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Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear
Problems with Large Deformations and Rotations

Z. D. Han1, A. M. Rajendran2 and S.N. Atluri1

Abstract: A nonlinear formulation of the Meshless
Local Petrov-Galerkin (MLPG) finite-volume mixed
method is developed for the large deformation analysis
of static and dynamic problems. In the present MLPG
large deformation formulation, the velocity gradients are
interpolated independently, to avoid the time consuming
differentiations of the shape functions at all integration
points. The nodal values of velocity gradients are ex-
pressed in terms of the independently interpolated nodal
values of displacements (or velocities), by enforcing the
compatibility conditions directly at the nodal points. For
validating the present large deformation MLPG formu-
lation, two example problems are considered: 1) large
deformations and rotations of a hyper-elastic cantilever
beam, and 2) impact of an elastic-plastic solid rod (cylin-
der) on a rigid surface (often called as the Taylor impact
test). The MLPG result for the cantilever beam problem
was successfully compared with results from both analyt-
ical modeling and a commercial finite element code sim-
ulation. The final shapes of the plastically deformed rod
obtained from a well-known finite element code, and the
present MLPG code were also successfully compared.
The direct comparison of computer run times between
the finite element method (FEM) and the large defor-
mation mixed MLPG method showed that the MLPG
method was relatively more efficient than the FEM, at
least for the two example problems considered in the
present study.

keyword: Meshless Local Petrov-Galerkin approach
(MLPG), Finite Volume Methods, Mixed Methods.

1 Introduction

Accurate description and modeling of large deformations
has been a very challenging problem in computational
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mechanics. However, during the past three decades,
several researchers [Atluri (1980,1984), Belytshchko et
al (1984), Malkus and Hughes(1978), Oden and Pires
(1983)] have successfully developed algorithms to han-
dle large deformations in finite element analyses. It is
indeed well recognized that the FEM has certain inher-
ent drawbacks: a) labor-intensive mesh-generation, b)
shear locking, c) poor derivative solutions, and d) hour-
glass effects, e) mesh distortion under very large defor-
mations, and in f) problems of strain-localization, crack-
propagation, and material penetration. Eventhough ad-
hoc attempts are made to alleviate some of these prob-
lems, a thorough scientific basis is still necessary. Severe
localizations such as adiabatic shear banding and coales-
cence of microcracks can often limit the FEM solutions.
The so called shock propagation based FEM codes (“Hy-
drocodes”) provide numerical schemes that would allow
the calculations to proceed smoothly through removal of
highly distorted elements whose aspect ratios tend to-
wards zero from the computations. Recently, Johnson
et al (2003) proposed an “element to partcile” conver-
sion method to alleviate the problem of highly distorted
meshes in fracture and fragmentation problems. This
mixed mesh/particle method seems to provide stable and
useful solutions to several impact problems; howevere,
these types of numerical approaches tend to remain “phe-
nomenological” and limited to a class of problems. Or-
tiz and his colleagues developed FEM based fracture and
fragmentation algorithms in which cohesive zones are as-
sumed between element boundaries and cracks can be
propagated between the elements using cohesive laws
[Ortiz and Pandolfti (1999)]. They used advanced non-
linear error estimation and non smooth contact algo-
rithms to assure numerical accuracy and stability. Un-
fortunately, this advanced FEM approach seems to suffer
from mesh-influenced solutions. The problem of time
consuming mesh generation process and the need for in-
telligent mesh design make FEM based approaches more
complicated and unattractive.
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In contrast, the meshless methods have become very at-
tractive for eliminating the mesh distortion problems due
to large deformations. Some meshless methods are based
on the global weak forms, such as the smooth particle hy-
drodynamics (SPH) and the element-free Galerkin meth-
ods (EFG). They may require certain node distribution
pattern or background cells for integration, which may
be not satisfied while meshes are distorted during large
deformations.

As a general framework for developing meshless meth-
ods, the MLPG approach provides the flexibility in
choosing the local weak forms, the trial functions,
and the independent test functions for solving PDEs,
pioneered by Atluri and his colleagues [Atluri and
Zhu(1998), and Atluri (2004)]. Some distinct advantages
of the MLPG approach include: a) all weak forms are for-
mulated locally; b) various trial and test functions can be
chosen and combined together for solving one problem;
c) overlapping local sub-domains can be chosen in a way
to match problems and algorithms in any special cases; d)
it is flexible to extend and incorporate the MLPG contin-
uum methods with others, including molecular dynamics
(MD). The MLPG approach has been used to solve vari-
ous problems successfully, and has been demonstrated as
to its its suitability for computational mechanics, includ-
ing the work in fracture mechanics [Atluri, Kim and Cho
(1999)], fluid mechanics [Lin and Atluri (2001)], and 3D
elasto- statics and dynamics [Han and Atluri (2004ab)]
and so on. A very comprehensive summary has been pre-
sented in the monograph by Atluri [2004].

