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Advances in Computational Methods for Multibody System Dynamics

R.L. Huston 1 and C.-Q. Liu 2

Abstract: This paper presents a summary of recent de-
velopments in computational methods for multibody dy-
namics analyses. The developments are presented within
the context of an automated numerical analysis. The in-
tent of the paper is to provide a basis for the easy de-
velopment of computational algorithms. The principal
concepts discussed are: differentiation algorithms, par-
tial velocities and partial angular velocities, generalized
speeds, Euler parameters, Kane’s equations, orthogonal
complement arrays, lower body arrays and accuracy test-
ing functions.

keyword: Multibody dynamics, numerical methods,
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1 Introduction

In the early 1960’s, as engineers were developing meth-
ods for matrix structural analysis, few would have imag-
ined that within a few years, advances in vastly different
fields would come together to enable today’s design tech-
nologies. Complex designs may currently be developed
collaboratively by engineers in various countries around
the world. At the core of these designs in the finite ele-
ment method (FEM) stemming directly from the 1960’s
matrix structural analyses. The associated enabling tech-
nologies include: increasingly capable computer hard-
ware, advances in matrix inversion algorithms, advances
in computer graphics, and high-speed internet connec-
tions.

From a mechanical design perspective, these combined
technologies are now applicable with problems in solid
mechanics, fluid mechanics, heat transfer, vibration, and
control with applications to optimal design and fail-
ure/life analyses. Paradoxically a long envisioned appli-
cation in studying the dynamics of large multibody sys-
tems has not yet been fully realized.
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In the 1970s and 1980s Dr. Clifford Astill, through
the National Science Foundation, encouraged and sup-
ported research efforts aimed at modeling the dynam-
ics of large mechanical systems via a lumped-mass, or
“finite-segment,” systems approach, just as structures
were modeled by finite elements. But whereas finite el-
ement modeling was a natural extension of matrix struc-
tural analysis, finite-segment modeling of dynamical sys-
tems was not a natural extension of Newton-Euler formu-
lations nor of Lagrange/Hamiltonian formulations. In-
deed, with large systems (later to be known as “multi-
body” systems), both the Newton-Euler methods and the
Lagrange/Hamilton (energy) methods become increas-
ingly tedious and detailed as the system size increases.
They are thus not easily converted into computational
procedures.

For multibody dynamics analyses to enjoy comparable
technological advances and applications to that of FEM
there needs to be: 1) automated modeling of systems; 2)
efficient dynamical analysis; and 3) computer graphics
representation of both the modeling and the subsequent
analysis results. As with FEM the ensuing applications
will be widespread providing representation for any en-
tity having motion.

In this paper we present concepts and procedures which
have advanced multibody dynamics analyses to the point
where the long-envisioned applications can occur.

The paper is divided into ten parts, each documenting an
important advance and methodology for computational
analysis. The final part also presents a discussion and
concluding remarks.

2 Lower body arrays

A principal difficulty in large system multibody dynam-
ics analysis is being able to organize the complex geom-
etry. The difficulty increases dramatically as the number
of bodies increases.

A useful method for overcoming this difficulty, no mat-
ter how large the system becomes, is to use lower body
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arrays to describe the connection configuration. These
arrays, originally introduced by Huston, Passerello, and
Harlow (1978), provide a means for automatically (nu-
merically) computing the governing differential equa-
tions of motion. The concept and associated procedures
are remarkably simple: To illustrate the ideas, consider a
multibody system such as that in Fig. 1. The system has
10 bodies which may be assumed to be

Figure 1 : An illustrative multibody system

connected by spherical joints and without closed loops –
a so-called “open-chain” or “open-tree” system. Creating
a lower body array begins with the labeling or number-
ing of the bodies of the system as follows: Select a body,
any body, but preferably a large or major body, and label
or number it as body 1, or simply B1. Next, number the
other bodies in ascending progression away from body
1 through the branches of the system, in a clockwise or
counterclockwise procedure, as the view of the system
is projected onto a plane. Fig. 1 illustrates such a la-
beling procedure. With this numbering procedure each
body (except body 1) is connected to one, and only one,
adjacent lower numbered body. The array listing these
lower number labels in the lower body array: L(K). By
inspection of Fig. 1, we immediately see that L(K) for
that system is:

K 1 2 3 4 5 6 7 8 9 10
L(K) 0 1 2 2 4 5 4 7 7 1

(1)

where 0 is assigned as the lower numbered body number
of body 1. The inertia frame R is also associated with 0.

