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A Group Preserving Scheme for Inverse Heat Conduction Problems

C.-W. Chang', C.-S. Liu? and J.-R. Chang'"3

Abstract: In this paper, the inverse heat conduction
problem governed by sideways heat equation is investi-
gated numerically. The problem is ill-posed because the
solution, if it exists, does not depend continuously on the
data. To begin with, this ill-posed problem is analyzed
by considering the stability of the semi-discretization nu-
merical schemes. Then the resulting ordinary differential
equations at the discretized times are numerically inte-
grated towards the spatial direction by the group preserv-
ing scheme, and the stable range of the index r = 1/2vAt
is investigated. When the numerical results are compared
with exact solutions, it is found that they are in a good
agreement even under noisy data. It is also shown that
the group preserving scheme is quite effective and better
than other numerical solvers, including the fourth-order
Runge-Kutta method.

keyword: Inverse heat conduction problem, group pre-
serving scheme, ill-posed problem, semi-discretization

1 Introduction

Inverse problems are presently becoming more and more
important in many fields of science and engineering and
they typically result in mathematical models that are not
well-posed in the sense of Hadamard (1953), referring
also Maz’ya and Shaposhnikova (1998). In other words,
it means that one or more of the following properties does
not hold: for all admissible data, a solution exists; for
all admissible data, the solution is unique; the solution
depends continuously on the data. Problems that fail to
meet these prerequisites are said to be ill-posed.

Over the last few decades, much interest has been di-
rected towards the employment of inverse techniques for
solving different engineering problems that cannot be de-
picted mathematically by direct methods. This situation
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transpires when all the required data to solve a direct
problem or to procure a trustworthy direct solution is not
available. Inverse problem can be defined as a problem
where all results are found when a part of them is known
and some boundaries or reasons may linger unknown.
Such a problem is much more difficult to solve than a
direct one. The reason for this is that it is usually ill-
posed and very sensitive to the measurement errors. The
problem is often encountered in the field of heat conduc-
tion and referred to as the inverse heat conduction prob-
lem (IHCP); see, e.g., Beck, Blackwell and Clair (1985).
We will refer to it as the sideways heat equation in or-
der to discriminate it from other inverse problems for the
parabolic type partial differential equations.

Many finite difference discretizations for the sideways
heat equation are discussed in Beck and Blackwell
(1985), and many are interpreted and compared by
Carasso (1992, 1993). Besides, stability standpoints of
those finite difference algorithms in connection with mol-
lification are contemplated in a series of papers; see,
e.g., Murio (1989), Guo, Murio and Roth (1990), Murio
and Guo (1990), Guo and Murio (1991), and Al-Khalidy
(1998a). In these successful computations with the
space-marching, finite difference methods are also de-
scribed. For instance, Eldén (1995a, 1995b) discretized
the sideways heat equation by a differential-difference
equation and analyzed the approximation properties of
time-discrete approximations by using the Fourier trans-
form techniques. He mentioned that the time dis-
cretization has a “regularizing effect”, that is, the high-
frequency noise is prevented from blowing up. More-
over, Krutz, Schoenhals and Hore (1978), Lithouhi and
Beck (1986), and Reinhardt (1991) employed a finite ele-
ment method (FEM) to solve the IHCP. Drawbacks of ap-
plying finite differences and finite elements are that they
usually produce instabilities in the numerical schemes
and require a large number of cells or elements.

The boundary element method (BEM) has been con-

sidered in the study of IHCP and utilized by many re-
searchers. Brebbia (1984) first employed the BEM to
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avoid the additional finite differencing required in the
conventional FEM for heat transfer problems. Since
then, several researchers have begun to use various BEM
formulations to treat the ill-posed problem existing in this
field; see, e.g., Le Niliot , Papini and Pasquetti (1990),
Ingham, Yuan and Han (1991), Pasquetti and Le Niliot
(1991), Kurpisz and Nowak (1992, 1995), Yuan (1993),
and Ingham and Yuan (1994). After that, Lesnic, Elliott
and Ingham (1996) used the BEM along with the mini-
mum energy technique to solve the IHCP, namely to de-
termine the temperature and heat flux on the remaining
boundary. Besides, Lesnic, Elliott and Ingham (1998)
also extended the results of Cannon (1963) for solving
the IHCP when no boundary condition is prescribed and
used the BEM to find the solution numerically. In addi-
tion, Al-Najem, Osman, El-Refaee and Khanafer (1998)
employed the singular value decomposition (SVD) with
BEM and the least-squares approach with integral trans-
form method to deal with two-dimensional steady-state
IHCPs. Shen (1999) even employed two BEMs, a col-
location method and a weighted one, to solve the IHCP.
Moreover, Singh and Tanaka (2001) also presented an
application of the dual reciprocity boundary element
method (DRBEM) in conjunction with iterative regular-
ization for the solution of time-dependent IHCPs. Based
on the dual reciprocity boundary element along with se-
quential function specification scheme, Behbahani-nia
and Kowsary (2004) have recently proposed a method
to deal with two-dimensional IHCPs involving unknown
time and space varying boundary heat flux estimation.
Since there is no need on domain discretization in the
BEM, the location of interior points, in which the tem-
perature data are gathered, can be selected in a rather ar-
bitrary way; see, e.g., Chantasiriwan (2001). It should
be noted that Ochiai and Sladek (2004) have recently
proposed a numerical treatment of domain integrals in
three-dimensional boundary integral formulations which
is without the need to discretize the interior of the do-
main especially for thermal stress analysis with arbitrary
internal heat generation. Comparing with those mesh-
dependent methods like FEM and BEM, the meshless
methods [e.g., Hon and Wei (2002, 2005)], which do
not require any domain or boundary discretization, have
been proposed. In general, applications of the BEM in
this field decreases the computational time and capacity
requirement but the problem of numerical stability still
exists.
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The IHCP in thermodynamics is also treated by different
workers in computational thermodynamics with various
numerical schemes. For example, the wavelets method
[e.g., Liu, Guerrier and Benard (1995), Reginska (1995,
2001), Fu, Qiu and Zhu (2002, 2003), Reginska and El-
dén (1997, 2000), Eldén, Berntsson and Reginska (2000),
and Qiu, Fu and Zhu (2003)], the method of quasi-
reversibility [e.g., Blanc, Raynaud and Chau (1998)] and
the Fourier analysis [e.g., Seidman and Eldén (1990),
Prud’homme and Nguyen (1999), and Berntsson (2003)]
have been adopted for solving the ill-posed sideways heat
equation. Besides, Dorai and Tortorelli (1997) employed
the Newton’s method, which is superior to the first-order
variable metric method due to its limited dependence on
regularization and faster convergence, to solve the IHCP.
In addition, Eldén (1997) and Berntsson (1999) used time
differencing combined with a “method of lines” for solv-
ing numerically the initial value problem in the space
variable. This approach was proposed as an alternative
way of implementing space-marching methods for the
sideways heat equation. Examples of this are also found
in the works of Al-Khalidy (1998b). Besides, Taler and
Zima (1999) have used the control volume algorithm to
solve IHCP and Blanc, Raynaud and Chau (1998) also
provided a step by step guide to facilitate the use of
the function specification method for 2D IHCPs. Fur-
thermore, an iterative approach [e.g., Yang (1999a)], the
sequential method [e.g., Yang (1999b), Chantasiriwan
(1999), Battaglia, Cois, Puigsegur and Oustaloup (2001),
and Liu, Chen and Yang (2004)] and the approximate in-
verse method [e.g., Jonas and Louis (1999)] were devel-
oped for reconstructing the solutions of IHCPs.