Most recently, a new meshless mixed finite volume
method has been presented by [Atluri, Han and Rajen-
dran (2004)], in which the strains are also interpolated
independently from the displacements. The key feature
of this new method is to interpolate the derivatives of
the primary variables independently, which makes the
MLPG method computationally more efficient. The cal-
culation of the derivatives is required at each integra-
tion point in the primal MLPG methods, which is com-
putationally costly. With the mixed method, the strain-
displacement compatibility is enforced at nodal points by
using the collocation method. In addition, it requires only
C0 continuities for the trial functions, instead of C1 con-
tinuities. Thus a smaller support size can be used and the
number of neighboring nodes is reduced dramatically, es-
pecially for 3D cases. At the same time, it still retains the
simple physical meaning as the momentum balance law

of the local sub-domains, while the accuracy of the sec-
ondary variables has been improved. The mixed method
has been applied to solve the elasto-static problems suc-
cessfully [Atluri, Han and Rajendran (2004)].

In the present study, the mixed method is extended for
the nonlinear analysis with large deformations. It is well
known that the gradients of the displacements (or veloc-
ities) are widely used for the nonlinear analysis, such as
the material constitutive models and the momentum bal-
ance law. The strain tensor is not enough to capture all
deformation information, because the spin tensor plays
an important role in the balance law, as well as the stress
update [Atluri (1980)]. Therefore, the gradients of the
velocities are chosen to be interpolated independently in
the present study, instead of the strains. Thus the local
weak forms are integrated based on the gradient interpo-
lation, as well as the material constitutive models. As
the primal variables, the velocities are chosen as the de-
grees of freedom for each node, and their gradients are
mapped back by enforcing the compatibility conditions
at nodal points through the collocation method. This
special combination also demonstrates the flexibility of
the general MLPG approach. The present MLPG mixed
method is applied to solve some example nonlinear static
and dynamic problems. An explicit algorithm is used in
the present study to simulate the high-speed impact prob-
lems. The examples demonstrate the suitability of the
MLPG mixed finite-volume method for nonlinear prob-
lems with large deformations and rotations.

The paper formulates the local weak forms for the non-
linear mechanics with large deformations in Section 2. It
also includes the numerical implementation of the MLPG
method through the mixed approach. Numerical exam-
ples are presented in Section 3, for both static and dy-
namic problems in 2D and 3D cases. Some conclusions
and discussions are given in Section 4.

2 MLPG Mixed FVM for finite strain problems

2.1 Finite strain deformation

In the present study, we use an updated Lagrangian for-
mulation. Let xi be the spatial coordinates of a material
particle in the current configuration. Let Ṡi j be the Trues-
dell stress-rate (the rate of second Piola-Kirchhoff stress
as referred to the current configuration); and let σ̇J

i j be
the Jaumann rate of Kirchhoff stress (which is J times
the Cauchy stress, where J is the ratio of volumes). It is
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known [Atluri (1980)]:

Ṡi j = σ̇J
i j −Dikσk j −σikDk j (1)

where Di j is the symmetric part of the velocity gradient.
The skew-symmetric part of the velocity gradients is de-
noted as Wi j, i.e.

Wi j =
1
2
(vi, j −v j,i) (2)

Consider a body in a 3D domain Ω, with a boundary ∂Ω,
the rate forms of the linear and angular momentum bal-
ances are [Atluri (1980)]:

(Ṡi j +τikv j,k),i + ḟ j = 0 (3)

where, in a dynamic problem, ḟ j are appropriately de-
fined in terms of the rate of change of inertia forces and
( ),i = ∂( )/∂xi; xi are current coordinates of a material
particle. In Eq. 2.2, τi j, is the Cauchy stress in the cur-
rent configuration.

Consistent theories of combined isotropic/kinematic
hardening finite strain plasticity that are capable of mod-
eling the available test data (at finite strain) are fully dis-
cussed in Im and Atluri (1984). Especially, in the case of
kinematic hardening plasticity at finite strains, it is desir-
able [see Im and Atluri (1987), and the references cited
therein] to introduce the so-called plastic spin, denoted
by Wp. As seen in Im and Atluri (1987) a combined
isotropic/kinematic hardening plasticity may be charac-
terized by the following evolution equations:

Dp
i j = fi j(σ

′
i j,Di j,W

p
i j , · · ·) (4)

W p
i j = gi j(σ

′
i j, ri j, · · ·) (5)

rJ
i j = hi j(Dp

i j,W
p

i j , · · ·) (6)

and

σ̇J
i j = ki j(Dp

i j,W
p
i j , · · ·) (7)

Here, ri j is the back-stress; ṙJ
i j the Jaumann rate of the

back-stress; Dp
i j the plastic part of the velocity strain Di j;

and σ′
i j is the deviator of the Kirchhoff stress.