It happens that L(K) contains complete information
about the connection configuration of the system. To see
this observe that in L(K) some of the body numbers do
not occur, some are repeated, and some occur only once.
Those body numbers which do not occur are associated
with extremity bodies. Those numbers occurring more
than once are numbers of branching bodies. Those num-
bers appearing once and only once represent intermediate
bodies in a branch of the system.

Next L(K) can be used to automatically develop kine-
matic descriptions of the system. This is accomplished
by viewing L(K) as an operator on the integers K which
assigns a lower body number for each body integer. By
viewing L(•) as an operator we can obtain a lower body
number for each body integer, with L(0) defined as 0.
Thus we can obtain a lower body array of L(K), that is,
L(L(K)) [or L2(K)] as:

LO(K) 1 2 3 4 5 6 7 8 9 10
L1(K) 0 1 2 2 4 5 4 7 7 1
L2(K) 0 0 1 1 2 4 2 4 4 0

(2)

where L0(K) is assigned the array K.

In this way we can construct a series of higher order
lower body arrays until all the entries are 0. Table 1 pro-
vides such a listing.

Table 1 : Lower body arrays for the multibody system of
Fig. 1

L0(K) 1 2 3 4 5 6 7 8 9 10
L1(K) 0 1 2 2 4 5 4 7 7 1
L2(K) 0 0 1 1 2 4 2 4 4 0
L3(K) 0 0 0 0 1 2 1 2 2 0
L4(K) 0 0 0 0 0 1 0 1 1 0
L5(K) 0 0 0 0 0 0 0 0 0 0

As an illustration of one of the algorithmic uses of the
lower body arrays, observe that the columns of Tab. 1
define the branching of the system. For example, in col-
umn 9 we have the numbers: 9, 7, 4, 2, 1, 0. These are
the body numbers of the bodies in the path through the
system from body 9 to the inertia frame R (See Fig. 1).

To further illustrate the utility of the arrays, let the an-
gular velocity of body Bk relative to its adjoining lower
numbered body B j

(
B jωBκ

)
be written simply as ω̂k.

Similarly, let the angular velocity of Bk in R (“absolute”
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angular velocity: RωBκ) be written simply as ωκ (no over-
hat). Then ω9 may be written as:

ω9 = ω̂9 + ω̂7 + ω̂4 + ω̂2 + ω̂1 (3)

(Observe that the indices in this expression are identical
to the entries in column 9 of Tab. 1.)

Equation 3 may be written in a more general and more
compact form as:

ωκ =
r

∑
p=0

ω̂q, q = Lp(k) (4)

and where r is the integer such that Lr(k) is 1.

Observe that by knowing L(K), Eq. 4 provides an algo-
rithm for finding the angular velocities of all the bodies
of a multibody system. Moreover, the angular velocities
in turn may be used to compute mass center velocities
and accelerations.

3 Differention algorithm.

Perhaps the greatest advance in computational methods
for multibody dynamics is the development and imple-
mentation of differentiation algorithms which provide for
an efficient automated development of the governing dif-
ferential equations. The algorithms are remarkably sim-
ple: They are based upon a fundamental formula of ele-
mentary mechanics: Specifically, if a vector c is fixed in
a body B which in turn is moving in a reference frame R,
the derivative of c in R is simply

Rdc/dt = ω×c (5)

where ω is the angular velocity of B in R.

The utility of Eq. 5 is that a derivative is calculated by a
multiplication – a routine computation procedure as op-
posed to, say, finite differences.

