n+1 : d∆εm

n+1. (44)

Eqs. 39 and 44 then give

∂σn+1

∂∆εm
n+1

= De
n+1

:
[
I− (Mn+1 +Pn+1 : Id : De

n+1)
−1 : Pn+1 : Id : De

n+1

]
.

(45)

This consistent tangent modulus reduces to that derived
by Kobayashi et al. (2003), if De

n+1 is isotropic.

6 Derivation of Pn+1 and H(i)
n+1

This section deals with deriving Pn+1 and H(i)
n+1, defined

in Eqs. 29 and 30, which have been assumed for the im-
plicit integration and consistent tangent modulus in Sec-
tions 4 and 5.

Differentiation of Eqs. 14-18 under no variations of Tn+1

and ∆tn+1 gives

d∆εp
n+1 =

√
3
2 (dgn+1nn+1 +gn+1dnn+1)∆tn+1, (46)

dnn+1 =
√

3
2 dyn+1

/
yn+1− (nn+1

/
yn+1)dyn+1, (47)

dyn+1 =
√

3
2 nn+1 : dyn+1. (48)

d∆pn+1 = dgn+1∆tn+1, (49)

where gn+1 = g(yn+1, pn+1, Tn+1), and

dgn+1 = (∂gn+1/∂yn+1)dyn+1

+(∂gn+1/∂pn+1)d∆pn+1. (50)

Thus, we have

d∆εp
n+1 = Pn+1 : dyn+1, (51)

where

Pn+1 =
3
2

[
gn+1

yn+1
(I−nn+1 ⊗nn+1)

+
(

1− ∂gn+1

∂pn+1
∆tn+1

)−1 ∂gn+1

∂yn+1
nn+1⊗nn+1

]
∆tn+1.(52)

Moreover, differentiation of Eqs. 20 and 21 provides

db(i)
n+1 =

(
dθ(i)

n+1/θ(i)
n+1

)
b(i)

n+1 + 2
3 ζ(i)θ(i)

n+1d∆εp
n+1, (53)

dθ(i)
n+1

/
θ(i)

n+1

= −ζ(i)θ(i)
n+1

(
ω(i)

n+1d∆pn+1 +∆pn+1ω̂(i)
n+1db

(i)
n+1

)
, (54)

where ω(i)
n+1 = (b

(i)
n+1)

k(i)
and ω̂(i)

n+1 = dω(i)
n+1

/
db

(i)
n+1.

Here, using Eqs. 18 and 22, it is shown that

d∆pn+1 =
√

2
3nn+1 : d∆εp

n+1, (55)

db
(i)
n+1 = 3

2 b(i)
n+1 : db(i)

n+1

/
b

(i)
n+1. (56)
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Then, substituting Eqs. 55 and 56 into Eq. 54, and using
Eq. 53, we have

dθ(i)
n+1

θ(i)
n+1

= − ζ(i)θ(i)
n+1(

1+ζ(i)θ(i)
n+1ω̂(i)

n+1∆pn+1b
(i)
n+1

)
b
(i)
n+1

×
(√

2
3 ω(i)

n+1b
(i)
n+1nn+1 : d∆εp

n+1

+ζ(i)θ(i)
n+1ω̂(i)

n+1∆pn+1b(i)
n+1 : d∆εp

n+1

)
. (57)

Consequently, Eqs. 53 and 57 give

db(i)
n+1 = H(i)

n+1 : d∆εp
n+1, (58)

Table 1 : Material parameters (stress in MPa, strain in
mm/mm, time in s, and temperature in ˚ C)

Young’s modulus
E = 1.07×105 +2.72×102(T +273.15)
−0.24(T +273.15)2

Poisson’s ratio
ν = 0.3

Coefficient of thermal expansion
1.52×10−5

Viscoplastic function

g = 1.0×10−3
[
3.19×10−3y

/
φ(T)

]m(T )

m(T ) = 120
{

8.0×106 exp [−1.23×
104/(T +273.15)

]
+1

}−1

φ(T ) =
{

3.27×105 exp [−1.21×
104/(T +273.15)

]
+1

}−1

Kinematic hardening parameters
ζ(1) = 4000 r(1) = 25.0φ(T)
ζ(2) = 1000 r(2) = 24.4φ(T)
ζ(3) = 500 r(3) = 21.2φ(T)
ζ(4) = 200 r(4) = 20.5φ(T)
ζ(5) = 100 r(5) = 31.7φ(T)
k(i) = 5 (i = 1,2, · · · ,5)

where

H(i)
n+1 = ζ(i)θ(i)

n+1×⎡
⎢⎢⎢⎢⎢⎣

2
3

I−

√
2
3ω(i)

n+1b
(i)
n+1b(i)

n+1⊗nn+1

+ζ(i)θ(i)
n+1ω̂(i)

n+1∆pn+1b(i)
n+1 ⊗b(i)

n+1(
1+ζ(i)θ(i)

n+1ω̂(i)
n+1∆pn+1b

(i)
n+1

)
b
(i)
n+1

⎤
⎥⎥⎥⎥⎥⎦

. (59)

