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An Aspect of Hall-Petch Effect in Metallograin Structure
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Abstract: The present paper focuses on the microme-
chanical phenomena occurring in the polycrystalline
metal materials. Correlations between the material hard-
ening and the plastic lattice dislocation were discussed
with the presence of the grain boundary. The character-
istic distribution of the plastic strain gradient is numeri-
cally recognized, and hence the validity of incorporating
the strain gradient term in the constitutive law is demon-
strated. Also, the modeling of the inclusion interface
sliding and debonding was performed on the equivalent
inclusion theory to develop the constitutive law for the
composite. The sliding model is considered to be effec-
tive to model the superplastic behavior of highly ductile
metals. The superplastic phenomenon was recognized
in the numerical test with the use of the presently sug-
gested particle dispersed model, and its mechanism was
attempted to be explained.
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1 Introduction

Development of advanced metal materials with the high
level performance of strength has been the engineering
aim in the technological history. As shown by Mat-
sumoto et al. (2005), and by Nakamura et al. (2005),
crystal grain structure in the metal has much to do with
material’s strength as well as its characteristic perfor-
mance with respect to its ductility.

The continuum theory based solely on strain hardening
with no strain gradient dependence would find no size
effects. As it will be easily understood, finite element
analyses of structures of different sizes but proportional
where an elastoplastic material constitutive law is as-
sumed with no strain gradient effects will return the same
stress and strain results. However when the size is very
small, it has generally been well known that the size does
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matter on the behavior of the material performance. Plas-
tic behavior of metal in the metal matrix composites is
significantly affected by the inclusion size. Tomita et al.
(2000) have investigated the mechanical characteristics
of the particle reinforced metal-matrix composites by a
finite element analysis with embedded strain gradient ef-
fects, and found the effects of the volume fraction, size
and distribution pattern of the reinforcement particles on
the macroscopic mechanical property of the composite.
It was predicted that the flow stress is proportional to
the inverse of the particle spacing. The effect has been
known as Hall-Petch effect, which states that the yield
strength of pure metals increase with diminishing grain
size. It is considered that the enhancement of the metal
is associated with the pile up of dislocations occurring in
the vicinity of the grain boundary area inside the crys-
tal grains. Propagation of the dislocations is prohibited
through the grain boundary, as a consequence elevating
resistance of the shear force that causes the dislocations.
As the grain size is smaller, the total surface area of the
grain boundary is greater, thus the flow strength becomes
higher than those with the larger grain size.

Figure 1 : Hall-Petch effect on flow stress (Schiøtz and
Jacobsen (2003)).

Publicized evidence by Schiøtz and Jacobsen (2003) for



200 Copyright c© 2005 Tech Science Press CMES, vol.10, no.3, pp.199-208, 2005

copper in Figure 1 shows the apparent rise of the flow
stress as the grain size becomes smaller. But when the
grain size is even smaller than 10 to 15nm, the strength
falls from the peak, which is known as “Negative Hall-
Petch” effect. In this grain size range, it is thought
that slipping on the grain surface with the neighboring
grains plays a significant role rather than the ingrain
crystal dislocations, and it would overwhelm the effect
from the ingrain dislocation resistance. Schiøtz and Ja-
cobsen (2003), Swaygenhoven et al. (2001), and others
have extensively studied the nano-mechanism occurring
at the crystal level by using molecular dynamics method,
and its molecule level dislocation mechanism relevant to
Hall-Petch effect is becoming unveiled.

For some metals, this phenomenon would occur even at
greater grain sizes of one hundred times or even more
the peak strength size. This effect is generally known
as super plasticity. At high temperatures, some mate-
rials with certain microstructure exhibit high elongation
strain ranging from several hundreds to one thousand per-
cent when deformed under a tensile loading condition.
Superplastic aluminum alloys generally have fine grain
structure of about 10µm in diameter, where the grain size
is controlled by adding some elements that suppress the
grain growth. Since the grain boundary sliding during
deformation becomes activated under these conditions,
those alloys exhibit an extremely large degree of ductil-
ity. In an industrial application such as in forging, devel-
opment of the most suitable material becomes increas-
ingly important, and thus the through understanding of
the phenomena of the superplasticity is required.