By developing the applications of Eq. 5, we can calcu-
late all necessary kinematic quantities as well as matrix
derivatives. To illustrate this, consider the differentiation
of an orthogonal transformation matrix: Recall that an
orthogonal transformation matrix enables the expression
of vectors relative to different unit vector sets. That is,
if B is a body moving in a fixed frame R and if ni and
Ni (i=1,2,3) are mutually perpendicular unit vectors fixed
in B and R, then the Ni and the ni may be related by an
orthogonal transformation matrix S with elements Si jas:

Ni = Si jn j and n j = Si jNi (6)

(with summation over repeated indices) where the Si j are
defined as

Si j = Ni •n j (7)

Consequently if V is any vector expressed in terms of the
Ni and the ni as

V = ViNi = v jni (8)

then the components Vi and vi are related by the expres-
sions:

Vi = Si jv j and v j = Si jVi (9)

(Note the similarity of Eqs. 6 and 9.)

Consider now the derivatives of S: Since the Ni are fixed
in R, we have

dSi j/dt = d(Ni ·ni)/dt = Ni ·dn j/dt = Ni ·ω×n j (10)

where the last equality follows from Eq. 5 since the n j

are fixed in B.

Next, let T and the n j be expressed in terms of the Ni as:

ω = ΩkNk and n j = S� jN� (11)

Then by substituting into Eq. 10 we obtain

dSi j/dt = Ni ·ΩkNk ×S� jN� = eik�ΩkS� j (12)

where eik� is the usual permutation symbol [see, for ex-
ample, Josephs and Huston (2002)].

Equation 12 may be written in the forms:

dSi j/dt = Wi�S� j and dS/dt = W S (13)

where the Wi� are the elements of the angular velocity
matrix defined by inspection of Eq. 12 as:

Wi� = eik�Ωk =

⎡
⎣

0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤
⎦ (14)

Again, the derivative is computed by multiplication – a
convenient numerical procedure.
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4 Partial velocities and partial angular velocities

Consider a generic multibody system such as in Fig. 1.
If the bodies are connected by spherical joints, then in
the absence of other constraints, the system will have
3N+3 degrees of freedom, where N is the number of bod-
ies. Each body has three rotation degrees of freedom and
the system as a whole has three translation degrees of
freedom in the inertia frame R. The rotations are con-
veniently described in terms of orientation changes of
the bodies relative to their adjacent lower numbered bod-
ies. The translations are conveniently defined in terms of
the movement of a reference point of body 1 (perhaps its
mass center) relative to the origin of R.

If the system has constraints, such as closed loops, spec-
ified motion, or partially restricted joint motion, the con-
venient numerical approach is to represent these con-
straints by constraint equations which are later appended
to the dynamical equations. (An even more general ap-
proach is to initially allow each body to have six degrees
of freedom and then to configure the system via the con-
straint equations. This procedure, however, is not usually
practical or convenient for most physical systems.)

The degrees of freedom are usually represented by vari-
ables qr (r=1,. . . ,3N+3) called “generalized coordinates”
which then become the dependent variables in the gov-
erning differential equations. (An alternative, more effi-
cient procedure numerically is to use generalized speeds
as discussed in the next section.)

For a typical body Bk of the system, the principal kine-
matic quantities of interest are together with the angular
velocity and the angular acceleration. Then for an N-
body system, there are thus 4N kinematic quantities of in-
terest. If the system has n degrees of freedom (n=3N+3)
the mass center velocity and the angular velocity may be
expressed as [see for example Huston (1990), Huston and
Liu (2001), and Josephs and Huston (2002)]:

vk = vk�mq̇�nom and ωk = ωk�mq̇�nom k = 1, ...,N

(15)

where the nom (m=1, 2, 3) are mutually perpendicular unit
vectors fixed in R.

The derivatives of vk and ωκ with respect to the q̇� are
called “partial velocity” and “partial angular velocity”
vectors and in view of the linear dependence of vk and
ωk on the q̇�, the partial velocity and partial angular ve-

locity vectors are simply the coefficients of the q̇� in Eq.
15. That is,

∂vk/∂q̇�
D=vk,� = vk�mnom and

∂ωk/∂q̇� = ωk,� = ωk�mnom k = 1, ...,N; � = 1, ...,n (16)

The coefficients vk�m and ωk�m form N ×n×3 block ar-
rays which form the “building blocks” of the kinematic
and dynamic analysis. Interestingly these arrays may be
automatically generated numerically once the connection
configuration (via the lower body array) is known and the
geometric and inertial properties of the bodies are known.