In respect of regularization, the use of a reduced model
for the solution of IHCP was introduced by Videcoq and
Petit (2001). The method includes the regularization with
the function specification technique, which gives accu-
rate results. Besides, the application of Alifanov’s iter-
ative regularization method [e.g., Su and Neto (2001)]
to estimate infinite-dimensional quantities in IHCPs is
also found. As for the remedy in a hybrid numerical
algorithm for IHCPs, the Laplace transform technique
and the finite difference method with a sequential-in-
time concept and the least-square scheme [e.g., Chen,
Lin and Fang (2001), Chen, Lin and Wang (2002)] were
proposed to predict the unknown surface temperature in
two-dimensional IHCPs. In addition, the Laplace trans-
form technique and control volume method in conjunc-
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tion with the hyperbolic shape function and least-square
scheme [e.g., Chen, Peng, Yang and Fang (2001)] were
applied to estimate unknown surface conditions of one-
dimensional hyperbolic IHCPs. Also, the model reduc-
tion method with singular decomposition [e.g., Kim and
Lee (2002)] provides an efficient numerical method for
solving IHCPs. Based on the decomposition of the ther-
mal field on the modal basis constituted by the set of
eigenvalues and eigenfunctions of the heat diffusion op-
erator, a modal approach [e.g., Battaglia (2002)] has re-
cently been proposed. With the Lagrange theory for
dynamic optimization and model size reduction tech-
nique, Palomo (2003) also successfully solved the mul-
tidimensional IHCPs. Recently, a numerical procedure
using a combined differential quadrature and Taylor se-
ries approach [e.g., O’Mahoney (2003)] and an ana-
lytical method using the Laplace transform technique
[e.g., Monde, Arima, Liu, Mitutake and Hammad (2003)]
have been presented for solutions of the two-dimensional
transient IHCPs. A fundamental solution method with
mesh-free technique categorized into BEM [e.g., Hon
and Wei (2004)] for IHCP is specially noticed in the
BEM community. Moreover, a transfer function, based
on Duhamel integral [e.g., Lahoucine (2004)], was pro-
posed and the measured response was approximated by
a quasi-periodic function. Furthermore, the Bayesian in-
ference approach providing a solution to IHCP by for-
mulating a complete probabilistic description of the un-
known and uncertainties given temperature data was also
reported [e.g., Wang and Zabaras (2004, 2005)]. How-
ever, to our best knowledge, Eldén (1995a) only consid-
ered discretization in time for solving the IHCP and this
may arise from the ill-posedness and numerical instabil-
ity of the problem.

In this paper, we propose a new numerical scheme for
solving the sideways heat equation. Based on the nu-
merical method of line, which is also a well-developed
numerical method, the proposed scheme can transform
the partial differential equation into a system of ordinary
differential equations. The major contributions made in
this paper are the applying of group preserving property
of the resultant system in developing an effective numer-
ical scheme and giving a persuasion that the proposed
scheme is superior to the Euler scheme and the fourth-
order Runge-Kutta method even it requires calculating an
adaptive factor. More importantly, the proposed scheme
is easy to implement and time saving. Through this study,

we can have an easy-implementation and explicit-single
step group preserving scheme (GPS) used in the calcula-
tions of the sideways heat equation. The accuracy of the
proposed scheme is much better than the Euler scheme,
and it may over the fourth-order Runge-Kutta method.

2 Inverse problem statement

In many industrial applications we may want to deter-
mine the temperature on the surface of a body, but the
surface itself is inaccessible for a measurement. It may
also be the case that locating a measurement device on
the surface would disturb the measurements so that an
incorrect temperature is recorded. In such cases one is re-
stricted to internal measurements. Berntsson (2003) has
presented an example of an industrial application where
the sideways heat equation can be used. He has consid-
ered a particle board, on which a thin lacquer coating is
to be applied. In order to reduce the time for the lacquer
coating to dry, we initially heat the particle board. Since
the temperature gradients on and close to the surface of
the board influence the drying time and the quality of the
lacquer coating, it is important to estimate the tempera-
ture and the temperature gradients on the surface of the
board. It is usually difficult or impossible to measure the
temperature directly on the surface of the board, instead,
we can drill a hole from the other side of the board and
place a thermocouple close to the surface to measure the
temperature.

The sideways heat equation is a model of a situation that
when the temperature data from a measurement device
located inside a body is available, we attempt to decide
the outside temperature of the body. Here we are con-
cerned with the numerical solutions of

Mt:VuxxaleZOJZ()a (1)
with a left-side boundary condition:
”(OJ)ZOC(I)JZQ )
and initial condition:

u(x,0)=h(x), I >x>0, 3)
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in which v is the thermal conductivity of a heat-
conducting rod with length /.

