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Issues in Modeling Heterogeneous Deformations in Polycrystalline Metals using
Multiscale Approaches

Paul R. Dawson1, Donald E. Boyce2 and Ronald Rogge3

Abstract: Computational mechanics provides a pow-
erful environment for modeling the evolution of material
structure during deformation processes and for associat-
ing that evolution with changes to the mechanical prop-
erties. In this paper, we illustrate a two-scale formulation
that links the mechanical loading applied at the scale of
a component (the continuum scale) to the responses of
the material at the scale of the crystals that comprise it
(the crystal scale). Employing the capabilities offered by
computational mechanics, we can better understand how
heterogeneity of deformation arising at both the contin-
uum and crystal scales influences the behaviors observed
experimentally. Such an understanding is central to im-
proving the performance of engineering alloys.

keyword: Finite element, plasticity, polycrystals, mul-
tiscale, in situ diffraction

1 Focus and Scope

Twenty-five years ago, the modeling of material prop-
erty evolution was in its infancy. Research on the topic
was motivated in part by materials processing, a sub-
ject central to our manufacturing competitiveness. NSF,
especially through the efforts of Dr. Clifford Astill in
the Solid Mechanics Program, supported research to de-
velop simulation methodologies with a rigorous mechan-
ics foundation. Early efforts focused on the modeling of
processes such as hardening and damage formation us-
ing state variables with only indirect links to the material
structure. Over time, the modeling capabilities matured
into powerful tools. Simplistic representations of state
were replaced by ones with direct association to observ-
ables of the material, with crystallographic texture being
a notable example. Experimental methods progressed
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from coarse measurments of resultant forces and gross
shape changes to sophisticated diffraction measurements
under in situ loading. Numerical formulations advanced
from crude 2D approximations to detailed 3D renderings
of the material and the processes that alter it. Recently,
efforts have been devoted to the development of method-
ologies that can bridge physical length scales. At one end
of the spectrum of scales is the process; at the other the
building blocks of the material (potentially to the atoms
themselves). In the spirit of this field, we present a for-
mulation that bridges the crystal scale, where elastic and
plastic processes can be described on a more basic level,
and continuum scale, where the boundary value problem
associated with the mechanical loading of a mechanical
component is defined. The methods trace their roots to
the early support of Dr. Astill over a quarter century
ago (Dawson (1984, 1987); Eggert and Dawson (1987);
Mathur and Dawson (1987, 1989); Beaudoin, Dawson,
Mathur, Kocks, and Korzekwa (1994)).

Polycrystal elastoplasticity is a microstructural approach
for modeling the mechanical behavior of crystalline
solids. Models of this type have two basic parts: the sin-
gle crystal equations and the relations for averaging crys-
tal quantities over polycrystalline aggregates. The latter
in essence define the grain interactions allowed by the
model. As the polycrystal properties are derived from
the collective responses of crystals comprising a poly-
crystal, they are strongly influenced by both the single
crystal behavior and the nature of the grain interactions.
Single crystal mechanical properties depend on the ori-
entation of the crystal’s atomic lattice. Thus, the strength
of the mechanical anisotropy of a polycrystal depends on
that of the individual crystals, on the lattice orientation
distribution, and on the methodology for averaging sin-
gle crystal responses over the distribution. At the crystal
scale, deformation under load typically is spatially het-
erogeneous; averaging over those grains that comprise a
polycrystal tends to dampen this variability, but the ag-
gregate response of the polycrystal can remain highly
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anisotropic. In this paper, we take the polycrystal re-
sponse to be the same as that of the continuum, giving
two effective length scales: the crystal (microscopic) and
the continuum (macroscopic).

As mentioned above, the early efforts to accommodate
the influence of complex microscopic process in macro-
scopic models was by means of variables that are in-
directly associated with the microscopic state. For ex-
ample, the variable for isotropic strength used in many
constitutive models is proportional to the (square root
of the) dislocation density. Its evolution with straining
is determined by correlations with measured values of
the strength, rather than by direct measurement of dis-
location densities. Multiscale formulations offer the po-
tential to explicitly account for processes at microscopic
scales in the assessment of properties at macroscopic
scale. The intent of multiscale modeling often is to in-
form the macroscopic model of the properties expected
as a consequence of behaviors at microscopic scale, as
well as to inform the microscopic scale of the loading
conditions imposed at the macroscopic scale. This neces-
sitates the movement of information regarding the stress
and deformation between micro and macro scales as part
of any computations that employ the formulation.

A number of issues arise in implementing a finite
element-based multiscale approach related the consis-
tency of responses across the scales. These include meth-
ods for projecting macroscale motion onto microscale
ensembles, for defining consistent measures of stiffness
at both scales, and for determining valid samples of the
microstructure. We address these in the context of sim-
ulating neutron diffraction experiments performed on a
mechanical component under in situ loading. We be-
gin with a summary of the model equations. We then
present simulation results associated with two types of
experiments, ones having macroscopically homogeneous
deformations (tension tests) and ones having macroscop-
ically inhomogeneous deformations (bending tests). Fi-
nally, we discuss these in terms of the issues mentioned
above. The underlying intent is to illustrate by example
progress made in the area of computational mechanics
that benefitted from Dr. Astill’s strong support early in
its development.

2 Elastic and Plastic Behaviors of Single Crystals

We refer the reader to two references, the books edited
by Kocks, Tome, and Wenk (1998) and by Raabe, Roters,

Barlat, and Chen (2004) for comprehensive coverage of
the topic. The developments used here for both the con-
tinuum and crystals scales follows the procedure sum-
marized in chapters within those references. The physi-
cal domain (volume) of a polycrystalline body is desig-
nated as B and its boundary as ∂B . Coordinates of points
within this domain are given by xxx. The velocity field over
the domain is given by uuu(xxx) and its spatial gradient, the
velocity gradient, as l(xxx). The polycrystalline domain
is divided into crystal subdomains that fill the domain
without overlapping. The Cauchy stress within a crystal
(called the crystal or micro stress) is designated as σσσ(xxx)
and the traction on a surface within or on the boundary
of B as ttt. The following notation convention is adopted:
lower case variables associated with either the stress or
the motion apply to quantities at the crystal scale while
upper case letters apply to quantities at the continuum
scale; plain fonts are used for scalars, math bold fonts
are used for vectors, and math sans serif fonts are used
for higher-order tensors or matrices; superscript symbols,
�, � and �, refer to mapping over a change of configura-
tion; superscript α refers to a particular slip system; and,
superscript ′ refers to the deviatoric part of a tensor. A
superposed dot indicates material time differentiation.