The partial velocity and partial angular velocity arrays
are analogous to base vectors used in classical continuum
mechanics analyses.

Finally, using differentiation algorithms, the mass cen-
ter accelerations and the body angular accelerations are
readily obtained as:

ak = (vk�mq̈� + v̇k�mq̇�)nom and

αk = (ωk�mq̈� + ω̇k�mq̇�)nom (17)

5 Generalized speeds

The usual selection of general coordinates for rotational
degrees of freedom is orientation angles. But when ori-
entation angles are used in this role there occur nonlin-
earities in the form of trigonometric functions which in
turn can allow singularities to occur in the numerical so-
lution of the governing equations.

To see this, consider again a body B moving in a refer-
ence frame R. If dextral (Bryan) orientation angles, say
∀, ∃, (, are used to define the orientation of B in R, then
the angular velocity T of B in R may be expressed as [see
for example Josephs and Huston (2002]:

ω = (α̇+ γ̇sβ)n1 +(β̇cα − γ̇cβsα)n2

+(β̇sα + γ̇cβcα)n3 = ωini (18)

where n1, n2, and n3 are mutually perpendicular unit vec-
tors, fixed in R and where s and c represent sine and co-
sine. Then by solving for α̇, β̇, and γ̇ in terms of ω1, ω2,
and ω3 we obtain

α̇ = ω1 + sβ(ω2sα −ω3cα)/cβ,

β̇ = ω2cα +ω3sα,
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γ̇ = (−ω2sα +ω3cα)/cβ (19)

A singularity is seen when ∃ is π/2 or 3π/2. Such sin-
gularities occur no matter how the orientation angles
are chosen [see for example Huston and Liu (2001) and
Kane, Likins, and Levinson (1983)].

These nonlinearities and singularities are conveniently
avoided through the use of Euler parameters as discussed
in the next part and through the use of “generalized
speeds” in place of the generalized coordinate derivatives
in Eqs. 15. Specifically, generalized speeds are defined
as linear combinations of generalized coordinate deriva-
tives as:

y� = η�rq̇r +b� (r, � = 1, ...,n) (20)

where the η�r and the b� are arbitrary functions of
the generalized coordinates and time provided only that
detη�r �= 0 so that these expressions may be uniquely
solved for the q̇r in terms of the ys. [See Kane and Wang
(1965)]. Then by substitution Eqs. 15 become:

vk = v̂k�my�nom and ωk = ω̂k�my�nom (21)

where the v̂k�m and the ω̂k�m depend upon the vk�m and the
ωk�m of Eqs. 15 and the ηrs and the bsof Eq. 20.

Interestingly if in Eqs. 20 the ys for the rotational de-
grees of freedom are selected as relative angular velocity
compoments, there occur dramatic simplifications in the
form of the partial velocity and partial angular velocity
components v̂k�m and ω̂k�m. Indeed, for this selection the
majority of the ω̂k�m are zero and the non-zero terms are
simply elements of the transformation matrices. More-
over, the v̂k�m may be expressed in terms of the ω̂k�m.

Figure 2 : Two typical adjoining bodies

To see this consider two typical adjoining bodies B j and
Bk of a multibody system as in Fig. 2 where the n jm

and the nkm (m=1,2,3) are mutually perpendicular unit
vectors fixed in B j and Bk. Let SJK be an orthogonal
transformation matrix relating the unit vector sets as in
Eq. 6. That is,

SJKmn = n jm ·nkn, n jm = SJKmnnkn, nkn = SJKmnn jm

(22)

Observe that for a chain of three adjoining bodies Bi, B j

and Bk Eq. 22 leads to the transitive relation:

SIK = SIJ SJK (23)

By repeated use of this expression we can readily obtain
a transformation matrix relating unit vectors of Bk and
those of the inertia frame R. For example, for the multi-
body system of Fig. 1 S09 is

S09 = S01S12S24S47S79 (24)

where 0 refers to R. (Observe the consistency of the pat-
tern of the indices with the 9th column of Tab. 1.)