When it is impossible to measure the temperature on the
surface directly, the sideways heat equation often oc-
curs in engineering appliances, in which one wants to
resolve the surface temperature from measurements in-
side a heat-conducting object. The problem setup with
its physical model is shown in Fig. 1. Suppose that we
can insert a thermocouple inside the rod to measure the
temperature at a position x = a < [, and the data is de-
noted by

Thick wall
Thermocouple
Hot gas
T or
/\ liquid
| | |
[ [ [
0 a [/ X

Figure 1 : Determination of surface temperature from
interior measurements. The thermocouple could be su-
perseded by any thermal sensor.

u(a,t) =P(), t>0. 4)
The inverse problem is thus to decide the temperature
field inside the rod by using Eqgs. (1)-(4).

When we want to recover the temperature on the other
side at x = [, we can use the solution of the above prob-
lem. However, this problem is ill-posed in the sense that
the solution does not depend continuously on the data
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given or measured. Therefore, we first transform Eq. (1)
to the following equations:

du(x, t)

o v(x, 1),

ov(x, t)  du(x, 1)
ox  vor

Then, by using a semi-discretized method to discretize
the quantities of u(x,#) and v(x,t) along the time di-
rection, we can obtain a system of ordinary differential
equations for u# and v with x as independent variable. In
order to integrate these differential equations, let us first
briefly sketch the so-called group-preserving scheme de-
veloped by Liu (2001) for ordinary differential equations
in the next section.

3 The group preserving schemes

Consider a system of n ordinary differential equations:

u =f(u,x), u €eR" xER, )
where u is an n-dimensional unknown vector, x is a space
variable, and f is a vector-valued function of u and x. The
prime stands for the differential with respect to x. For
the uniqueness of the solution, the Lipschitz condition is
assumed

[£(u,x) —£(y,x)|[| < L|lu—yll, Y(u,x),(y,x) €D, (6)
where D is a domain in R" X R, and L is known as a
Lipschitz constant.

Liu (2001) has rewritten Eq. (5) into the following form

%[HEH]_[ Huﬁu]

if ||u|| > 0. Here, |ju|| stands for the Euclidean norm of
u, and the superscript ‘t’ denotes the transpose. It is ob-
vious that the first equation is the same as the original
Eq. (5), but the introduction of the second equation leads
to a Minkowskian structure for the augmented nonlinear
system with the augmented variables X = (u’, ||ul|)" sat-
isfying

Oan

u
fual )

[[ul

(N
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X'gX =0, (8)
where

o In On><1
g= [ Orny —I ] 9

is a Minkowski metric, and I, is the identity matrix of
order n. For this form of X’ = AX, the augmented matrix
A is given by

On><n f(u,x)
A=| gy o | (10)
- 0
and satisfies
Alg+gA =0, (11)

which shows that A is a Lie algebra of the Lorentz group
SO0, (n,1).

Remarkably, the original n-dimensional Eq. (5) in R”
can be embedded naturally into an augmented n+1-
dimensional Eq. (7) in M"*!, satisfying the cone con-
dition:

X'gX = u-u—uf? = ul? - u]® =0, (12)
which is the most natural constraint that we can impose
on Eq. (5). Even raising the dimension of the new system
by one, it shows that the new system with its Lie algebra
property in Eq. (11) has the advantage of allowing us
to develop the group preserving numerical scheme [Liu
(2001, 2004)]:

4Ax”ui”2+2(Ax)2fi'wf. (13)
‘.
4 Juil|* = (Ax)? 18]

Ui =0+

The numerical formula of Eq. (13), which upon compar-
ing with the Euler scheme

i =u +Axf;, (14)

can be viewed as a weighting factor adaptive numerical
scheme:

u =w +nAxf; (15)
with the adaptive factor
AP 2Av g (16)

4 g * — (Ax)? 1]

changing step-by-step. In the above equations, u; de-
notes the numerical value of u at a discrete spatial point
X;, Ax = x;41 — x; is a uniform spatial increment, and f;
denotes f(u;,x;).

4 The inverse heat conduction problems
4.1 Semi-discretization

The numerical method of line is simple in concept that
for a given system of partial differential equations one
discretizes all but one of the independent variables. The
semi-discrete procedure yields a coupled system of ordi-
nary differential equations, which are then numerically
integrated. For the one-dimensional heat flow equation,
we adopt the numerical method of line to discretize the
time coordinate t by

w(x) oo

o =v'(x),i=1,...,n,
ovi(x)  ut(x)—ul(x) .

pea VAL yi=1,...,n—1, a7
v'(x)  u'(x)—u""'(x)

ox VAt ’

where u is a scalar temperature field of heat distribu-
tion, At is a uniform discretization time increment, which
together with v can be viewed as parameters of the
above differential equations and u'(x) = u(x,iAt). Eq.
(17) can be expressed by Eq. (5) as a vector form
withu=(u',... u" V' ... v)and f=(V!,... v (u® —
u)/(2vAL), ..., ("t —u""2) /(2vAL), (u'—

u"~1)/(van))"

The next step is to advance the solution from the bound-
ary condition at x = 0 to the end boundary at x = /. Really,
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Eq. (17) has totally 2n coupled linear differential equa-
tions for the 2n variables u’(x) and vi(x), i =1, 2,...,n,
which can be numerically integrated to obtain the so-
lutions. When i = 0, u°(x) = h(x) can be obtained
from Eq. (3). The formulation of the above problem is
schematically shown in Fig. 2, where x is an integration
direction.

ta numerical integration direction
um,v"
unl !
~
ui+?’vi.+1
u', v
u|—1’Vifl
A
u,v3
u?,v?
u'v! ) -
? >
0 a X1 X;X; Xy X

Figure 2 : The discretization of sideways heat equation.