The material we are modeling is an austenitic stainless
steel that is essentially single phase (face-centered cu-
bic). We assume that in the regime of loading (room
temperature and quasi-static) the inelastic deformation is
dominated by crystallographic slip. At the level of an in-
dividual crystal, the motion consists of elastic and plastic
parts, as well as a rotation. The plastic deformation oc-
curs through crystallographic slip between atomic planes
of the crystal lattice. The elastic deformations are asso-
ciated with lengthening or shortening of the interatomic
distances. This description gives rise to the representa-
tion of the kinematics of crystal deformations with a mul-
tiplicative decomposition of the deformation gradient f

f = f�f�f� = v�r�f� (1)

where f� is the purely plastic part of f arising from slip, f�

is the lattice rotation which may be written as r�, and f�

is the elastic part of f. The deformation gradient f� can be
used to define an intermediate configuration, B̂ , which
is a relaxed configuration obtained by unloading with-
out rotation from the current configuration B . Using this
interpretation of B̂, the symmetric left elastic stretch ten-
sor, v�, is introduced. For the case of small elastic strains,
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v� = I + e�, where ||e�|| << 1 and I is the second order
identity tensor. From this decomposition, the kinematics
then are expressed in rate form as

l = ḟf−1 = d+w (2)

where d is the deformation rate tensor and w the spin
tensor, expressed in the current configuration B . These
terms may be split into spherical

tr(d) = tr(ė�) (3)

and deviatoric parts

d′ = ė�′ + d̂�
′
+e� ′ŵ�− ŵ�e�′ (4)

and

w = ŵ� +e� ′d̂�
′ − d̂�

′
e�′ (5)

where d′ and e�′ are the deviatoric components of d and
e�, respectively. The ·̂ superscript indicates mapping for-
ward by r� according to

ŵ� = r�w�r�T and d̂�
′
= r�d� ′r�T (6)

to define the plastic deformation rate tensor, d̂�
′
, and the

plastic spin tensor, ŵ�, in the relaxed configuration B̂.

The elastic response follows a linear relation

τττ = ce� where c = c(rrr) (7)

where c is the tensor containing elastic moduli for cu-
bic crystal symmetry which depends on the orientation
of the crystallographic lattice, rrr. The Kirchhoff stress, τττ,
is related to the Cauchy stress, σσσ, through τττ = βσσσ, where
β = det(v�).

The viscoplastic flow rule is derived from the crystallo-
graphic slip and is defined as

l̂� = d̂�
′
+ ŵ� = ṙ�r�T +∑

α
γ̇α(b̂bb

α ⊗ m̂mmα) (8)

where b̂bb
α

is the slip direction and m̂mmα the normal to the
slip plane along the α-slip system in configuration B̂ .
The assumed slip systems for the FCC crystals are the 12
systems with (110) directions and 〈111〉 normals. The
symmetric and skew symmetric parts of the plastic ve-

locity gradient, d̂�
′
and ŵ�, respectively, are defined as

d̂�
′
= ∑

α
γ̇αp̂α(rrr) and ŵ� = ṙ�r�T +∑

α
γ̇αq̂α(rrr) (9)

where

p̂α(rrr) = sym(b̂bb
α ⊗ m̂mmα) and q̂α(rrr) = skw(b̂bb

α ⊗ m̂mmα) (10)

The plastic shearing rate on the α-slip system, γ̇α, is re-
lated to the crystal stress by the power law relation

γ̇α = γ̇0

( |τα|
g

) 1
m

sgn(τα) = f (τα,g) (11)

where g is the slip system hardness, γ̇0 is a reference
shear rate, and m is the rate sensitivity of slip. The re-
solved shear stress, τα, is the plastic work rate conjugate
to γ̇α, and is the projection of the deviatoric part of the
Kirchhoff stress, τττ′ on the α-slip system as

τα = tr(p̂ατττ′) (12)

The slip system hardness, g, is assumed to be the same
for all slip systems and evolves according to the follow-
ing hardening rule

ġ = h0

(
gs(γ̇)−g
gs(γ̇)−g0

)n

γ̇ (13)

where

gs(γ̇) = g1

(
γ̇
γ̇1

)m′

and γ̇ = ∑
α
|γ̇α|. (14)

Here, γ̇α is the net shear strain rate in the crystal, gs(γ̇)
is the saturation hardness, and h0, g0, n, g1, γ̇1, and m′

are slip system hardening parameters, which are the same
for all slip systems. The lattice orientation evolves as a
consequence of the spin, and is given by

ṙrr = vvv =
1
2

ωωω +(ωωω · rrr)rrr +ωωω× rrr (15)

where

ωωω = vect

(
ŵ�−∑

α
γ̇αq̂α

)
(16)

3 Averaging over Polycrystals

We next present the equations to link the scales by re-
lating the analogous quantities defined for each. From
this we draw the need to make assumptions to be able
to build a multiscale model that explicitly includes both.
It may be difficult to a priori establish whether or not
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such assumptions are reasonable, although some may be
known to lead to either upper or lower bounds on the
macro properties.

Macroscopic quantities analogous to the microscopic ve-
locity gradient and Cauchy stress are defined using for-
mulae that deliver representative values for the domain
B by considering the velocity and traction distribution
over the boundary ∂B . The representative value of the
velocity gradient is based on the distribution of velocity
over the boundary; the representative value of the Cauchy
stress is based on the distribution of traction over the
boundary. One need not know the details of how each of
the corresponding microscopic quantities is distributed
over the domain to determine the macroscopic values.
The macro velocity gradient, L, defined this way is:

L =
1
B

Z
∂B

nnn⊗uuudΓ (17)

and the macro stress, ΣΣΣ, is:

ΣΣΣ =
1
B

Z
∂B

xxx⊗ ttt dΓ (18)

where nnn is the unit vector normal to the boundary, ∂B .

It is also possible to construct volumetric averages of the
micro scale velocity gradient and Cauchy stress as:

l = 〈l〉=
1
B

Z
B

ldB (19)

and

σσσ = 〈σσσ〉 =
1
B

Z
B

σσσdB (20)

If

ΣΣΣ = σσσ and L = l (21)

then the responses at the continuum and crystal scales
can be directly associated with each other. However, for
this to be true, the stress and velocity gradient fields must
be smooth. This is evident from derivations (see Hill
(1979) and Nemat-Nasser and Hori (1999)) that employ
the divergence theorem to prove the equivalence of L to l
and of ΣΣΣ to σσσ. Should the crystal scale quantities lack the
smoothness demanded by the divergence theorem, we are
not guaranteed that the volumetric averages of the crys-
tal scale quantities will be equivalent to the associated
quantities at the continuum scale. The implication of this
is that the properties that relate the stress and (rates of)
deformation are specific to the scale, a distinction that
may or may not be significant. We will discuss this point
in the context of the bending application later.