Next, let ω̂k be the angular velocity of Bk relative to B j

and let ω̂k be expressed as

ω̂k = ω̂knn jn = S0Kmnω̂knnom = ω̂k�my�nom (25)

Thus if the y� are selected as the ω̂kn we see by inspection
across the last equality that the ω̂k�n are simply elements
of the transformation matrices.

We can readily develop algorithms involving the lower
body array L(K) to automatically evaluate the ω̂k�n. Table
2 lists results for the example system of Fig. 1.

Table 2 : Partial angular velocity components for the sys-
tem of Fig. 1
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6 Euler parameters

Euler parameters play two principal roles in multibody
dynamics analyses: First they are a substitute for orien-
tation angles in defining the orientations of the bodies of
the system. Unlike orientation angles, Euler parameters
do not give rise to singularities as in Eqs. 19. The sin-
gularities are avoided by using four variables, instead of
three, to define the orientation of a body. This in turn
leads to linear relations and quadratic forms, and these
singularities do not occur. Also, as a result of the simpli-
fied kinematic expressions the additional variable does
not create a computational burden.

Second, Euler parameters are an aid in formulating sys-
tems of first order equations for numerical integration.

Figure 3 : A body B moving in a fixed frame R

To briefly explore and document these concepts, consider
again the movement of a body B in a fixed frame R as in
Fig. 3 where N1, N2 and N3 are mutually perpendicular
unit vectors fixed in R. There is a long established the-
orem in kinematics which states that if B has any given
orientation in R it can be brought into any other given ori-
entation by a single rotation about a line L fixed in both
B and R [see, for example, Whittaker (1937) and Huston
(1990)]. Then if λ is a unit vector parallel to L, and if 2
is the rotation angle, four Euler parameters εi (i=1,. . . ,4)
may be defined as

ε1 = λ1 sin(θ/2), ε2 = λ2 sin(θ/2),

ε3 = λ3 sin(θ/2), ε4 = cos(θ/2) (26)

where the λi (i=1,2,3) are the Ni components of λ.

Observe that the four parameters of Eq. 26 are not inde-
pendent but instead they are related by the expression

ε2
1 +ε2

2 +ε2
3 +ε2

4 = 1 (27)

With the definitions of Eq. 26 we can readily express
the rotational kinematics in terms of the Euler parame-
ters: For example, let ni (i=1,2,3) be unit vectors fixed
in B, which at the beginning of an orientation change are
mutually aligned with the unit vectors Ni of R. Then as
B rotates to some general orientation, the ni will have a
general orientation relative to the Ni. With the ni fixed in
B, the orientation of B, in R, is then defined by the orien-
tations of the ni in R, and specifically relative to the Ni.
The transformation matrix S relating the ni and the Ni, as
in Eqs. 6 and 7, is then [see Huston (1990)]:

S =

⎡
⎣

(ε2
1 −ε2

2 −ε2
3 +ε2

4) 2(ε1ε2 +ε3ε4)
2(ε1ε2 +ε3ε4) (−ε2

1 +ε2
2 −ε2

3 +ε2
4)

2(ε1ε3 −ε2ε4) 2(ε2ε3 +ε1ε4)

2(ε1ε3 +ε2ε4)
2(ε2ε3 −ε1ε4)
(−ε2

1 −ε2
2 +ε2

3 +ε2
4)

⎤
⎦ (28)

Alternatively, if dextral orientation angles ∀, ∃, ( are used
to define the orientation of B in R, the transformation
matrix S is

S =

⎡
⎣

cβcγ −cβsγ sβ
(cαsγ + sαsβcγ) (cαcγ − sαsβsγ) −sαcβ
(sαsγ−cαsβcγ) (sαcγ +cαsβsγ) cαcβ

⎤
⎦ (29)

Observe the simplicity and uniformity of the quadratic
forms in the elements of S in Eq. 28 as compared with
nonuniform and nonlinear trigonometric products in the
elements in Eq. 29.