Suppose that

3#@M o u((+1)AY) —u'(jAx)
ox 1A Ax ’

3V@M V(DAY —vI(jAx)
ox A Ax

by a forward difference for the partial derivatives of u and
v with respect to x, and for saving notation we let

u; =u(a+ jAx, iAt),
Vi =v(a+ jAx, iAr), (18)
and let
1
=— 19
" 2VAL (19

be the stability index, then we can fully discretize the
sideways heat equation (17) into the following form:

i i . .
wipg =uj+vidx, j=0,1,....N,i=1,...,n,

i il il
Vi = Vi+rax(u™ —u ),

j=0,1,...,N,i=1,....n—1 (20)
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noo__.n n__ . n—l1
Vigr =Vi+2rAx(u} —u' ),

where N is the number of spatial steps and such that Ax =
(I—a)/N, and a s the distance of the thermocouple with
0 <a < [. At this moment let us return to Egs. (1)-(4),
where the problem in the ranges of 0 < x < gandt >0
is well-defined to be a Cauchy type PDE. By applying
the elementary method to this problem, we are easy to
derive u(x,) and thus, v(x, ) = du(x, t)/dx available in
the above ranges. Therefore, the data of u; and vj, re-
quired in our numerical integrations are available, and all
ufyand vl ,i=1,...,n, are known.

We can step the solutions u’, | and v',, | according to Eq.
(20), since all the terms on the right-hand sides are al-
ready known at the previous spatial step. If the ratio rAx
is chosen smaller, there will be improved accuracy. If
the ratio rAx is chosen greater, the number of calcula-
tions required to advance the solution through a given
spatial interval would decrease. Nevertheless, for the nu-
merical scheme of Eq. (18) there is no such freedom to
select larger rAx, because when rAx is larger the insta-
bility causes the scheme to fail in calculating the heat
responses; see, e.g., Richtmyer (1967).

4.2 Group preserving scheme

In addition to the explicit scheme of the Euler type intro-
duced in the previous subsection, we attempt to develop
another explicit scheme for the heat flow equation ac-
cording to the formalism specified in Section 3. From Eq.
(17) we have an ordinary differential equations system
for the 2n unknowns of u'(x) and v'(x), i=1,2,...,n. By
employing the numerical scheme developed in Section 3
to Eq. (17), we have

u;+1 :u;—l—nijv;, j=0,1,...,N,i=1,...,n,
Vier = Vi Amrax(uit =i,
j=0,1,...N,i=1,....n—1,

Vigr = Vi +2nrAx(u) — u;?_l).

2D

We can easily realize the scheme as shown in Fig. 2.
If n; = 1 for each step of x;, then the above scheme is
reduced to the Euler scheme of Eq. (20).

4.3 Stability analysis

We proceed to investigate the stability of scheme in Eq.
(21), which can be expressed by a matrix equation
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_ ul}-H T 11 n,Ax
Vil 1 m;Ax
uiiy 1 n,Ax
Vi —rm;Ax 1 m;Ax
Uiy
[ Ve L
- r u} T
5
b
i
1 T]]AX u;?
—2mAx 0 2muAx 1 ]| vt
"o -
—mjA)CMS?
0
0
0
1o
0
0
0
0
(22)

The eigenvalues of the above transformation matrix are
calculated by numerical method. When the maximum
absolute value of these eigenvalues exceeds one, the
scheme is said to be unstable. We find that the range
of r for stability is

0<r<il. (23)
In Fig. 3, r is plotted with respect to Ax with v = 10
W/mK, of which we can see that the admissible range of
r is smaller than 1.

0.96 —

0.88 —

0.80 —

0.72 —

0.64 —

0.56 —

0.48 —

0.40 —

0.32 —

024 —

0.16 —

0.08
\ \ \ \ \

1E4 3E-4 4E-4

AX

Figure 3 : The sufficient condition of stability for the
group preserving scheme is r < 11, which is plotted with
the grid spacing length vs. the stable index r.

5 Numerical examples
5.1 Example one

Let us first consider the one-dimensional heat flow equa-
tion

U = Vi, 0<x<1,0<t <1, 24)

with the boundary conditions

u(0,1) =0, u(1,7) =1,

and the initial condition

u(x,0) = sinmx +x.

The exact solution is given by

u(x,t) = eV ginmx + x. (25)

From Eq. (25) the boundary data for u} and v}, can be
obtained as

. . _ 2 . .
uh = u(a, int) =e ™V sinma +a,
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n2v(iAr)

vh =v(a, iAt) =me” cosma+1.

In order to assess the accuracy of our numerical method,
let us consider the following point-wise numerical error:

Error .= !u(ij, iAt) — ul]| )

j=0,1,...,N, i=1,... (26)

7n7

of which u; is a numerical solution at the i-th time step
and at the j-th grid point; u(jAx,iAt) is a corresponding
exact solution and || denotes the absolute value.

We apply the computational schemes to this example by
letting Ax = 10~3m, At = 0.02 sec, and @ = 0.2, 0.5, 0.9
m. The numerical errors being the differences of numer-
ical solutions and exact solutions are plotted in Fig. 4
for GPS, Euler and RK4 with two different thermal con-
ductivities of v = 1, 1.5 W/mK. The errors for GPS are
slightly smaller than that of Euler and RK4 in a partial
range.

Furthermore, we make a comparison of the numerical er-
rors of GPS, Euler and RK4 schemes in Tables 1 and
2 for three values of a = 0.2,0.5,0.9m with v = 1, 1.5
W/mK and for different grid spacing lengths and time
step sizes. The errors are defined by the absolute values
of the differences of numerical solutions to the exact so-
lution u(1,7) =1 atx =1 and t = 0.3 sec. From Table 1,
it can be seen that the errors of GPS are less than those
of the Euler and RK4 schemes for all cases. As can been
seen, the errors of the Euler scheme are reduced when the
time step sizes decrease or when the grid spacing lengths
decrease. However, the errors of GPS are reduced when
the grid spacing length increase and time step sizes de-
crease. But these are not true for RK4.

Next, we compare the numerical errors of GPS and RK4
schemes in Tables 3 and 4 with Ax = 1073 m, Ar =
0.02sec,a=0.2,0.5mand v=1, 1.5 W/mK at three dif-
ferent times of r = 0.1,0.2,0.3sec for three different grid
points of x =0.6,0.8, 1. When a = 0.9m, we compare the
errors at three different grid points of x = 0.91,0.95, 1. It
can be seen that for most of the data, GPS is more accu-
rate than RK4. Only in the case of a = 0.9m at three dif-
ferent grid points of x =0.91,0.95, 1, these three schemes
are almost given results equal to the exact solutions.