The effects of strain gradient in relevance to the material
performance increasingly draw attention, and its signif-
icance of analysis on the subject has been emphasized
by Tang, Shen, and Atluri (2003). The objective of the
present paper is to identify that the micro mechanical
strain gradient is responsible for the flow strength of plas-
tic materials and to verify that the material strength is de-
pendent on the grain size through the plastic strain gra-
dient. Also presented in this work is the investigation of
the superplastic phenomena closely related to the grain
surface sliding. The work includes a development of a
grain sliding model and a finite element analysis of grain
dispersed composite employing the constitutive law ac-
counting for the strain gradient effect suggested by Zbib
(1994). Also included is an analysis of a polycrystalline
material domain under tension, where the crystal slip

model in the work of Needleman et al. (1985) is used
to describe the constitutive law for each crystal with dif-
ferent slide orientations.

2 Grain Size Depended Hardening: Strain Gradient

In the following sub-sections, the strain gradient effects
due to the inclusion particle size on the strength of the
composite of the ductile matrix material are examined.
The constitutive law uses hypothetical hardening model
including the harmonic plastic strain gradient term sug-
gested by Zbib (1994). However, the validity of the
model assuming the strain gradient has not yet been
checked. Hence the present effort also includes some at-
tempts to address the same subject in an utterly different
approach independent of the above-mentioned constitu-
tive model, trying to find the phenomenon of the plastic
strain pile-ups, relevant to the material hardening, on the
boundary area of the crystal grains.

2.1 Strain gradient dependent hardening model

Zbib modified the conventional yield condition in order
to circumvent the difficulty encountered in dealing with
the post-localization problem so that the gradient depen-
dent flow stress is defined,

τττ = κκκ(γ)−g (1)

where, the gradient strain terms are given as in the fol-
lowing, generally including higher order terms of the ef-
fective plastic strain g such that,

g = c1∇2γ+c2∇γ ·∇γ+c3∇4γ · · · (2)

Thus, it leads to allowing to include the length scale into
the plastic constitutive law for composites with inclu-
sions. Such is the case usually seen in a metal matrix
composite where the matrix undergoes varied plastic de-
formations in the micro structure domain due to interac-
tions between particles. If the material isotropy should
be retained, the odd order terms must be deleted in the
above. In the present, only the first term is retained for
simplicity.

τττ = κκκ(γ)−c1∇2γ (3)

In this paper, this plastic flow rule is used to analyze the
inclusion size effect of a particle dispersed composite do-
main. Three types of the composite domain patterns are
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Figure 2 : Composite domains for FEM analyses with various grain sizes.
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Figure 3 : Effect of plastic strain gradient over size scale.

considered and depicted in Figure 2 (a), (b), and (c). A
finite element analysis is used for a unit domain with the
mirror symmetric type boundary conditions representing
the infinite composite domain subjected to a remote ten-
sile loading. In those three models, the left vertical edges
were constrained in lateral direction, the bottom edges
in vertical direction, and the lateral displacements of the
right edge and the vertical displacements of the top were
enforced to be homogeneous by way of imposing penal-
ties on the respective nodal displacements. To estimate
the strain gradient term at an arbitrary integration point
in the plastic domain, an influence area, which is circu-
lar, is set around the point. On all the data points within
the area, the least square fitting was performed with the
complete quadratic function to calculate the plastic strain
gradient.

In Figure 2(a), the inclusion is the case, regularly ar-
ranged circular inclusions of 28% volume fraction in the
plastic medium. The inclusions remain elastic being rel-
atively harder than the matrix. Figure 2(b) is the case the
volume fraction of the inclusion is 80% of the entire do-
main, but in this case the inclusions take the role of the
plastic domain. The random distribution of the particles
is supposed to provide a rather macro-isotropic nature of
the composite.

Figure 2(c) is for the case representing a poly-crystal
body with thick grain boundaries.

For the three cases of the composite models mentioned
above, the inclusion size was varied by changing the rep-
resentative scale length, L, in these figures. If the strain
gradient term in the constitutive law were not accounted
for, the macro stress-strain behaviors for the three mod-
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els should respectively be the same even for the different
scale factors.