4 Finite Element Formulation for Crystal and Con-
tinuum Scales

To consider the influence of the potential difference be-
tween the macro stress and the volume averaged micro
stress, we examine the formulations for solving the field
equations for each scale. The formulation for each builds
from the weak form of the equilibrium equations.

4.1 Crystal-scale formulation

For the crystal scale, the weak form is:

Ru = −
Z

B
tr

(
σσσ′T gradψψψ

)
dB +

Z
B

πdivψψψdB

+
Z

∂B
ttt ·ψψψdΓ+

Z
B

ιιι ·ψψψdB (22)

where the deviatoric Cauchy stress, σσσ′, and mean stress
(negative of the pressure, π) sum to the total Cauchy
stress:

σσσ = σσσ′ −πI (23)

Traction or velocity is specified over the boundary. Fol-
lowing a standard Galerkin methodology, ψψψ are the
weights that span the same space as the trial functions
for the velocity.

We note for a velocity-based formulation, the velocity
field is forced to be continuous everywhere via the prop-
erties of the trial functions. However, the stress field typ-
ically will not be continuous across element boundaries.
Thus, one should not expect that an average stress com-
puted over the domain at the crystal scale will necessarily
render the continuum stress, as defined by Equation 20,
as the necessary smoothness conditions may not be satis-
fied.

The stress is replaced ultimately with the velocity field
through introduction of the constitutive equations and the
kinematic relation defining the velocity gradient. The
first step in this process is to introduce a difference ex-
pression for the elastic strain rate as

{
ė�

}
=

1
∆t

({
e�

}
−

{
e�

0

})
(24)

This is separated into the volumetric part

−π =
κ∆t
β

tr
{
d
}

+
κ
β

tr
{

e�
0

}
(25)
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and the deviatoric part

{
d′

}
=

1
∆t

{
e� ′

}
+

{
d̂�

}
+

[
ŵ�

]{
e�′

}
− 1

∆t

{
e�

0
′}

(26)

Inverting the equation for the elastic behavior in Eq 7,

{
e�′

}
=

[
c
]−1{

τ′
}

(27)

and combining it with a relation obtained from merger of
Eq 9, 11 and 12

{
d̂�

}
=

[
m

]{
τ′

}
(28)

where

[
m

]
= ∑

α

(
f (τα,g)

τα

){
pα

}{
pα

}T
(29)

results in a matrix equation for the stress in terms of the
total deformation rate

{
σ′

}
=

[
s
]({

d′
}
−

{
h
})

(30)

where:

[
s
]−1

=
β
∆t

[
c
]−1

+β
[
m

]
(31)

and

{
h
}

=
[
ŵ�

]{
e� ′

}
− 1

∆t

{
e�

0
′}

(32)

Equations 25 and 30 are substituted into Eq 22 to elimi-
nate the explicit appearance of the stress.

4.2 Continuum scale formulation

Similarly, for the macro scale, the weak form is:

Ru = −
Z

B
tr
(
ΣΣΣ′T gradΨΨΨ

)
dB +

Z
B

ΠdivΨΨΨ dB

+
Z

∂B
TTT ·ΨΨΨdΓ+

Z
B

J ·ΨΨΨ dB (33)

where the macro Cauchy stress again has been decom-
posed into a pressure, Π, and a deviatoric part, ΣΣΣ′:

ΣΣΣ = ΣΣΣ′ −ΠI (34)

ΨΨΨ are the weights.

We proceed to a matrix equation for the deviatoric stress
in terms of the deformation rate, now for the macroscopic
quantities, in the same fashion as for the crystal scale. An
equation similar in structure to Equation 30 is assumed to
exist at the macro level of the form:

{
Σ′

}
=

[
S
]({

D′
}
−

{
H

})
(35)

Relating the micro and macro constitutive equations can

be accomplished in a variety of ways. If the
[
S
]

matrix is

determined from computed responses of the micro scale
body (and employing the boundary-based definitions of
macro stress and velocity gradient), a suite of straining
directions is necessary. This would be costly, but in the-
ory, feasible. If instead, one chooses to invoke a number
of constitutive assumptions, the procedure for assessing
the macro scale properties from the aggregate responses
of the micro scale constituents can be streamlined con-
siderably. Two basic assumptions are needed:

1. the volumetric average of the micro stresses is ap-
proximately the macro stress, and

2. a mean field approximation regarding the distribu-
tion of stress or deformation rate over the micro
scale domain may be made.

For example, if we assume the specific condition that l =
L, then:
[
S
]

=
〈[

s
]〉

and
{

H
}

=
〈[

s
]{

h
}〉

. (36)

Applying a mean field assumption as described above
is the standard procedure for linking models that span
length scales. Some mean field assumptions lead to volu-
metric averages that constitutive bounds on the computed
behaviors. For the example of identical velocity gradi-
ents, it is well known that the computed properties con-
stitute an upper bound on the stiffness( see Taylor (1938),
for example). Thus, for the same change in shape for
equivalent micro and macro domains, the macro stress
will change by a larger amount. Similarly, one could as-
sume that the stress is identical at both the macroscopic
and microscopic scales, leading to a lower bound on the
stiffness (see Asaro and Needleman (1985); Marin and
Dawson (1998a,b)).

From this point the crystal scale and macroscopic scale
formulations are the quite similar. The trial functions are
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introduced for the velocity, leading to a matrix equations
for the nodal point velocities at the end of a time step.
This is a nonlinear system, involving the elastic strain at
the end of the time step as well as the velocity, that is
solved iteratively. The lattice orientations and slip sys-
tem strengths are updated over the time step by integrat-
ing Equations 15 and 13 numerically. The numerical so-
lution gives the nodal velocities as a function of time,
together with the history of the elastic strain, lattice ori-
entations and slip system strengths. For the macroscopic
formulation, however, there is an aggregate of crystals at
each point where properties are evaluated with an asso-
ciated distribution of lattice orientations and slip system
strengths.