Then, let us consider the following global error:

n N
Error =

> [ —u(jAx,iAn)F.
i=1 j=1

27
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In Tables 5 and 6, we compare the global errors of GPS,
Euler and RK4 with At = 0.02sec,a = 0.2,0.5,0.9m and
v =1, 1.5 W/mK. The errors of GPS are smaller than
those of RK4 when a = 0.2,0.5m.

In a practical use, we usually mount a thermocouple as
far away from the surface as possible for not destroy-
ing the structure of the engineering appliance too much,
which means that a is much smaller than 1. In this sense
the point-wise and global errors of GPS are much smaller
than that of Euler and RK4 schemes, which in turns
greatly suggest us to use the GPS in these calculations
of sideways heat equation when a is limited to be small
for a safety reason.

In the cases of the input data contaminated by ran-
dom noises, we are concerned with the robustness of
our numerical schemes. We use the function RAN-
DOM_NUMBER given in Fortran to generate the noisy
data R(i), in which R(i) are random numbers in [0, 1].
The numerical errors of GPS with random noise effect
in the range of [0, 0.01] obtained from R(i) by multiply-
ing a factor 1072, those of GPS with random noise effect
on the initial condition, and those without random noise
effect are plotted in Figs. 5(a)-(b), (e)-(f), and (i)-(j), re-
spectively, for GPS atx =1,a =0.2,0.5,09mand v =1,
1.5 W/mK. As can be seen, the random noise affects the
numerical results very little. The numerical errors of GPS
with random noise effect in the range of [0, 0.01], those
on the initial condition, and those without random noise
effect are plotted in Figs. 5(c)-(d), (g)-(h), and (k)-(1), re-
spectively, for GPS at t = 0.04sec,a = 0.2,0.5,0.9m and
v =1, 1.5 W/mK. As shown in these figures, the random
noise affects the numerical results obviously only at the
rear portion of the rod when a = 0.2 and 0.5 m. For a =
0.9 m, the random noise gives no influence on the nu-
merical results. Then we imposed the random noise in
the range of [0, 0.001] on the boundary data at a = 0.2,
0.5,09mwithv=1, 1.5 W/mK. The numerical errors of
GPS with random noise effect in the range of [0, 0.001],
those with random noise effect on the boundary data and
those without random noise effect are plotted in Fig. 6.
Even under the disturbance of random noise, our scheme
is still performing very well.

5.2 Example two

Let us consider another one-dimensional heat flow equa-
tion
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Figure 4 : Numerical errors for Example one are plotted in (a)-(b), (e)-(f), and (i)-(j) for cases of v =1, 1.5 W/mK
with a = 0.2, 0.5, and 0.9 m, and (c)-(d), (g)-(h), (k)-(1) for cases of v =1, 1.5 W/mK with a =0.2,0.5,0.9m.
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Table 1: Comparing the numerical errors of GPS, Euler and RK4 schemes for v=1 W/mK with a

=0.2, 0.5 and 0.9 m of Example one.

CMES, vol.10, no.1, pp.13-38, 2005

At Ax Error of GPS | Error of Euler | Error of RK4
0.025 | 0.8/600 | 7.78873E-4 7.86012E-4 7.82614E-4
0.8/700 | 7.79535E-4 7.85621E-4 7.82614E-4
0.8/800 | 7.80003E-4 7.85307E-4 7.82614E-4
0.8/900 | 7.80351E-4 7.85050E-4 7.82614E-4
0.8/1000| 7.80619E-4 7.84837E-4 7.82614E-4
0.02 | 0.8/600 | 4.99399E-4 5.03331E-4 5.01438E-4 |a=0.2
0.8/700 | 4.99834E-4 5.03154E-4 5.01438E-4
0.8/800 | 5.00128E-4 5.03001E-4 5.01438E-4
0.8/900 | 5.00338E-4 5.02870E-4 5.01438E-4
0.8/1000| 5.00494E-4 5.02758E-4 5.01438E-4
0.025 | 0.5/600 | 3.64367E-4 4.13470E-4 4.12800E-4
0.5/700 | 3.71312E-4 4.13397E-4 4.12800E-4
0.5/800 | 3.76516E-4 4.13338E-4 4.12800E-4
0.5/900 | 3.80560E-4 4.13289E-4 4.12800E-4
0.5/1000| 3.83792E-4 4.13247E-4 4.12800E-4 [&=0.5
0.02 | 0.5/600 | 2.15360E-4 2.64505E-4 2.64145E-4
0.5/700 | 2.22358E-4 2.64476E-4 2.64145E-4
0.5/800 | 2.27599E-4 2.64450E-4 2.64145E-4
0.5/900 | 2.31673E-4 2.64427E-4 2.64145E-4
0.5/1000| 2.34929E-4 2.64406E-4 2.64145E-4
0.025 | 0.1/600 | 2.42706E-6 5.33799E-6 5.33905E-6
0.1/700 | 2.84330E-6 5.33832E-6 5.33905E-6
0.1/800 | 3.15543E-6 5.33854E-6 5.33905E-6
0.1/900 | 3.39817E-6 5.33868E-6 5.33905E-6
0.1/1000| 3.59233E-6 5.33877E-6 | 5.33905E-6 |&=0.9
0.02 | 0.1/600 | 5.16323E-7 3.41216E-6 3.41337E-6
0.1/700 | 9.30435E-7 3.41252E-6 3.41337E-6
0.1/800 | 1.24096E-6 3.41274E-6 3.41337E-6
0.1/900 | 1.48246E-6 3.41290E-6 3.41337E-6
0.1/1000| 1.67563E-6 3.41300E-6 3.41337E-6
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Table 2: Comparing the numerical errors of GPS, Euler and RK4 schemes for v = 1.5 W/mK with

a=10.2,0.5 and 0.9 m of Example one.