Calculated global stress-strain results with the strain gra-
dient assumption in the constitutive law are shown in Fig-
ure 3 (a), (b), and (c) for the respective analysis domain
models in Figure 2. Calculated for all the four cases of
the scale length L= 1, 1/2, 1/4, and 1/8, the results show
an evident propensity of hardening on the global strength
curves as the inclusion size are varied. Relative to the
standard size, L= 1, results of all the smaller particle sizes
have shown higher stress levels. Irrespective of the plas-
tic strain gradient’s evolution in matrix or inclusion, or of
the microscopic geometry, enhancement of the material
strength is acknowledged as the inclusion size becomes
finer even with the same volume fraction of the particle
dispersed composite.

2.2 Crystallograin analysis

The effect of the strain gradient is, thus, demonstrated, in
the above, for composite materials by incorporating the
gradient term in the strain hardening model for the plastic
domain, and it successfully formulates the dependence of
the particle size. In this subsection, another approach is
tried in an attempt to obtain the same effect for the same
phenomenon but without using the strain gradient terms
assumed a priori.

Consider a strip of a polycrystalline metal material do-
main that consists of a number of crystal grains as
depicted in Figure 4 for three different average grain
sizes. As a whole, the global domain is supposed to
be isotropic, but each grain is set to have different and
random crystal lattice orientations. Under a severe load-
ing, crystals will plastically deform in slip mode in accor-
dance with the individual crystalline slip systems. In an
expectation that the extension of the plastic slip arising
from crystallographic dislocation due to shearing might
be blocked by the grain boundary, a finite element anal-
ysis of the crystal domain was undertaken to investigate
the plastic deformation mechanism in the grain. In or-
der to properly treat the present problem, the crystal slip
model originally suggested by Needleman et al. (1985) is
used to describe the constitutive law for the finite element
algorithm used herein.

Plastic deformation is considered to occur by shearing
on the slip systems which consist of multiple slip planes.
Using the expression of the power law form for the shear
rates, the reference shear stress and strain relation for

each slip system α may be stated in the sum of other slips
β as,

τ̇ττ(α) =
n

∑
β=1

hαβγ̇γγ(β) (4)

The description of the details can be found in the works
of Needleman et al. (1985) and related materials. The
constitutive law for single crystal relating the Jaumann
rate of Kirchhoff stress and the stretch tensor can be
stated by,

τ̇ττJ = C : D (5)

C = L−∑
α

∑
β

(P(α) : L+βββ(α))N−1
αβ(P(β) : L+βββ(β)) (6)

where, L is the elastic material tensor, and P(α) and β(α)

are related to the current stress states and the deformation
status.

d/W = 0.41 d/W = 0.35 d/W = 0.24

W

d

Figure 4 : Polycrystalline domains of tensile strip with
various grain sizes.

For a plastic material of a power law hardening type, the
three domains shown in Figure 4 were subjected to a lon-
gitudinal tensile loading in the present FEM analysis. As
we know, in the finite element analysis and with the con-
stitutive law as in the present, no size units are defined a
priori or in the analysis procedure, whereas for the prob-
lems in Section 2.1, the incorporated strain gradient term
in the constitutive law brings in the size dependence. Au-
thors’ intention in this section is to draw out the physical
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Figure 5 : Effect of grain size on stress-strain behavior.
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Figure 6 : (Color online) Distributed plastic strain gradi-
ent over polycrystalline domain in deformation.

phenomenon that the crystal size does matter in the defor-
mation behavior of the metallograin structure, only from
the crystal dislocation mechanism without assuming any
hypothesis for strain gradient in the constitutive law a pri-
ori. One of the effective ways to define the size of the
crystal grains is to define it made relative to some repre-
sentative size of the problem, for which the strip width is
selected.

The average grain size is varied in comparison with a rep-
resentative scale size, which is the specimen width, W ,
such that, d/W = 0.24, 0.35, and 0.41, respectively. Each
crystal grain is subdivided with a number of triangular
elements. The calculated global stress-strain behavior is
shown in Figure 5 for the three cases of grain size. The
present results that are not based on the hypothetical use
of the plastic strain gradient term in the constitutive law
also clearly show the dependence of the grain size on the
global stress-strain behavior. In comparison with the re-
sult for d/W = 0.41, the smaller grain size results obtain
higher stress levels after the material is initially yielded.
The trend of these results is similar to those obtained in
Figures 3. The cause of the elevation of the strength is
in the evolution of a resistance force to prevent the prop-
agation of the plastic slip across grain boundaries. To
view some signs of the phenomenon, distribution of the
calculated plastic strain gradient, ∇2γ, is plotted in Fig-
ure 6 for the coarse grain specimen case. The shaded
or red areas denote the regions with the positive plastic
strain gradient, or in other words, the region where the
plastic strain is suppressed. The distribution appears bi-
ased toward the grain boundary. In the present analysis,
no inter-grain substructure or materials are assumed, but
only the orientations of the lattice are different across the
boundary. Transmittance of the plastic slipping through
the boundary is hindered when the dislocation propagates
to dissimilar slip systems, thus raising the resistance to
the local deformation as well as to the global. If the lat-
tice orientation is the same all over the specimen domain,
it is nothing more than a single crystal, and no distribu-
tion of the strain gradient will be observed then.