4.3 Multiscale methodology

Bounds are often useful and may be adequate for many
purposes. However, in linking scales in a multiscale sim-
ulation using averaging assumptions that bound the prop-
erties from above or below can lead to unrealistic results.
Assuming that the velocity gradient at the microscopic
level is identical to the macroscopic velocity gradient de-
pletes the microscopic medium of many of its kinematic
degrees of freedom. All of the crystals in a polycrys-
talline aggregate do not deform identically in a mode
that matches the macroscopic average, but making this
assumption forces that behavior on the system. In gen-
eral, once this assumption is made, the stresses must be
allowed to take on the values that are consistent through
the constitutive model. These values need not be the
same in all crystals, and generally will not be if the crys-
tal responses are anisotropic. Thus, the stress cannot be
continuous across grain boundaries for arbitrary spatial
arrangements of the crystals. This may lead to difficul-
ties when attempting to reconcile observations made on
a single experiment on both the macro and micro scales.

Instead, one could choose to force the macroscopic dis-
cretization to exhibit the same apparent stiffness as the
microscopic ensemble by modifying the properties. For
the elastic response this would constitute reducing the
moduli for the macroscopic model to compensate for the
loss of kinematic degrees of freedom. We will utilize this
approach in the example presented later by requiring that
the change in macro stress under a prescribed deforma-
tion be the same as the micro stress for the same over-
all deformation and computed using the surface-traction
definition of stress.

The finite elements in the macroscopic formulation pro-
vide a very natural way to convey information from the
macroscopic scale to the crystal scale. Elements whose
position and size correspond to crystal scale volumes
(polycrystals) are chosen. The histories of the coordi-
nates of their nodal points are extracted from the over-
all records. An equivalent volume of material is filled
with crystal scale finite elements in which each element
represents a distinct crystal. The lattice orientations of
the crystals are initialized by sampling the experimen-
tally measured distribution functions. The positions of
the surfaces of the volume are then driven to move in a
manner defined by the movement of the nodal coordi-
nates over the duration of the experiment. In this way,
the external shape change of the crystal scale volume, as
computed from the macroscopic level, is imposed on an
aggregate of grains that fills that volume. Within the vol-
ume, the deformation may be very heterogeneous from
crystal to crystal.

In general, information must also be passed from the
crystal scale to the continuum scale for a fully coupled
formulation. Ideally, properties could be computed at
finer scales and passed up to the coarser scales. How-
ever, as introduced earlier in the context of averaging, a
property does not have precisely the same meaning as
one crosses length scales because it does not relate pre-
cisely the same quantities. For example, the elastic mod-
ulus that relates stress to elastic strain at the crystal level
is not the same quantity that relates the stress to elastic
strain at the macroscopic scale, so it need not have the
same value. One can compute the relation between the
values of the property at the coarser scale knowing the
property at the finer scale and making appropriate use of
the definitions of the stress and strain measures involved,
provided the conditions of smoothness discussed before
are met. If the smoothness is not guaranteed, then mod-
eling assumptions are invoked that must be assessed by
comparison to experiments. In this regard, experiments
that provide data at both scales are vital. Diffraction ex-
periments with in situ loading provide these data.

5 Available Data from In Situ Diffraction Experi-
ments

Diffraction measurements provide data that are crucial
for understanding material behavior at the crystal scale,
including the quantification of the microstructural state
and the response to loading. Books are available that
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collectively cover both basic and advanced topics of the
subject, so we refer the reader to references by Warren
(1990), Krawitz (2001) and Snyder, Fiala, and Bunge
(1999) for background regarding diffraction methods and
their application to polycrystalline materials.

5.1 Material characterization

The material used in this investigation is a super-
austenitic stainless steel (AL6XN), which has a nomi-
nal composition consisting of 49 Wt% Fe, 20 Wt% Cr,
24 Wt% Ni, 6 Wt% Mo, and < 1 Wt% each of N,
Mn, Si, and Cu (as per fact sheet by Allegheny Ludlum
Corporation (no date)). The micrograph given in Fig-
ure 1 was obtained from a specimen etched to highlight
the grain boundaries. The material is essentially single-
phase (FCC) with a relatively equi-axed grain structure.
The average grain size is on the order of 50 µm. There is
evidence of mechanical twins and second phase particles
(referred to as the sigma phase) that are much smaller
than a typical grain of the primary phase. The crystal-

Figure 1 : Optical micrograph of AL6XN microstruc-
ture.

lographic texture was determined by measuring several
pole distributions by neutron diffraction (Figures 2) and
from those constructing the ODF, shown in Figure 3 over
the Rodrigues cubic fundamental region. The texture is
characteristic of a mild rolling texture. The mechanical
behavior under tensile loading is shown in Figure 4. The
material exhibits a nearly constant strain hardening rate
to large strain. There is little initial yield asymmetry, but

after loading reversals after 3% or 5% strain show a pro-
nounced offset that persists well after the reversal.
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Figure 2 : Pole figures for AL6XN obtained by neutron
diffraction. (Scale is in multiples of a uniform distribu-
tion.)

5.2 Diffraction Measurements with In Situ Loading

It is possible to measure the macro and micro responses
simultaneously using a diffractometer while loading a
specimen in situ. Macroscopically, the load can be mon-
itored and the strain measured over some gage section.
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Figure 3 : Orientation distribution function (ODF) for
AL6XN determined from inversion of the measured pole
distributions shown in Figure 2. (Scale is in multiples of
a uniform distribution.)

Figure 4 : Tensile stress-strain response for AL6XN with
load reversals. Quasi-static strain rate of ≈ 10−3s−1

Microscopically, diffraction peaks can be monitored for
selected combinations of scattering vectors and crystal-
lographic planes. The peaks provide extensive data re-
garding the microstructural state of those crystals that are
within the diffraction volume and that contribute to one
of the peaks by satisfying Braggs Law.

Those attributes of the peak profiles that are particularly
useful for the issues considered in this paper are the
changes in peak position and peak width with changes
in load. Changes in the peak intensity reflect changes in
the crystallographic texture, but we’ll not focus on those
here. Detailed aspects of the peak profile (skewness, for
example) provide opportunities to study issues like the
form of the hardening equations, but again, we’ll not uti-
lize those now. Changes in the peak position are propor-
tional to the average change in lattice spacing normal to

the associated hkl. This gives an average value of one
component of the elastic strain tensor for those crystals
whose crystallographic orientation lies close to the fiber
parallel to the scattering vector. The changes to the peak
width, for fixed experimental parameters and diffraction
volume, are associated with variations in the lattice plane
spacing that are due to inhomogeneities of the strain over
scales associated with the grains and with the disloca-
tions. For loading histories that involve intermittent un-
loading episodes during an overall large deformation the
changes to the peaks provide evidence of how the macro-
scopic deformation is accommodated at the microscopic
scale. We will employ these to assess the performance of
the multiscale model.