At Ax Error of GPS Error of Euler | Error of RK4
0.025 | 0.8/600 | 3.27287E-4 4.01058E-4 3.99082E-4
0.8/700 | 3.37576E-4 4.00797E-4 3.99082E-4
0.8/800 | 3.45286E-4 4.00596E-4 3.99082E-4
0.8/900 | 3.51278E-4 4.00437E-4 3.99082E-4
0.8/1000| 3.56069E-4 4.00309E-4 3.99082E-4 | a=0.2
0.02 | 0.8/600 1.88111E-4 2.57266E-4 2.56071E-4
0.8/700 | 1.97861E-4 2.57116E-4 2.56071E-4
0.8/800 | 2.05164E-4 2.57000E-4 2.56071E-4
0.8/900 | 2.10839E-4 2.56906E-4 2.56071E-4
0.8/1000| 2.15376E-4 2.56830E-4 2.56071E-4
0.025 | 0.5/600 | 1.42660E-4 2.11865E-4 2.11463E-4
0.5/700 | 1.52498E-4 2.11813E-4 2.11463E-4
0.5/800 | 1.59875E-4 2.11773E-4 2.11463E-4
0.5/900 | 1.65611E-4 2.11741E-4 2.11463E-4
0.5/1000| 1.70199E-4 2.11715E-4 2.11463E-4 | a=0.5
0.02 | 0.5/600 | 6.63999E-5 1.35524E-4 1.35285E-4
0.5/700 | 7.62505E-5 1.35495E-4 1.35285E-4
0.5/800 | 8.36363E-5 1.35472E-4 1.35285E-4
0.5/900 | 8.93795E-5 1.35454E-4 1.35285E-4
0.5/1000| 9.39732E-5 1.35438E-4 1.35285E-4
0.025 | 0.1/600 | 8.64911E-7 2.74333E-6 2.74345E-6
0.1/700 | 3.49336E-7 2.74339E-6 2.74345E-6
0.1/800 | 3.73248E-8 2.74342E-6 2.74345E-6
0.1/900 | 3.38048E-7 2.74345E-6 2.74345E-6
0.1/1000| 5.78619E-7 2.74346E-6 | 2.74345E-6 | a=0.9
0.02 | 0.1/600 | 1.83971E-6 1.75143E-6 1.75163E-6
0.1/700 | 1.32656E-6 1.75150E-6 1.75163E-6
0.1/800 | 9.41719E-7 1.75154E-6 1.75163E-6
0.1/900 | 6.42413E-7 1.75157E-6 1.75163E-6
0.1/1000| 4.02976E-7 1.75159E-6 1.75163E-6
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Table 3: Comparing the computational results of GPS and RK4 schemes with the exact solution
for v=1 W/mK with 8 = 0.2, 0.5 and 0.9 m of Example one.

t X GPS RK4 Exact

0.1 0.6 0.95372 0.95306 0.95447

0.8 1.10169 1.10163 1.10191

1 0.99639 0.99633 1.00000

0.2 0.6 0.73179 0.73159 0.73211
0.8 0.88083 0.88062 0.88165 g=0.2

1 0.99865 0.99865 1.00000

0.3 0.6 0.64908 0.64904 0.64924

0.8 0.83010 0.83005 0.83043

1 0.99950 0.99950 1.00000

0.1 0.6 0.95446 0.95435 0.95447

0.8 1.10184 1.10182 1.10191

1 0.99809 0.99810 1.00000

0.2 0.6 0.73211 0.73207 0.73211
0.8 0.88139 0.88131 0.88165 a=0.5

1 0.99932 0.99929 1.00000

0.3 0.6 0.64924 0.64922 0.64924

0.8 0.83035 0.83030 0.83043

1 0.99977 0.99974 1.00000

0.1 0.91 0.10140 0.10140 0.10140

0.95 0.10083 0.10083 0.10083

1 0.99998 0.99998 1.00000

0.2 0.91 0.94876 0.94876 0.94876
0.95 0.97173 0.97173 0.97173 a=0.9

1 0.99999 0.99999 1.00000

0.3 0.91 0.92444 0.92444 0.92444

0.95 0.95810 0.95810 0.95810

1 1.00000 0.99999 1.00000
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Table 4: Comparing the computational results of GPS and RK4 schemes with the exact solution

for v=1.5 W/mK with g = 0.2, 0.5 and 0.9 m of Example one.

t X GPS RK4 Exact

0.1 0.6 0.81488 0.81447 0.81640

0.8 0.93032 0.92993 0.93374

1 0.99504 0.99504 1.00000

0.2 0.6 0.64887 0.64880 0.64924
0.8 0.82966 0.82956 0.83043 g=0.2

1 0.99892 0.99888 1.00000

0.3 0.6 0.61110 0.61110 0.61120

0.8 0.80676 0.80673 0.80692

1 0.99980 0.99974 1.00000

0.1 0.6 0.81631 0.81624 0.81640

0.8 0.93261 0.93247 0.93374

1 0.99740 0.99739 1.00000

0.2 0.6 0.64922 0.64920 0.64924
0.8 0.83019 0.83014 0.83043 a=0.5

1 0.99945 0.99941 1.00000

0.3 0.6 0.61120 0.61119 0.61120

0.8 0.80689 0.80686 0.80692

1 0.99992 0.99987 1.00000

0.1 0.91 0.97348 0.97348 0.97348

0.95 0.98559 0.98558 0.98560

1 0.99997 0.99997 1.00000

0.2 0.91 0.92444 0.92444 0.92444
0.95 0.95810 0.95810 0.95810 | &=0.9

1 1.00000 0.99999 1.00000

0.3 0.91 0.91329 0.91329 0.91329

0.95 0.95184 0.95184 0.95184

1 1.00000 0.99999 1.00000
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Table 5: Comparing the global errors of GPS, Euler and RK4 schemes for v =1 W/mK with a =
0.2, 0.5 and 0.9 m of Example one.

Uy = Vi, 0 <x<2,0<t <1,

with the boundary conditions

u(0,1) =u(2,t) =0,

and the initial condition

~J 100x, for0 <x <1,
u(x,0) = { 100(2 —x), forl <x<2.