The similar phenomenon must be seen also in the other
finer grain domain cases. Since the size dimension is
smaller for the finer grains, the second derivative of the
plastic strain is much greater and thus generates higher
stress levels. Hence including the plastic strain gradient
term in the strain hardening of the constitutive law is rea-
sonable and effective for the class of problem where the
plastic strain gradient takes effect, such as when Hall-
Petch effect is significant. In industrial technology, this
effect has already been utilized in metallurgical area to
refine the crystal grain size and thus to enhance the ul-
timate strength of metal materials by adding some sub-
stances in the process of metal solidification. More re-
cently, some mechanical process of effectively refining
the crystal grain size to the order of nano size has been
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Figure 7 : Composite with imperfect interface and its equivalent domain.

successfully devised by applying a severe shear to the
material, observing sixty percent increase of the flow
stress on the tension test of a steel and aluminum alloys
as well.

3 Grain Sliding Effects on Superplasticity

As discussed in the previous section, the enhancement of
the plastic material is due to the resistance arouse when
the propagation of the plastic slip is blocked at the grain
boundary. Thus elevated ingrain stress might act upon the
grain boundary, and especially when the size of the grain
is even smaller, slipping might occur on the grain sur-
faces with each other. This is what it is considered to be
the nano-mechanism for causing the negative Hall-Petch
effect. As mentioned in the beginning in the introduc-
tion, the similar phenomenon occurring at even greater
grain size is believed to be the superplasticity, which pro-
vides high ductility. Brass, which is the material suited
for forging, consists of two phases of material, which are
the coarse and hard α phase and the finer and relatively
softer β phase. During the deformation process, sliding
on the surface of the α phase grain is conspicuous accom-
panied by the extensive deformation of the β phase, while
α phase grains themselves are hardly deformed. Poly-
crystalline metals material of single phase with the su-
perplastic nature exhibit more like rearrangement of the
grains as the results of an active surface sliding move-
ment, rather than ingrain deformations. In the present
effort, in coping with the micromechanical grain sliding
problem, a particle dispersed composite modeling with
sliding on the inclusion surface is performed.

3.1 Composite model with particle sliding

The basis of the present model is the self-consistent type
equivalent inclusion theory, on which the constitutive
model for a composite with the matrix of which under-
goes elastoplastic deformations has been developed by
Nakagaki and Wu (1999). In the present effort, con-
sider a macroscopically homogeneous composite mate-
rial with randomly dispersed particles. To develop a
macro-constitutive model for the composite when parti-
cles undergo interfacial weakening, i.e., exfoliation and
slide.

A two-fold equivalence modeling is devised. Depicted in
Figure 7, consider a meso-domain in a composite, whose
averaged macro-compliance, yet to be determined, is de-
noted by Γ. The quantity with (−) denotes the aver-
aged value also to be determined according to the self-
consistency. An inclusion particle is embedded in the av-
eraged medium as shown in Figure 7(A), where a dam-
age layer is modeled with a spring system between the
inclusion and the surroundings. The model in (A) can be
made equivalent to the model (B) in Figure 7, where the
spring layer keeps unchanged but the properties of the
core are replaced by those of the surrounding medium
and an eigen strain, εi∗, imposed to it. Further, the equiv-
alent inclusion and the spring layer together are made
equivalent to another virtual inclusion material with an
eigen strain, ε∗d, as shown in (C).