The set-up of the diffraction instrument includes speci-
fying slit dimensions for the incident and diffracted neu-
tron beams. These dimensions were chosen to maximize
the number of grains for meaningful polycrystalline av-
eraging, but to avoid instrumental aberrations. For the
combinations of specimens and slit dimension used here,
the instrumental gauge volumes contained on the order of
105 to 106 grains. A multiwire detector was used to col-
lect the count distribution and a Gaussian function with
constant background was fitted to the measured distribu-
tion, as discussed by MacEwen, Jr., and Turner (1983)
and Holden, Clarke, and Holt (1997). Gaussian func-
tions provided good approximations to all data presented
here. Neutron counting intervals were sufficiently long
to provide desired level of uncertainty in the Gaussian
parameters. The typical uncertainties in lattice strain was
±0.0001, which can be traced to the statistical quality of
the fit to the neutron data. All of the in situ loading tests
were performed on the L3 diffractometer located at the
NRU research reactor, Chalk River Laboratories4, On-
tario, Canada.

5.3 Tension and Bending Experiments

Tests were performed on two types of specimens: straight
bars and curved beams. The straight bars had rectangu-
lar cross-section and were loaded in tension (Figure 5.)
Specimen length was chosen to eliminate end effects
within the instrumental gauge volume and to avoid in-
terference of the neutron beam with the loading appara-

4 The Chalk River Laboratories and NRU are owned and operated
by Atomic Energy of Canada, Ltd. The neutron scattering facilities
are owned and operated by the National Research Council, Canada
(see http://neutron.nrc.ca)
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Figure 5 : Straight bar specimen geometry. Upper bar is
undeformed; lower bars are deformed.

tus. The loading programme consisted of extending the
specimen under displacement control at room tempera-
ture and a nominal strain rate of 10−4s−1 to a load level
close to that needed to cause the specimen to neck and
fail (≈ 25% for the stainless steel alloy studied here). At
several intermediate load levels the specimens were un-
loaded to nearly zero load and then reloaded to continue
the loading programme. During an unloading episode,
the specimen was first unloaded to 95% of the target load
and diffraction data were obtained. The 95% load level
was chosen so as to mitigate stress relaxation from plastic
deformation during the measurement process. Diffrac-
tion measurements were repeated at a near zero load
level5 and at the 95% reloaded level. Several peaks also
were measured during the initial loading, including ones
at very light load. These latter peaks served as reference
values from which the initial lattice spacing parameter
was established for later use in determining lattice strains
from peak shifts. Peaks were measured for several com-
binations of scattering vector6 and (hkl): {200}, {220},
{222}, and {311}reflections for the axial and two trans-
verse scattering vectors. The results for the two trans-
verse scattering vectors are quite similar, so results are
shown only for one.

The second type of specimen, a curved beam, was cho-
sen to develop a spatially-varying stress distribution over

5 A small tensile load was retained (50 N or ∼ 2MPa) to avoid in-
troducing any slack in the load train.

6 The scattering vector bisects the source and diffraction directions
and defines the orientation of the planes for which lattice spacing
data are obtained.

a length scale much larger than an individual grain (Fig-
ure 6.) By pulling the ends of the specimen apart, a state

Figure 6 : Bending specimen geometry. Upper specimen
is undeformed; lower specimen is deformed.

of bending is induced in the curved section. The moment
is largest at the centerplane, and consequently so is the
stress. The lattice strains were measured at a number of
locations along this surface, showing a distribution typi-
cal of bending. These measurements necessitated reposi-
tioning of the load frame with relation to the beam both
to examine different diffraction volumes and to accom-
modate the relative movement of the individual diffrac-
tion volumes with respect to reference positions on the
load frame as the specimen deformed. A loading pro-
gramme similar to the tension tests was selected that also
employs a number of loading and unloading episodes.
During the unloading episodes diffraction measurements
were made, but only for a more limited set of peaks. A
full test, involving several unloading episodes, several
diffraction volumes, and multiple crystallographic reflec-
tions, required nearly a week of beam (diffractometer)
time.

6 Modeling the In situ Experiments

The simulations were performed using the finite element
formulation described in previous sections and the pro-
cedures given in Dawson, Boyce, MacEwen, and Rogge
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(2001) for simulating it in situ tests. The single crystal
parameters given in Table 1. For the straight bar under
axial loading, a portion of the gage section was modeled;
the specimen ends were enlarged in comparison to the
gage section to permit gripping, but these features were
not represented. For the curved beam, the entire speci-
men was modeled at the macroscopic scale; polycrystal
volumes at the crystal scale were defined at locations cor-
responding to the diffraction volumes. Details are given
in the following subsections. The loading programmes
measured in the experiments were applied to the speci-
mens. In each case, the specimen was extended at con-
stant rate until a target load was reached. At the target
load, an unloading/reloading episode occurred. The pro-
cedure was continued until the full loading programme
was replicated. The results at numerous points along the
loading programme were saved for later post-processing
to extract data comparable to that obtained from the mea-
sured diffraction peaks.
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Figure 7 : Stress-strain curve under in situ loading show-
ing unloading episodes. The ’x’ symbols indicate points
in the loading programme at which diffraction measure-
ments were made.

The first step in the post-processing operation is to deter-
mine which subset of the orientations should be consid-
ered active when simulating a particular diffraction peak.
Any element whose orientation (accounting for crystal
symmetries) is such that the designated crystal plane nor-
mal lies within a solid angle Ω of the scattering vector is
considered to be active in contributing to the simulated
diffraction peak. Experimentally, only those crystals that
align with the scattering vector to a high degree of res-

olution will contribute to the peak. Even with tens of
thousands of elements, the simulations cannot produce
the degree of resolution comparable to the experiment,
so typically we must specify a larger resolution angle,
Ω, in the simulations than is set by the slit dimensions
of the diffractometer. The resolution angle should be as
small as possible to maximize the fidelity to the experi-
ment, but at the same time large enough to provide mean-
ingful statistics. The lattice strains, given by the elastic
strain tensor, are averaged over that set of crystals. The
component of the average strain tensor in the direction of
the specified plane normal (scattering vector) is then ob-
tained for each element. Finally, the slip system strength
is averaged over the set of crystals that contribute to the
peak.

6.1 Tension Experiments

The straight bar under axial loading produces a uniform
macroscopic state of stress and strain over the central sec-
tion of the gage length. Spatial variations in the stress and
strain occur at the crystal scale due to the single crystal
anisotropy and can be examined in the absence of the
macroscopic variations with this arrangement (straight
bar under axial loading). The polycrystal being mod-
eled can be thought of as coming from any portion of the
gage volume that is not affected by the end constraints.
It needs only to have sufficient number of grains to be
statistically significant.