The exact solution is given by

Ax Error of GPS | Error of Euler Error of RK4
0.8/600 0.03196 0.03178 0.08047
0.8/700 0.04262 0.04222 0.09383
0.8/800 0.05396 0.05339 0.10718 a=0.2
0.8/900 0.06575 0.06505 0.12054
0.8/1000 0.07785 0.07704 0.13389
0.5/600 0.008262 0.008055 0.012122
0.5/700 0.010179 0.009968 0.014135
0.5/800 0.012120 0.011906 0.016148 a=0.5
0.5/900 0.014077 0.013861 0.018161
0.5/1000 | 0.016045 0.015827 0.020174
0.1/600 1.304E-6 1.069E-6 1.298E-6
0.1/700 1.503E-6 1.280E-6 1.514E-6
0.1/800 1.707E-6 1.493E-6 1.730E-6 a=0.9
0.1/900 1.913E-6 1.706E-6 1.945E-6
0.1/1000 2.121E-6 1.920E-6 2.161E-6
(28)
2p+1)n(x—1
)05t on 2D
x exp[—T*v(2p + 1)t /4],
— 1 . 2p+D)r(x—1
V() = —80();0 TR (2p )2 (x—1)
x exp[—m*v(2p + 1)t /4]. (29)

From Eq. (28) the boundary data for ), and v}, can be
obtained
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Table 6: Comparing the global errors of GPS, Euler and RK4 schemes for v = 1.5 W/mK with a =

0.2, 0.5 and 0.9 m of Example one.

Ax Error of GPS | Error of Euler Error of RK4
0.8/600 0.16204 0.16042 0.23866
0.8/700 0.20026 0.19855 0.27828
0.8/800 0.23882 0.23706 0.31789 a=0.2
0.8/900 0.27762 0.27581 0.35750
0.8/1000 0.31658 0.31474 0.39711
0.5/600 0.03111 0.03074 0.03673
0.5/700 0.03716 0.03678 0.04283
0.5/800 0.04322 0.04284 0.04893 a=0.5
0.5/900 0.04928 0.04891 0.05503
0.5/1000 0.05536 0.05498 0.06113
0.1/600 3.926E-6 3.623E-6 3.957E-6
0.1/700 4.564E-6 4.278E-6 4.614E-6
0.1/800 5.207E-6 4.933E-6 5.271E-6 g=0.9
0.1/900 5.854E-6 5.589E-6 5.929E-6
0.1/1000 6.502E-6 6.246E-6 6.586E-6
pare the numerical errors of GPS and RK4 in Tables 7
- and 8 for v =1, 1.5 W/mK, respectively, with fixed val-
uly = u(a, iAr) =800 Y . 1  cos 2p+Dn(@—1) yeg of Ax = 103 m, At = 0.02 sec, a = 1.4 m at three
=0T (2p+1) 2 different grid points of x = 1.5, 1.7, 2, a = 1.6 m at grid

x exp[—m*v(2p +1)2(iAt) /4],

points of x = 1.7, 1.9, 2, and a = 1.9 m at grid points

2p+)n(a—1 of x = 1.91, 1.95, 2. It can be seen that for most of the

. > 1
vy = v(a, iAt) = —800 sin
o= [Z‘O 2n(2p+1) 2

x exp|—m2v(2p+ 1) (iAr) /4].

We apply the computational schemes to this example by
letting Ax = 103m, At = 0.02 sec, and a = 1.4, 1.6, 1.9
m. The numerical errors are plotted in Fig. 7 for GPS,
Euler and RK4 with two different thermal conductivi-
ties of v =1, 1.5 W/mK. The errors for GPS are slightly
smaller than those of Euler and RK4 in the partial range.

At three different times of t = 0.1, 0.2, 0.3 sec, we com-

numerical data, GPS is more accurate than Euler. Only
in the cases of a = 1.4, 1.6, 1.9 m at grid point of x =2
and time of t = 0.3 sec, the errors for Euler are slightly
smaller than those of GPS.

The numerical errors of GPS with random noise effect
in the range of [0, 1], those on the initial condition,
and those without random noise effect are plotted in
Figs. 8(a)-(b), (e)-(f), and (i)-(j) for GPS, respectively,
atx=2,a=14,1.6,19mand v =1, 1.5 W/mK. It is
found that the random noise does not affect the numeri-
cal results. As for the numerical errors of GPS with ran-
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Table 7: Comparing the computational results of GPS and Euler schemes with the exact solution

forv=1W/mK with =14, 1.6 and 1.9 m of Example two.

t X GPS Euler Exact

0.1 1.5 44.0922 44.0940 44.0874

1.7 27.8124 27.8175 27.7920

2 2.7876E-2 | 3.5082E-2 0.0000

0.2 1.5 34.9191 34.9204 34.9162
1.7 22.3654 22.3695 22.3610 g=1.4

2 5.1014E-3 | 7.4147E-4 0.0000

0.3 1.5 27.3342 27.3353 27.3321

1.7 17.5445 17.5476 17.5421

2 7.6413E-3 | 3.0504E-3 0.0000

0.1 1.7 27.7964 27.7977 27.7920

1.9 9.4900 9.4928 9.4685

2 2.7795E-2 | 3.0788E-2 0.0000

0.2 1.7 22.3629 22.3639 22.3610
1.9 7.6952 7.6975 7.6930 a=1.6

2 1.4362E-4 | 2.2932E-3 0.0000

0.3 1.7 17.5434 17.5442 17.5421

1.9 6.0433 6.0451 6.0433

2 2.6811E-3 | 7.6629E-4 0.0000

0.1 1.91 8.52593 8.52596 8.52588

1.95 4.74377 4.74390 4.74347

2 6.14062E-4 | 7.96917E-4 |  0.00000

0.2 1.91 6.92892 6.92894 6.92886
1.95 3.85794 3.85805 3.85779 a=1.9

2 5.15664E-5 | 9.72179E-5 |  0.00000

0.3 1.91 5.44324 5.44326 5.44319

1.95 3.03102 3.03111 3.03092

2 1.19365E-4 | 2.46244E-6 | 0.00000
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Table 8: Comparing the computational results of GPS and Euler schemes with the exact solution

for v=1.5 W/mK with g = 1.4, 1.6 and 1.9 m of Example two.