To model the particle interfacial imperfection, Gao
(1995) used the spring layer model consisting of radial
and tangential springs and obtained a particle solution of
stresses and displacements using stress functions effec-
tive for all the spring compliance cases. He also gave a
solution for the imperfect particle subjected to an eigen
strain. With the use of these two solutions, the present
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layer.

equivalent inclusion model was developed. The radial
and the tangential stresses on the interface of a disk in-
clusion are defined in relation to the displacement gaps
∆u between the matrix (denoted by subscript 1) and the
inclusions (subscript 2) across the interface that,

σrr(a,θ) =
nµ1

a
∆ur(a,θ) (7)

σrθ(a,θ) =
kµ1

a
∆uθ(a,θ) (8)

where a denotes a particle diameter, µ the shear modulus,
and n and k are respectively the normal and tangential
spring coefficients, as depicted in Figure 8. The condi-
tion, k= 0 and n = ∞, represents the perfect sliding with
no exfoliation, and k = ∞ and n = ∞ corresponds to the
perfectly bonded interface. A damage strain tensor due
to the interface imperfection can be expressed (Nakagaki
et al. (2004)) in separable form with external load de-
pendent terms and the eigen strain terms in the present
equivalent process such that,

dεεεu = Dσ : dσσσ0 +D∗ : dεεεi∗ (9)

The damage tensor Dσ is due to the external loading σσσ0;
the nonzero components of the tensor will be described
such that,

Dσ
1111 = Dσ

2222

=
κ1 +1

2µ1

[
1

tκ2n− tn+2n+4
+

(k +n)(1+ tκ2)+12
P

]

(10)

Dσ
1122 = Dσ

2211 =
κ1 +1

2µ1
×

[
1

tκ2n− tn+2n+4
− (k +n)(1+ tκ2)+12

P

]
(11)

Dσ
1212 =

κ1 +1
2µ1

(k +n) (1+ tκ2)+12
P

(12)

While, the tensor D∗ represents the damage due to the
assignment of the eigen strain εεεi∗ to the equivalent core
inclusion, and will be given by,

D∗
1111 = D∗

2222 = − 2
tκ2n− tn+2n+4

− (k +n)(1+ tκ2)+12
P

(13)

D∗
1122 = D∗

2211 = − 2
tκ2n− tn+2n+4

+
(k +n)(1+ tκ2)+12

P
(14)

D∗
1212 = −(k +n) (1+ tκ2)+12

P
(15)

In the above, t, κ, and P are the parameters compound of
the spring coefficients and the composing phase materi-
als, where the parameters used for the matrix material are
made equivalent to its tangent moduli. Details of which
will be found in the works of Nakagaki et al. (2004). In
the matrix domain of plastic composite such as a metal
matrix composite, the stress distribution is far from the
uniform state but significantly varied caused by stress in-
teraction between inclusions. Furthermore, the average
stress-strain relation is significantly different from that of
the homogeneous material, being influenced by the vol-
ume fraction of inclusions. In the works of Nakagaki et
al. (1999), this important fact has been brought to atten-
tion in the constitutive law development. In this paper,
the approach to account for the meso-local plastic effect
in the matrix is utilized to develop the present particle-
sliding model.

In order to account for the stress distribution in the ma-
trix domain, it is natural to assume that the distribution is
describable in Gaussian distribution function of the form,

P1
(
ρi

1

)
=

1√
2πφ

e
− 1

2φ2 (ρi
1−1)2

(16)

Suppose that thus distributed stress range in the matrix is
divided into a finite number of small stress segments. In a
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segment, the stress increment tensor is related to the cor-
responding strain increment in the ordinary elastoplastic
manner, but its degree of plastic yielding differs segment
by segment. The variance, φ, that suffices the integral of
P1 by 99.7 percent of accuracy, can be determined with
finite values of ρ1s (plural form s) by,

φ =
ρmax

1 −ρmin
1

6
(17)

where, ρ1 is the equivalent stress normalized by the av-
erage value in the phase. In the present, the maximum
and the minimum stresses in the matrix are determined
from the closed form solutions around an elliptic inclu-
sion given by Mura and Chen (1977).