A portion of the gauge section of the specimen was dis-
cretized with approximately 56,000 elements. In all of
the simulations, each finite element of the mesh is an 8-
noded brick and is treated as an individual crystal, and
so is assigned initial values for its own orientation, slip
system strength, and elastic strain tensor. All of these
state descriptors are free to evolve during the course of
the simulation. The crystal lattice orientations were ini-
tialized by sampling the orientation distribution function
(ODF) for the specimen material. The initial value of slip
system strength was taken to be constant across all ele-
ments, and the initial value of the elastic stretch tensor
was taken as the identity (corresponding to zero initial
lattice strain). With this level of resolution, the simu-
lations capture stress variations between crystals. How-
ever, since the order of the elemental interpolation is low
(tri-linear velocity field within crystals), stress fluctua-
tions around dislocations are not modeled explicitly.

Boundary conditions were chosen to replicate the loading
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Table 1 : Single crystal parameters for AL6XN. ( c44

relates the shear stress to shear strain using the mechanics
convention for shear strain, εi j = (ui, j +u j,i)/2.)

c11 c12 c44

(GPa) (GPa) (GPa)
190.9 125.5 230.3

γ̇0 m h0 g0 gs

( 1
s ) (−) (MPa) (MPa) (MPa)

1.0 0.02 300 160 2000

X

Y

Z

0.00900
0.00850
0.00800
0.00750
0.00700
0.00650
0.00600
0.00550
0.00500
0.00450
0.00400
0.00350
0.00300
0.00250
0.00200
0.00150

(200)(311)(222) (220)

Figure 8 : Axial lattice strains at beginning of the last un-
loading episode. The crystals contributing to each mea-
sured reflection are plotted separately. Differences in the
numbers of crystals are due to a combination of the dif-
ferent multiplicity of the various crystal planes and the
crystallographic texture.

of crystals within the gauge section of the tensile speci-
men. One end of the mesh was constrained in the axial
direction while a specified axial velocity was imposed on
the other end; zero shear tractions were imposed on both
ends. Two adjacent lateral sides were traction free, while
on the other two a symmetry condition was imposed. The
velocity on the end was prescribed to follow the loading
programme of the experiment. At each point at which
neutron diffraction measurements were made, the current
orientation, slip system strength and elastic strain infor-
mation for each element was written to a file. These raw
simulation results were subsequently post-processed to
obtain quantities analogous to those obtained experimen-
tally. The stress strain curve is shown in Figure 7. Finite
element meshes showing lattice strains on crystals of sev-
eral sets are shown in Figures 8 and 9.

X

Y

Z

0.00500
0.00250
0.00200
0.00150
0.00100
0.00000

-0.00100
-0.00150
-0.00200
-0.00250
-0.00300
-0.00350
-0.00400
-0.00450
-0.00500

(200)(311)(222) (220)

Figure 9 : Transverse lattice strains at beginning of the
last unloading episode. The crystals contributing to each
measured reflection are plotted separately. Differences in
the numbers of crystals are due to a combination of the
different multiplicity of the various crystal planes and the
crystallographic texture.

The computed lattice strains for the axial and one trans-
verse scattering vector are shown in Figure 10 and 11,
for several crystallographic planes. In the axial direc-
tion, lattice strains reach values between 0.3% and 0.8%.
The transverse strains are smaller and opposite in sign,
and are consistent with an average Poisson’s ratio of
≈ 0.25. Also shown in the figures are the lattice strains
taken from experiments. In general, the comparisons are
very good, especially when comparing across the vari-
ous hkl’s. The strains of the 400 crystals are about twice
those of the 222 crystals, which is captured well by the
simulations. The main deficiency of the simulations is
the underprediction of the effect of the elastic anisotropy.
The strain on unloading is depends less on hkl in the sim-
ulation than was observed in the experiments.

The standard deviations of the computed lattice strain
distributions are presented in Figure 12 for the axial and
a transverse direction. In the axial direction, the standard
deviations are about 10% of the average values and the
lattice strain in the transverse direction show larger com-
puted variations.

6.2 Bending Experiments

The curved beam develops macroscopic gradients in the
stress and strain distributions when its ends are pulled in
opposite directions. The state of loading resembles that
of pure bending, but is not exactly that condition owing to
axial component that arises from the method of loading
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Figure 10 : Comparison of the computed and mea-
sured lattice strains for 200 crystals. Upper: axial
strains; lower: transverse strains. Experimental points
are shown with estimated error bars.
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Figure 11 : Comparison of the computed and mea-
sured lattice strains for 222 crystals. Upper: axial
strains; lower: transverse strains. Experimental points
are shown with estimated error bars.

the specimen. The finite element mesh for a symmetric
half of the specimen at the macroscopic scale is shown in
Figure 13. This mesh contains a total of 1548 elements,
with each element having assigned a total of 128 crystal
orientations to define the texture within it. The initial
values for the orientations were defined from a random
sampling of the orientation distribution function.

The measured loading programme, shown in Fig-
ure 14, was applied to the curved beam (macroscopic)
mesh. This programme includes a total of 7 unload-
ing/reloading episodes, as well as the final unloading se-
quence. This history was sufficient to produce plastic
deformations along the centerplane where the moment
is highest, imparting a permanent shape change to the

specimen, as shown in Figure 13. All of the latter un-
loading episodes involved unloading from an elastoplas-
tic condition existing when a target load was reached.
The macroscopic stress distributions in the loaded and
unloaded conditions of the final unloading episode are
shown in Figure 15.

Elements in the macroscale mesh are comparable to, but
somewhat smaller than, the experimental diffraction vol-
umes. From the macroscopic scale results, loading his-
tories for elements along the centerplane were extracted,
as shown in Figure 17. Specifically, the velocity history
of surface of a macroscopic element was imposed on the
corresponding surface of the crystal scale mesh, thereby
forcing the boundary of the polycrystal to move in the
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Figure 13 : Undeformed and deformed meshes for the
bending application.
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Figure 14 : Load history on bending specimen. Scale
is in seconds; hold times for diffraction measurements
have been omitted.

Figure 15 : Normal stress components at the initia-
tion (left) and conclusion (right) of the final unloading
episode.

same way as the boundary of the macroscopic element.
Figure 16 shows one of the crystal scale meshes. It con-
tains 1000 elements with each element corresponding to
an individual crystal; the complete mesh, or polycrystal,
coincides with one of the elements along the centerplane
of the macroscopic mesh.