t X GPS Euler Exact

0.1 1.5 39.3615 39.3632 39.3578

1.7 25.1115 25.1162 25.0977

2 1.6261E-2 | 2.3208E-2 0.0000

0.2 1.5 27.3340 27.3351 27.3321
1.7 17.5431 17.5464 17.5421 g=1.4

2 1.1800E-2 | 6.9245E-3 0.0000

0.3 1.5 18.8838 18.8845 18.8824

1.7 12.1234 12.1257 12.1231

2 9.0019E-3 | 5.6319E-3 0.0000

0.1 1.7 25.1016 25.1027 25.0977

1.9 8.6279 8.6305 8.6116

2 1.9017E-2 | 2.1867E-2 0.0000

0.2 1.7 17.5433 17.5441 17.5421
1.9 6.0426 6.0445 6.0433 a=1.6

2 3.7546E-3 | 1.7519E-3 0.0000

0.3 1.7 12.1238 12.1244 12.1231

1.9 4.1764 4.1777 4.1773

2 3.2018E-3 | 1.8174E-3 0.0000

0.1 1.91 7.75576 7.75579 7.75570

1.95 431761 431774 4.31729

2 5.49258E-4 | 7.23620E-4 |  0.00000

0.2 1.91 5.44323 5.44326 5.44319
1.95 3.03102 3.03111 3.03092 a=1.9

2 1.33856E-4 | 1.14123E-5 |  0.00000

0.3 1.91 3.76252 3.76253 3.76249

1.95 2.09515 2.09521 2.09509

2 1.11512E-4 | 2.68724E-5 |  0.00000
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Figure 5 : Errors of GPS solutions with and without random noise effect for Example one are plotted in (a)-(b),
(e)-(f), and (i)-(j) for cases of v =1, 1.5 W/mK with a = 0.2, 0.5, and 0.9 m, and (c)-(d), (g)-(h), (k)-(1) for cases of

v=1,15W/mK witha =0.2, 0.5, and 0.9 m.
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Figure 6 : Errors of GPS solutions with and without random noise effect on the boundary data for Example one are
plotted in (a)-(b), (e)-(f), and (i)-(j) for cases of v =1, 1.5 W/mK with a = 0.2, 0.5, and 0.9 m, and (c)-(d), (g)-(h),
(k)-() for cases of v =1, 1.5 W/mK with a = 0.2, 0.5, and 0.9 m.



32 Copyright (© 2005 Tech Science Press CMES, vol. 10, no.1, pp.13-38, 2005

1E+0

1E-1

1E-2

Errors of u

1E-3

1E-4

1E+0

1E-1

1E-2

1E-3

1E-4

1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9

1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8

1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
| 1E-8

1.4 21 1.95 2.0C

X (m)

Figure 7 : Numerical errors for Example two are plotted in (a)-(b), (e)-(f), and (i)-(j) for cases of v =1, 1.5 W/mK
witha =1.4, 1.6, and 1.9 m, and (c)-(d), (g)-(h), (k)-(1) for cases of v=1, 1.5 W/mK witha = 1.4, 1.6, and 1.9 m.
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Figure 8 : Errors of GPS solutions with and without random noise effect for Example two are plotted in (a)-(b),
(e)-(f), and (i)-(j) for cases of v=1, 1.5 W/mK with a = 1.4, 1.6, and 1.9 m, and (c)-(d), (g)-(h), (k)-(1) for cases of
v=1,1.5W/mK witha=14,1.6,and 1.9 m.
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Figure 9 : Errors of GPS solutions with and without random noise effect on the boundary data for Example two are
plotted in (a)-(b), (e)-(f), and (i)-(j) for cases of v =1, 1.5 W/mK with a = 1.4, 1.6, and 1.9 m, and (c)-(d), (g)-(h),
(k)-(1) for cases of v=1, 1.5 W/mK witha = 1.4, 1.6, and 1.9 m.
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dom noise effect and those without random noise effect,
all are plotted in Figs. 8(c)-(d), (g)-(h), (k)-(1) for GPS,
respectively, at t = 0.2sec,a=1.4,1.6,1.9m and v = 1,
1.5 W/mK. As shown, the random noise affects the nu-
merical results slightly. When we impose the random
noise in the range of [0, 0.001] on the boundary data at
a=14,1.6,1.9m with v =1, 1.5 W/mK, the numerical
errors of GPS with random noise effect in the range of
[0, 0.001], those on the boundary data, and those with-
out random noise effect are plotted in Fig. 9. It can be
seen that the disturbance from the noise may influence
the numerical results, but the scheme is robust.

6 Conclusions

The inverse heat conduction problems have been well
calculated by the formulation with a semi-discretization
of the time coordinate of sideways heat equation in con-
junction with the group preserving numerical integration
scheme along the spatial direction. In the inverse nu-
merical integration of the sideways heat equation, a sim-
ple employment of the finite difference, finite element,
boundary element or meshless method may result in nu-
merical instablility. Embedding the time discretized heat
conduction equation into an augmented system in the
Minkowski space, we can develop spatial-stepping nu-
merical integration under the Lie group theory and ad-
mit a large spatial stepsize without inducing instability,
which is guaranteed by the group properties. Numerical
results indicate that the group preserving scheme is effi-
cient to numerically integrating the sideways heat equa-
tion and is also better than RK4. The numerical behavior
of GPS is very unlike that of the conventional numerical
methods, e.g., RK4 and the Euler scheme. It is found
that the numerical errors of GPS are reduced when the
grid spacing lengths are increased. Besides, under a rea-
sonable time stepsize and grid spacing length, the GPS
can produce a good result. The implementation is quite
easy and is also robust to defend the noise disturbance.
The efficiency of GPS is rooted in the closure property
of the Lie group that we used it to construct the numeri-
cal method for IHCP. Therefore, it is highly advocated to
be used in the numerical computations of sideways heat
equation. Especially, when the thermocouple is mounted
in a position far away from the surface for a safety rea-
son, the GPS provided computational results much better
than others.
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