Next, let ε be a column array of Euler parameters whose
transpose εT is: [ε1ε2ε3ε4], and let T be an array of angu-
lar velocity components (of B in R relative to the Ni) with
transpose ωT : [ω1 ω2 ω3 0]. Then ε and ω are related by
the simple expressions:

ε̇ = 2Eω and ω = (1/2)ET ε̇ (30)

where E is the orthogonal matrix

E =

⎡
⎢⎢⎣

ε4 −ε3 ε2 −ε1

ε3 ε4 −ε1 −ε2

−ε2 ε1 ε4 −ε3

ε1 ε2 ε3 −ε4

⎤
⎥⎥⎦ (31)
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[See also Josephs and Huston (2002).]

Observe the absence of singularities in Eqs. 30 as com-
pared with those of Eq. 19.

Finally, recall that most numerical integration routines
(or “solvers”) of systems of ordinary differential equa-
tions are written for systems of the form: dy/dx=f(x,y)
where y and f are column arrays and x is the independent
variable. Thus if we wish to numerically solve a system
of second order equations, as normally occur in dynamic
analyses, we need to convert the second order equation
to the first order form. This is usually done by introduc-
ing an additional set of dependent variables representing
the first derivatives of the original dependent variables.
But when generalized speeds are used as the dependent
variables, the dynamical equations are already first order
equations and the auxiliary equations are then provided
through the Euler parameters as in the first expression in
Eq. 30, thus avoiding the need to introduce a new set of
dependent variables.

7 Kane’s equations

Kane’s equations, originally called “Lagrange’s Form of
d’Alembert’s Principle,” were introduced by T. R. Kane
in 1961 as an aid in studying nonholonomic systems.
They received relatively little attention for nearly 30
years until they became a principle of choice for studying
large multibody systems [see Huston (1991)].

With Kane’s equations the analysis advantages of La-
grange’s equations and Newton’s laws are simultane-
ously incorporated but without incorporating their cor-
responding disadvantages. Specifically “non-working”
internal constraint forces are automatically eliminated
without the need to conduct tedious differentiation of
energy functions. Indeed by using Kane’s equations,
the governing dynamical equations can be written in
closed form by employing the concepts of generalized
applied (“active”) and inertia (“passive”) forces. Kane
and Levinson (1980) provide a comprehensive compar-
ison of Kane’s equations and other commonly used dy-
namics principles.

To briefly illustrate the use of Kane’s equations with
multibody systems, consider a typical body Bk of a sys-
tem S as in Fig. 4 where Gk is the mass center of Bk and
R is the inertia frame. Let Bk be subjected to an applied
force field (gravity and contact forces) and let this field
be

Figure 4 : A typical body of a multibody system

replaced by an equivalent force field consisting of a sin-
gle force Fkpassing through Gk together with a couple
with torque Mk. Then the generalized active (applied)
force Fλ on Bk for a generalized speed yλ is:

F� = vk�mFkm +ωk�mMkm (32)

where as before vk�m and ωk�m are partial velocity and
partial angular velocity components for Gk and Bk re-
ferred to the unit vectors nom fixed in R for the gener-
alized speed y�, and where Fkm and Mkm are the nom com-
ponents of Fk and Mk.

Similarly, the generalized inertia forces F∗
� on Bk for y�

are

F∗
� = vk�mF∗

km +ωk�mM∗
km (33)

From d’Alembert’s principle the inertia force F∗
k and

couple torque M∗
k on Bk may be expressed as [see Kane

and Levinson (1985)]:

F∗
k = −mkak, M∗

k = −Ik ·αk −ωk × (Ik ·ωk) (34)

where mk is the mass of Bk, Ik is the central inertia dyadic
of Bk, and αk,ωk, and αk are the acceleration of Gk, the
angular velocity of Bk and the angular acceleration of Bk

respectively as given by Eqs. 15 and 17.