Integral representations for the combined
isotropic/kinematic hardening plasticity theories of
the above type have been discussed in Im and Atluri

(1987b). It is noted here that ri j = 0; W p
i j = 0 in the case

of isotropic hardening. The evolution equations for σ̇J
i j

is given by:

σ̇J
i j ≡ σ̇i j −Wikσk j +σikWk j

= Ei jkl(Dkl −Dp
kl)−W p

ik σk j +σikW p
k j (8)

2.2 Local weak form with the large deformations

In the MLPG approaches, one may write a weak form
over a local sub-domain Ωs, which may have an arbitrary
shape, and contain the a point x in question. A general-
ized local weak form of the differential equation in Eq.
2.2, over a local sub-domain Ωs, can be written as:
Z

Ωs

[(Ṡi j +τikv j,k),i + ḟ j]wjdΩ = 0 (9)

where wj are the test functions.

By applying the divergence theorem, Eq. (9) may be
rewritten in a symmetric weak form as:
Z

∂Ωs

(Ṡi j +τikv j,k)niwjdΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟ jw j]dΩ = 0 (10)

One may define the rate of tractions ṫ j as:

ṫ j = (Ṡi j +τikv j,k)ni (11)

where ni are components of a unit outward normal to the
boundary of the local subdomain Ωs, in its current config-
uration. Thus one may rewrite the local symmetric weak
form as
Z

Ls

ṫiwidΓ+
Z

Γsu

ṫiwidΓ+
Z

Γst

ṫ iwidΓ

−
Z

Ωs

[(Ṡi j +τikv j,k)wj,i − ḟiwi)dΩ = 0 (12)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.
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One may use the Heaviside function as the test function
in the local symmetric weak form in Eq. (12), and obtain,

−
Z

Ls

ṫidΓ−
Z

Γsu

ṫidΓ =
Z

Γst

ṫ idΓ+
Z

Ωs

ḟidΩ (13)

Eq. 2.3 has the physical meaning that it represents the
balance law of the local sub-domain Ωs, as conventional
finite volume methods.

2.3 Meshless interpolation for the mixed method

The MLS method of interpolation is generally considered
to be one of the best schemes to interpolate random data
with a reasonable accuracy, because of its completeness,
robustness and continuity. With the MLS, the distribution
of a function u in Ωs can be approximated, over a number
of scattered local points {xi}, (i = 1,2, ...,n), as,

u(x) = pT (x)a(x) ∀x ∈ Ωs (14)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT (xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (15)

where wi(x) are the weight functions and ûiare the ficti-
tious nodal values.

One may obtain the shape function as,

u(x) = pT (x)A−1(x)B(x)û≡ ΦΦΦT (x)û ∀x ∈ ∂Ωx (16)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (17)

The weight function in Eq. (15) defines the range of in-
fluence of node I. Normally it has a compact support. A
fourth order spline weight function is used in the present
study.

From the definition of the rate of tractions in Eq. (14), the
integrals in the local weak form in Eq. 2.3 are based on
the derivatives of the shape functions given in Eq. (16).

It is well known that the calculation of the derivatives of
the shape functions is computationally costly. One may
following the original idea reported by [Atluri, Han, and
Rajendran (2004)] and interpolate the gradients of the ve-
locities indecently. Thus no derivatives are required to
perform the local weak form integration. One may use
the same shape functions in Eq. (16) for the gradient in-
terpolation, as

vi, j(x) =
N

∑
K=1

Φ(K)(x)v(K)
i, j (18)

where v
(K)
i, j are the gradients of the velocities at node K,

which can be determined at the nods by enforcing the
compatibility condition through the standard collocation
method. The interpolation of the velocities can be also
written from the same shape functions, as

vi(x) =
N

∑
J=1

Φ(J)(x)v(J)
i (19)

Thereafter, the compatibility condition is enforced at
node K by differentiating the velocity fields in Eq. (19),
as

vi, j(x(I)) =
∂vi

∂x j
(x(I)) (20)