7 Numerical examples

The implicit integration scheme, as well as consistent
tangent modulus, developed in the present study was pro-
grammed as a user subroutine UMAT in version 6.5 of
the ABAQUS code. In the programming, the initial value
of yn+1 in local iterations was chosen by assuming ∆εm

n+1
to be either elastic or viscoplastic (Section 4.2), and the
convergence condition of local iterations was set as

‖dyn+1‖
/‖yn+1‖ < 10−6. (60)

St
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ss
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Pa
) 

Strain

600°CT

500°CT

Simulated:

m 3 110 s
m 5 110 s

Experimental:

Figure 1 : Tensile stress-strain curves of 21/4Cr-1Mo
steel at 500 and 600 ˚ C; experiments by Iwasaki, Hiroe
and Igari (1987).

Finite element analysis has been thus performed to show
numerical examples. The material parameters employed
for the numerical examples are listed in Tab. 1. They
were determined by applying the multilinear approxima-
tion of tensile stress-strain curves [Jiang and Sehitoglu
(1996); Ohno (1998, 2001)] to the tensile test data of
21/4Cr-1Mo steel at 300-600 ˚ C [Iwasaki, Hiroe and Igari
(1987); Ohno and Wang (1992)]. Here it is noted that this
material exhibits negligible cyclic hardening/softening as
far as the first several cycles are concerned, and that
a typical value of k(i) is around five [Ohno and Wang
(1993, 1994); Jiang and Sehitoglu (1996)]. The tensile
experiments were then successfully simulated (Figs. 1
and 2).
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Figure 2 : Viscoplastic flow stresses of 21/4Cr-1Mo
steel at εm = 0.01; experiments by Iwasaki, Hiroe and
Igari (1987).
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Figure 3 : Out-of-phase change in mechanical strain εm

and temperature T .
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Figure 4 : Stress versus mechanical strain relation un-
der out-of-phase change in εm and T ; experiment by
Iwasaki, Hiroe and Igari (1987).
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local iterations in the case of |∆εm| = 10−2 under out-
of-phase change in εm and T .

First, the implicit integration scheme described in Sec-
tion 4 was verified by analyzing a simple uniaxial prob-
lem, in which a straight bar with a uniform cross-section
was subjected to the out-of-phase variation in εm and T

depicted in Fig. 3. The bar was modeled using one 8-
node liner brick element, C3D8, and the change in nodal
displacement was prescribed so as to produce the varia-
tion in εm given in Fig. 3. The computation then pro-
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Figure 6 : (a) axisymmetric circular-notched tube with
axial displacement constraint at ends, and (b) tempera-
ture cycling applied to circular-notched tube.

vided the nonisothermal σ versus εm relation close to the
experiment done by Iwasaki, Hiroe and Igari (1987), as
shown in Fig. 4. The computation was performed in two
cases of |∆εm| = 10−4 and 10−2. It is emphasized that
the increment in the latter case was considerably large.
Nevertheless, almost the same stresses were obtained in
the two cases (Fig. 4). Fig. 5 illustrates how the local
iterations for implicit integration converged in the case
of |∆εm| =10−2. The convergence condition of local it-

rootP

Figure 7 : Finite element mesh of a quarter of vertical
cross-section of circular notched tube.

erations was always satisfied even in this case. It is seen
from the Fig. 5 that the local iterations had quadratic
convergence. Such quick convergence was expected, be-
cause the local iterations are based on the linearlization
as in the Newton-Raphson method (Section 4.1). We
therefore can say that the implicit integration scheme de-
veloped in this study allows us to take large increments,
and that the iteration method introduced in the implicit
integration scheme affords quadratic convergence.