Figure 17 shows the history of 15 elements adjacent to
the centerplane. These span the same cross section as
examined experimentally, although the centroids of the
simulation and experimental diffraction volumes do not
exactly coincide.

Comparisons between measured and computed lattice
strains are shown for the final complete unloading
episode. For both the loaded and unloaded states, lattice
strains for 004 crystals are shown in Figure 18 and strains

for 222 crystals are shown in Figure 19. One can read-
ily see the bending profile expected for a plastic hinge
of a strain hardening material in the loaded state and the
subsequent residual profile for the unloaded state. The
computed strains are somewhat higher, but the difference
between the loaded and unloaded states are compare well
between experiment and simulation. The 004 strains are
considerable larger (factor of two) than the 222 strains,
a trend which is captured by the simulation. Probably
the most notable difference between simulation and ex-
periment is the sharpness of the computed profile near
the neutral axis in the unloaded state. This trend is much
more muted in the experiment. The size of the diffraction
volume may influence this difference. By averaging lat-
tice strains in adjacent elements, we also show the result
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Figure 16 : Diffraction volume (microscopic) finite el-
ement mesh for the bending specimen simulations. Up-
per figure shows the undeformed mesh; the lower figure
shows the final mesh where color indicates relative mag-
nitude of the xx component of stress.
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Figure 17 : Deformation gradient histories extracted
from the continuum scale simulation and applied to the
crystal scale meshes corresponding to diffraction vol-
umes along the specimen centerplane. Scale is in sec-
onds; hold times for diffraction measurements have been
omitted.

corresponding to enlarged diffraction in the simulations.
As expected, these compare more closely to experiments.

The macroscopic scale simulation imposed the measured
displacement history to the specimen at the points where
it is held by the load-frame fixtures. Each unloading
episode is triggered by reaching a target load used in the
experiment. During the unloading episode itself, the di-
rection of the displacement is reversed until the load is
close to zero, just as in the experiment. Thus, at the

macroscopic scale, reaching an unloaded configuration
occurs by control of the boundary conditions. The pre-
cise amount of displacement needed to accomplish the
unloading depends on details of the macroscopic model,
including the mesh resolution, the representation of the
texture within each element, and the elastic moduli. The
motion of an element that is assumed to represent a
diffraction volume is consistent with the macroscopic
motion that unloads the specimen. This motion is im-
posed on the crystal scale aggregate. Because the ma-
terial within the volume is represented differently, that
same motion may not produce the same stress history.
This will depend on how effectively the averaging proce-
dure that serves as the basis for computing properties at
the macroscopic scale captures the response of the poly-
crystal. Because the macroscopic motion is not homo-
geneous, the stresses in the macroscopic elements will
not individually drop to zero on unloading of the spec-
imen. Thus a test of how closely the two scales coin-
cide in the aggregate behaviors can be based on whether
or not the distribution of crystal scale stresses are self-
equilibrating and leave the specimen in equilibrium af-
ter the loads have been removed according to the macro-
scopic scale. This cannot be determined from Figures 18
and 19 as each give only a subset of all of the crystals.
However, the stress distribution based on stresses for the
entire polycrystal (Figure 20) at each station does indi-
cate that the continuum and crystal scale stress distribu-
tions before and after unloading compare closely. Note,
however, that the macroscopic stress change is consis-
tently larger than the microscropic change. This illus-
trates that the effect of not satisfying the continuity re-
quirement at the crystal scale that is imperative to have
an exactly equivalent stress across the scales. The net ef-
fect is that the stiffnesses are not identical, with the crys-
tal scale response being more compliant. However, the
differences are relatively small in this case so that the
distributions compare well.

7 Peak Width Correlations

The influence of the polycrystalline microstructure on
peak width has been investigated from a number of per-
spectives. It is widely recognized that the finite size of
diffraction domains and irregularities in the spacing of
atoms within domains contribute to peak width. These
often are referred to as size broadening and strain broad-
ening, respectively. Warren and Averbach (1950) de-
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Figure 18 : Comparisons of measured and computed lat-
tice strains for crystals having a 004 direction aligned
with the specimen x-direction. Loaded and unloaded
states are shown.

Figure 19 : Comparisons of measured and computed lat-
tice strains for crystals having a 222 direction aligned
with the specimen x-direction. Loaded and unloaded
states are shown.

veloped a procedure based on Fourier analyses of the
peak distributions for separating the influences of size
and strain on width based on each one’s dependence on
Bragg angle. Construction of a Williamson-Hall plot, see
Williamson and Hall (1953), provides another approach
for estimation of the size and strain contributions to the
peak profiles. The accuracy of these methods is limited

Figure 20 : Normal stress component (σxx) distributions
across the centerplane before and after unloading for the
continuum and crystal scales.

by the influence of strain anisotropy (Ungar, 2001). In-
vestigations that focus particularly on the evolution of
width with plastic straining are limited, however. Smith
and Webster (1997) correlated peak with plastic strain for
aluminum and steel alloys. Mohamed, Bacroix, Ungar,
Raphanel, and Chauveau (1997) measured broadening
of six crystals within a rolled copper multicrystal by X-
ray diffraction. Baczmanski and coworkers(Baczmanski,
Braham, Lodini, and Wierzbanowski, 2000) compared
measured changes in peak width to ones inferred from
model computations, noting the correlation between peak
width and dislocation density. Weisbrook, Gopalarat-
nam, and Krawitz (1995) compared trends computed us-
ing finite element analyses to ones observed from neutron
diffraction experiments for thermal loading of tungsten-
nickel composite materials.

A correlation between the experimental peak width and
the simulated strain hardening has been drawn from the
tension test results presented earlier. A connection be-
tween the broadening of the Bragg peaks and the evo-
lution of the slip system strength is anticipated because
both the peak width and the strength can be related to the
dislocation density. Because both are proportional to the
square root of the dislocation density, we expect to ob-
serve a direct dependence between increases in the peak
width and elevation of the slip system strength. (Peak
width also is influenced by the instrument. As the instru-
mental settings are the same for each test, contributions
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Figure 21 : Evolution of slip system hardness for crys-
tals having various directions aligned with the specimen
transverse direction.

to the width from instrumental sources are assumed to be
unchanging over the course of a test.) The average slip
system strengths exhibit similar trends for all the scat-
tering directions, with one transverse direction shown in
Figure 21. For the correlation between measured broad-
ening and computed strengthening, the contributions to
peak broadening from variations in crystal lattice strain
is subtracted from the total increase in peak width. The
difference is attributed to the dislocation density increase
and correlated with it using:

f (θ)βd = b1 +b2g∗ (37)

where βd is the dislocation-based increase in the peak
width and g∗ is the normalized slip system strength (com-
puted as the ratio of the average slip system strength in
the diffracting crystals to the initial slip system strength).
Results of the regression are reported in Table 2. A fairly
consistent value of about 0.0032 is determined for all
three scattering directions. The plot of the dislocation-
based broadening, βd, after scaling by the cosine of the
Bragg angle, versus the normalized slip system strength
is shown in Figure 22. The correlation was not con-
strained to force the condition that the excess peak width
is zero where the normalized hardness is unity, so it is
inaccurate in regions of very little plastic straining.