Kane’s equations simply state that the sum of the gener-
alized forces is zero for each generalized speed y�. That
is

F� +F∗
� = 0 � = 1, ...,n (35)

where n is the number of degrees of freedom of the sys-
tem.
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By substituting from Eqs. 32, 33, and 34 into 35 we see
that Kane’s equations for multibody systems can be writ-
ten in the compact form:

a�pẏp = f� (36)

where a�p and f� are

a�p = mkvk�mvkpm + Ikmnωk�mωkpn (37)

and

f� = vk�mFkm +ωk�mMkm− (mkvk�mv̇kpmyp

+ Ikmnωk�mωkpnẏp + Ikmnωk�mω̇kpnyp

+ersmIksnωk�mωkqrωkpnypyq) (38)

where the Ikmn are nom, non components of Ik.

8 Constraints

When a multibody system is used to model a physical
system, there are usually constraints on the physical sys-
tem. Typically these constraints are due to closed loops
(geometric) or due to some specified motion (kinematic).
If the constraints are geometric (holonomic) they may be
written in the form:

φi(q j) = 0 i = 1, ...,m; j = 1, ...,n (m < n) (39)

where m is the number of constraints. By differentiating
Eq. 39 may be written in the form:

(∂φi/∂q j)q̇ j = 0 or ci j q̇ j = 0 (40)

where the ci j are defined by inspection. By using Eqs.
20, Eq. 40 may be written in terms of the generalized
speeds as:

bp�y� = g� (41)

If the constraints are kinematic (non-holonomic) that is,
motion or velocity constraints, they may have the form

ĉi j q̇ j = d̂i (42)

or in terms of generalized speeds as

b̂p�y� = ĝ� (43)

Eqs. 41 and 43 may readily be combined into a single
matrix equation as:

By = g (44)

When constraints are exerted on a multibody system,
those constraints are established and maintained through
constraining forces and moments. An analyst may or
may not be interested in knowing the values of these con-
straining force and moment components. If they are not
of interest it is convenient to eliminate them from the
analysis, thus reducing the amount of numerical compu-
tation. Alternatively if they are of interest, they need to
be efficiently exhibited.

To this end, it is usually most convenient analytically, and
also computationally, to formulate the governing dynam-
ical equations as though the system were unconstrained
(as in Eq. 36) and to represent the constraints as forces
exerted on the system. This procedure then requires the
inclusion of these constraining forces (and moments) in
the dynamics equations. This inclusion is readily attained
by the use of generalized constraint forces, computed in
the same manner as the generalized applied and inertia
forces.

Specifically, if the generalized applied, inertia, and
constraint forces are assembled into column arrays as
F, F∗, and F ′ respectively, then Kane’s equations have
the matrix form:

F +F∗ +F ′ = 0 (45)

Interestingly, it has been shown [see Huston (1999)] that
the generalized constraint force array F ′ is directly pro-
portional to the matrix of coefficients B of the constraint
equations in Eq. 44. That is,

F ′ = BT λ (46)

where λ is an array of constraining force and moment
components. Thus the dynamics equations become:

F +F∗ +BT λ = 0 (47)

Taken together, Eqs. 44 and 47 become the governing
equations for the multibody systems. They form a set of
m+n equation for the y� (� = 1,...,n) and the m constraint
force and moment components in the 8 array.
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9 Numerical procedures

If an unconstrained multibody system has n degrees of
freedom represented by n generalized speeds y� (� =
1, ...,n) and if then m constraints are imposed on the sys-
tem via m constraining force and moment components,
these then will be n + m unknowns consisting of the nys
and the m force and moment components. In this case
Eqs. 47 and 44 then represent n dynamics equations and a
constraint equation for the n+n unknowns. These equa-
tions, however, are nonlinear differential algebraic equa-
tions where closed form solutions in terms of elementary
functions generally will not exist. Therefore numerical
solutions are mandated.