In these process, the macro strain-stress relation of
the elastoplastic composite with the modeled interfacial
spring layer was derived in the final form of the compos-
ite constitutive law such that,

dεεε0 = ΓΓΓ : dσσσ0 (18)

ΓΓΓ =
n

∑
i=1

∆ciΓΓΓi
1 : Ci

0

+
m

∑
j=1

∆c j

⎡
⎣ ΓΓΓ j

2 :
(

I+E0 :
[
(I+D∗) : A

j
0 +Dσ

])
+

(
Dσ +D∗ : A

j
0

)
⎤
⎦
(19)

where, ∆ci is the volume fraction corresponding to the
respective stress segment, tensor Ci

0 describes the relation
between the stress segment dσi

1 and the external stress
increment dσ0, is an updated value of a tensor related to
the Eshelby tensor, and

A
j
0 =

[(
ΓΓΓ j

2 −ΓΓΓ
)−1−E0 : (I+D∗)

]−1

:
(
I+E0 : Dσ)

(20)

The present composite material model for the particle
interfacial imperfections was tested for its accuracy. A
two-dimensional infinite domain of the composite under
tension, in which the matrix is elastoplastic, whereas the
inclusions stay elastic, was considered. The material do-
main was studied in two ways: first, by a finite element
analysis of the composite with disc particles dispersed in
the domain; another, by the presently developed consti-
tutive model. The analysis of the finite element method

is performed on the model with normal and tangential
springs around the particle on the interface for each in-
clusion.
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Figure 9 : Elastoplastic stress-strain results for the
present model compared with the finite element analysis.

Calculated results of the global stress-strain relation for
the volume fraction of 20 percent inclusions are shown
in Figure 9 for three cases: i.e., the perfect interface;
slide only; and debond only. The result of the present
model for the intact interface case denoted by “Perfect”
shows good correlations with the independent FEM re-
sults. Calculations of the present model on the slide only
and the debond only have shown marginal results, how-
ever, exhibit very similar behaviors to those of the FEM
in the plastic range.

The present constitutive model is embedded in the finite
element system to analyze the effect of the grain inter-
face sliding on the superplastic behavior. The modeled
material is the particle dispersed composite strip of non-
dimensional length, 3, and its aspect ratio is 3. The strip
is elongated to 4 under a tensile load. The volume frac-
tion of the composite is 10 percent, where both the ma-
trix and the inclusions deform in elastic-plastic behavior,
however the yield stress of these inclusions is relatively
higher. Figure 10(a) shows the results of the case that
both the matrix and the inclusions are of the same mate-
rial, either of the matrix or the inclusion, and no sliding
on the interface is allowed, i.e. k = n = infinity. Char-
acteristic shear localization is seen in the center part of
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         (a)                        (b)     

Figure 10 : Deformation types of elongated strip

the specimen. This is the typical deformation type of the
monolithic isotropic metal materials. Figure 10(b) is the
case that the yield strength of the inclusion phase is about
twice that of the matrix, and the particle interface is al-
lowed to slide, k = 0,n = infinity. The specimen uni-
formly deformed exhibiting no shear localization within
the specimen. This is apparently due to the effects of the
dispersed particles and the sliding on the surface. The
deformation type of the latter is very much like that of
the superplastic materials.

However, interesting is the fact that we have obtained
during the course of the investigation of the present, that
is even when the sliding is suppressed on the inclusion in-
terface, the specimen elongates in the superplastic mode
without necking if the volume fraction of the inclusion
phase is sufficiently large such as more than several per-
cent. Since the amount of the sliding on the particle sur-
face is limited, it necessarily must jump to neighboring
particles causing sliding there. The same can be true for
the extensive plastic deformations occurring between the
particles due to interaction. Thus, the micromechanical
phenomena occurring in the material and causing the su-
perplastic deformations maybe in the mechanism of dis-
persing the stress concentration among the particle dis-
persed geometry in the micrographic geometry of the ma-
terial. The same principle can be applied to explain the
superplastic effect in the polycrystalline metal materials.

4 Concluding remarks

Focusing on the micromechanical phenomena occurring
in the polycrystalline metal materials or in the compos-
ite materials, correlations between the material hardening
and the plastic lattice dislocation was made clear with the
presence of the grain boundary. The characteristic distri-
bution of the plastic strain gradient is numerically recog-
nized, and hence the validity of incorporating the term in
the constitutive law is demonstrated. Also in this paper,
the modeling of interface-sliding and debonding of the
inclusion were performed to develop the constitutive law
for the composite. The sliding model is considered to
be effective to model the superplastic behavior of highly
ductile metals. The superplastic phenomenon was rec-
ognized with the use of the presently suggested particle
dispersed model, and its mechanism was attempted to be
explained.
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