We employ this correlation to better understand the qual-
ity of the comparisons made between the bending ex-
periment and corresponding simulations. The computed

Table 2 : AL6XN Correlation Coefficients

sample c1 c2 Correlation
100 1.42e-5 -7.9e-6 0.7642
010 4.43e-6 7.5e-6 0.9104
001 7.75e-6 -4.3e-7 0.9379

sample b1 b2 Correlation
100 -1.6e-6 0.0032 0.7797
010 -0.0014 0.0034 0.8960
001 -0.00087 0.0032 0.9430
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Figure 22 : Correlation of the normalized slip system
strength with evolution of peak width for crystals hav-
ing various crystallographic directions aligned with the
specimen transverse direction.

strain hardening across the centerplane is greatest at the
inner and outer radii. Around the neutral axis, there is lit-
tle or no plastic deformation and consequently no hard-
ening. Using the correlation given by Equation 37 and
the computed changes in strength, we compute the an-
ticipated distribution of excess peak width and compare
to the distribution measured from experiment. The com-
parison is quite close, as shown in Figure 23. Recall,
however, that the principal difference between the lattice
strain profiles was near the neutral axis where the sim-
ulations give a sharp profile, but the experimental pro-
files are muted. We also show in Figure 23 the change
in peak width upon unloading as measured in the ex-
periment. The changes on unloading are greatest near
the neutral axis of bending, coinciding with the region
of rapid changes in lattice strain computed in the simu-
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lations. Thus while the comparisons are good over the
entire section, they are only valid away from the neu-
tral axis. At the inner and outer radii the plastic strains
are sufficiently large to induce substantial change in the
peak width and the correlation is reliable. In contrast, at
the neutral axis the plastic strains are small and the ex-
cess peak width is over-predicted. Experimentally, the
peak width is enlarged not because the dislocation den-
sity arises, but rather that the lattice strains vary from one
side of the diffraction volume to the other. There is appar-
ent agreement at the neutral axis because the computation
uses the correlation where it is inaccurate and the mea-
surement is influenced by heterogeneous elastic strains
over the gage volume in the experiments. The correla-
tion error can be rectified by imposing a constraint on the
parameters in Equation 37. The experiment can be im-
proved by decreasing the size of the diffraction volume.
However, this is limited by the grain size of the material,
pointing to the modeling constraint in a two-scale formu-
lation such as that used here: one cannot employ h-type
refinement to macroscopic scale that requires elements
with dimensions comparable to the crystal dimension.
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Figure 23 : Comparison of simulated and measured peak
width evolution in crystals having a 222 direction aligned
with the specimen x-direction.

8 Discussion

We focus on two issues that arise in multi-scale formu-
lations. One is the consistency of the stiffness of com-
parable volumes of material across scales. The second is

related to the limitations imposed by gradients in a field
(the stress, for example) at one scale on the response at
another scale. The former is important because informa-
tion regarding the stress and deformation is to be passed
between the models at each scale. If the motion at a
point of the larger scale is imposed on a representative
volume at the smaller scale then it is possible that the
same change in stress will not be predicted. This oc-
curs because the conditions needed to convert an inte-
gration over the volume to an integration over its surface
are not fully met, as discussed in Section 3. In fact, the
use of finite element formulations with C0 continuity for
the velocity or displacement fields means that volume-
averaged crystal scale stress in general cannot equate to
the macrostress. Modeling approximations are made in
lieu of the identity that is desired. Physical attributes of
the system will dictate how elaborate the averaging meth-
ods must be for the approximation to be accurate. Nev-
ertheless, consistency of the responses is not guaranteed
a priori and case-by-case checks are required. In the for-
mulation presented here, the representation of each crys-
tal with a single brick element is relatively coarse. In this
case, the crystals respond in a manner that is similar to
the Taylor assumption imposed at the macroscopic level,
giving reasonably comparable behavior stiffness between
the two scales. However, for more highly resolved crys-
tals, we would not expect this assumption to continue to
hold necessarily.

The second issue was illustrated using the comparison
of measured and computed peak broadening. The actual
diffraction volume in the experiment was large enough
to exhibit an influence of the stress gradient. Changes in
the macroscopic load during unloading altered the peak
width while the dislocation density remained essentially
unchanged. This implies that the macroscopic finite ele-
ments should be smaller in size than the diffraction vol-
ume if the stress is not to vary substantially over the el-
ement. However, there are lower limits to the size of the
macroscopic elements. They cannot be smaller than the
volume needed to contain statistically meaningful num-
ber of grains. As with the first issue, this size is material
dependent as the grain dimension can be anywhere in the
range of nanometers to millimeters for many alloys. One
can imagine rules-of-thumb, however, based on the ra-
tio of grain size to feature size in the components being
modeled with the macroscopic scale formulation.
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9 Closing Remarks

Progress in simulating the deformations of polycrys-
talline solids has progress substantially over the past 25
years. The capabilities exist to embed detailed descrip-
tions of the material structure explicitly in the mechan-
ics formulations and to base the mechanical properties
in part of those descriptions. The material structure can
evolve with the continuing deformation and thus dynami-
cally influence how a process will progress. The material
description may include features of the structure that are
readily observed by experiment, thus providing the op-
portunity to more rigorously validate models and to di-
agnose points of discrepancy between predicted and ob-
served responses. This represents an significant advance
over the capabilities first proposed and tested more than
two decades ago. This progress, including the example
of it presented in this paper, is indicative of positive in-
fluence that Dr. Astill had in the formative years of the
discipline. A more impressive indicator, we believe, is
that the expectations for the area are higher now than
they were twenty years ago. We expect that computa-
tional mechanics will play a major role in improving en-
gineering alloys, in understanding biomaterials, and in
interpreting geological records. We add our appreciation
to that of many others for the thoughtful efforts of Dr.
Astill for cultivating such a rich and stimulating disci-
pline.
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