The implicit integration scheme was then examined fur-
ther by analyzing a nonuniform structure subjected to
thermal-mechanical cyclic loading. Ratcheting in such
a structure was of interest because of the nonlinearity
of dynamic recovery in Eq. 8. We thus analyzed an
axisymmetric circular-notched tube, with axial displace-
ment constraint at both ends, subjected to an internal
pressure pint and uniform variations in T ; while pint was
kept constant at 10 MPa, T was cyclically varied twenty
times between 330 and 570 ˚ C (Fig. 6). A quarter of
the vertical cross-section of the tube was divided into fi-
nite elements using 8-node biquadratic reduced integra-
tion elements, CAX8R, as shown in Fig. 7. The analysis
was done by assuming k(i) = 0 as well as k(i) = 5 to dis-
cuss the influence of k(i) on ratcheting. Let us remember
that k(i) represents the nonlinearity of dynamic recovery
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Figure 8 : Change in circumferential strain εθ at Proot un-
der combined constant internal pressure and temperature
cycling; (a) k(i) = 0, (b) k(i) = 5.

in the evolution of back stresses (Section 2).

When k(i) = 0 and 5, circumferential strain εθ had the
changes shown in Figs. 8(a) and 8(b), respectively, at
the integration point closest to the notch root, Proot . The
computations were performed by taking an increment of
|∆T | =4 ˚ C. It is seen from the figures that εθ progres-
sively increased with the number of temperature cycles,
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Figure 9 : Increase in circumferential strain εθ at tem-
perature peak of 570 ˚ C.

N, and that this ratcheting significantly depended on k(i).
It is emphasized that the two values of k(i) resulted in a
large difference with respect to ratcheting rate, i.e., the
increase in εθ per cycle; at N = 20, the ratcheting rate by
k(i) = 0 was about 2.5 times larger than that by k(i) =5
(Fig. 9). Further computations were done by taking a
larger increment of |∆T | =20 ˚ C instead of |∆T | =4 ˚ C.
The ratcheting was then hardly influenced in either case
of k(i) = 0 or 5 (Fig. 9), though the number of steps per
cycle was reduced from 120 to 24 in the finite element
analysis. The implicit integration scheme was thus suc-
cessful in efficiently computing ratcheting in the circular-
notched tube.

Finally, let us discuss the local and global iterations per-
formed in the analysis of the circular-notched tube. The
local iterations, which always converged in the analy-
sis, were monitored at Proot in the first temperature cy-
cle. The local iterations then converged after 3.3 and 3.9
iterations, on average, when |∆T | =4 and 20 ˚ C, respec-
tively, as shown in Fig. 10. It was thus suggested that the
magnitude of |∆T | did not have a noticeable influence on
the convergence of local iterations. The convergence of
global iterations was also checked in the first cycle by as-
suming the default convergence condition of ABAQUS.
It was then found that the magnitude of |∆T | had a con-
siderable influence on the convergence of global itera-
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Figure 10 : Number of local iterations for convergence
monitored at Proot in the first temperature cycle.

4°CT

20°CT

( ) 5, 1ik N

Fr
eq

ue
nc

y 
(%

) 

Number of global iterations

Figure 11 : Number of global iterations for convergence
in the first temperature cycle.

tions: the average number of global iterations was 1.0
and 1.9, when |∆T | =4 and 20 ˚ C, respectively, as illus-
trated in Fig. 11. It is, however, noted that whereas the
number of global iterations was almost doubled, the in-
crement in finite element analysis, |∆T |, was quintupled,
resulting in a nearly 60 percent reduction in CPU time.
Fig. 12 shows how the maximum residual nodal force
decreased with the number of global iterations in the case
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Figure 12 : Examples of change in maximum residual
nodal force with the number of global iterations in the
case of |∆T | =20 ˚ C.

of |∆T | =20 ˚ C. As seen from the figure, the global iter-
ations had quadratic convergence, demonstrating the va-
lidity of the consistent tangent modulus derived in Sec-
tion 5. The local and global iterations were thus found
to converge well in the analysis of the circular-notched
tube.

8 Conclusions

In this study, a fully implicit integration scheme was de-
veloped for a nonisothermal viscoplastic, nonlinear kine-
matic hardening model with multiple back stresses. Non-
linear dynamic recovery in addition to strain hardening
was assumed for the evolution of each back stress to sim-
ulate well ratcheting and mean-stress relaxation. Tem-
perature dependence of back stress evolution was also
taken into account in the constitutive model. The back-
ward Euler discretization of such sophisticated consti-
tutive relations resulted in a tensor equation. Then, to
iteratively achieve the implicit integration of constitu-
tive variables, the tensor equation was linearized by in-
troducing the derivatives of discretized inelastic strain
and back stresses. These derivatives were shown to be
readily incorporated in consistent tangent modulus. The
implicit integration scheme and consistent tangent mod-
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ulus developed were programmed as a user subroutine
UMAT in the ABAQUS code. Then, a straight bar and a
circular-notched tube subjected to nonisothermal cyclic
loading were analyzed as numerical examples. It was
thus demonstrated that the implicit integration scheme al-
lows us to take large increments, and that the iterations in
the scheme converge quadratically.
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