There are two commonly used methods for obtaining
these numerical solutions. In the first of these, the con-
straint force and moment array 8 is eliminated between
the two sets of equations leading to a solution for the ys in
terms of a pseudo inverse function. In the second method
8 is eliminated by orthogonal complement matrices, thus
reducing the number of equations to be solved. In both
procedures the force and moment components, if desired,
are obtained by back substitution.

In the first method, Eqs. 35, 37, and 38 are used to rewrite
Eq. 47 in the form:

Aẏ = φ+F +BT λ (48)

where y is the column array of generalized speeds, A is
the array whose elements are a�p of Eq. 37 and where N
is defined by inspection of Eq. 38. Then ẏ is:

ẏ = A−1(φ+F +BT λ) (49)

By substituting into the differentiated form of Eq. 44 we
then obtain

Bẏ = BA−1(φ+F +BT λ) = ġ− Ḃy (50)

Then by solving for (BA−1BT )λ we have

(BA−1BT )λ = ġ− Ḃy−BA−1φ−BA−1F (51)

But BA−1BT is non-singular. Thus we can solve Eq. 51
for 8 and substitute into Eq. 49 and obtain

ẏ = A−1(φ+F)+A−1BT (BA−1BT )−1 ×
(ġ− Ḃy−BA−1φ−BA−1F) (52)

[The term: A−1BT (BA−1BT )−1 is sometimes called the
“weighted pseudo inverse” of B.] See, for example, Law-
son and Hanson (1974).

Equation 52 represents a set of n ordinary differential
equations for the n generalized speeds. Upon solution,
Eq. 51 then provides the constraint force and moment
components through the array 8.

The second method using orthogonal complement arrays
is less cumbersome and consequently more efficient: In
this method an n× (n−m) array C (an “orthogonal com-
plement” to B) is sought such that

BC = 0 or CT BT = 0 (53)

Then by premultiplying in Eq. 48 by CT we have

CT Aẏ = CT (φ+F) (54)

Then by combining these equations with the differenti-
ated form of Eq. 44 we have again a set of n ordinary
differential equations for the n generalized speeds. Upon
solution 8 can be obtained by back substitution, as be-
fore.

A principal advantage of this second method is that ef-
ficient algorithms have been written to obtain orthogo-
nal complement arrays. One such algorithm proposed by
Walton and Steeves (1969) uses a zero eigenvalues theo-
rem to generate the orthogonal complement array.

10 Discussion

Our objective in this paper is two-fold: 1) to provide a
listing of developments leading to the development of
computational multibody dynamics; and 2) to provide
a concise but yet comprehensive outline of procedures
for the computer modeling of large multibody systems.
The outlined modeling readily leads to numerical algo-
rithms for developing and solving the governing dynam-
ical equations.

The computational efficiency stems from the use of: 1)
lower body arrays for organizing the geometry; 2) dif-
ferentiation algorithms where derivatives are computed
by multiplication; 3) partial velocities and partial angu-
lar velocities which eliminate non-working internal con-
straint forces; 4) generalized speeds and Euler parame-
ters which eliminate singularities arising in the numerical
solutions; 5) Kane’s equations for providing the govern-
ing dynamical equations; and 6) orthogonal complement
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arrays for accommodating constraints on the system.
Once the connection configuration (via the lower body
array) is known; and the geometric and inertial proper-
ties of the bodies are known; and the applied forces and
constraints are given; and finally, the initial conditions
are given; the complete system of governing differential
equations can be developed and solved numerically.

A question arising in this procedure is: How accurate
are the results? To answer this question Liu and Hus-
ton (1995) have developed a testing function for evaluat-
ing the solution accuracy. Specifically, they established
that the kinetic energy K of the system is related to the
generalized speeds and generalized applied forces by the
simple relation:

dK/dt =
n

∑
�=1

F�y� (55)

At each integration time step the kinetic energy can read-
ily be calculated, and then since the y� and F� are also
known, Eq. (55) can be integrated to obtain a compari-
son value of the kinetic energy.

Finally, as these concepts are further developed and in-
corporated into computer software, real time simulations
of mechanical systems is feasible. Immediate application
will occur with human body modeling, robotic analyses,
vehicle dynamics, and naval systems.
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