By interpolating the gradients of the velocities, as one
of the key features of the mixed method, the integrals
in the local weak form involve no derivatives, i.e. the
differentiation operations of the shape functions. In ad-
dition, most nonlinear constitute equations are based on
the gradients, and the stress measures are transformed
through the gradients. By extending the mixed method
by Atluri, Han, and Rajendran (2004)[wherein strains
and displacements were independently interpolated], the
present mixed method[wherein the displacement gradi-
ents and displacements are independently interpolated]
still holds the same advantages: a) the efficiency of the
present method is improved over the traditional MLPG
[primal] displacement methods; b) the requirement of the
completeness and continuity of the shape functions is re-
duced by one-order, because the gradients are interpo-
lated independently. Thus, lower-order polynomial terms
can be used in the meshless approximations, and leads to
a smaller nodal influence size to speed up the calculation
of the shape functions.
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2.4 Small and finite strain elasto-plasticity for velocity
gradients

The analyses of small and finite strain elastoplasticity are
presented, along with the detailed numerical implemen-
tations for the numerical evaluations of singular integrals.
We consider a general type of elasto-plastic constitutive
model, which includes the isotropic, the kinematic and
the combined isotropic/kinematic hardening behavior of
the solid at large strains. It is known that in a kinematic
hardening large strain plasticity model, if the evolution
equations for the Jaumann rates of the Kirchhoff stress
and of the back-stress, respectively, are simply taken to
be linear functions of the plastic component of the veloc-
ity strain, certain anomalous consequences, such as an
oscillatory stress response of the material in finite sim-
ple shear, may result [Atluri (1984), Reed and Atluri
(1985)]. More general evolution equations, especially to
account for the noncoaxiality of the Cauchy stress and
the Cauchy-like back-stress in shear and nonproportional
loadings, have been attempted by Atluri (1984) and by
Reed and Atluri (1985) to suppress the physically un-
acceptable oscillatory stress responses. Although these
methods based on formal continuum mechanics were
quite successful for the simple shear case, the physics
and micromechanics of finite plastic flow indicate that a
more consistent large strain elastoplastic constitutive law
should involve an evolution equation for the plastic com-
ponent of the spin tensor. Such an elastic-plastic con-
stitutive model has been developed, for instance, in Im
and Atluri (1987), which is the finite strain version of the
endochronic constitutive model of Watanabe and Atluri
(1986). Here, the concept of a material director triad is
introduced and the relaxed intermediate configuration is
chosen to be isoclinic. The plastic spin tensor is defined
through internal time. Such an endochronic constitutive
model (for large strain elastoplasticity) employed here,
can be summarized as follows.

Let Ni jbe the normal to the yield surface in the deviatoric
Kirchhoff stress space. When the stress is on the yield
surface and Ni jDi j ≥ 0, the process is a plastic process.

Ni j = (τ
′
i j − ri j)/

∥∥∥τ
′
i j − ri j

∥∥∥ (21)

ζ = Di jNi j/C (22)

Dp
i j = Ni jζ (23)

W p
i j = Ωi jζ (24)

Ωi j = {m1(rikτ′
k j −τ′

ikrk j)
τ2

y f 2(ζ)
,

m2(rikrklτ
′
l j −τ′

ikrklrl j)
τ3

y f 3(ζ)
,

m3(rikτ′
klτ

′
l j −τ′

ikτ′
klrl j)

τ3
y f 3(ζ)

} (25)

(τ
′
i j − ri j)(τ

′
i j − ri j) = τy f 2(ζ) (26)

τ̇J
i j = λ(Dkk)δi j +2µ(Di j −Dp

i j)−W p
ik τk j +τikW

p
k j (27)

ṙJ
i j = 2µρ1Dp

i j −
αri j(Dp

klD
p
kl)

1/2

f (ζ)
−W p

ik rk j + rikW
p

k j (28)

where, ri j is the back-stress and τ′
i j is the deviatoric part

of Kirchhoff stress τi j. f (ζ) and ri j represent the expan-
sion and translation of von Mises type yield surface. Dp

i j

and W p
i j are the rate of plastic strain and the plastic spin,

respectively. ζ represents the internal time variable. It is
seen that Ωi j accounts for the noncoaxiality of the ten-
sors τ′

i j and ri j. The coefficient C is defined as a kernel
function. The reader is referred to Im and Atluri (1987)
for further details of the constitutive model.

2.5 Numerical quadrature

In the present study, the integrations are performed nu-
merically by using the conventional Gauss quadrature
scheme. To improve the performance of the numerical in-
tegration, the local subdomain (i.e. a circle for 2D prob-
lems) is divided into arcs, as in Atluri, Han, and Rajen-
dran (2004). For 3D problems, the local subdomain (i.e.
a sphere) is partitioned by triangles for the surface inte-
gration [Han and Atluri (2004a)]. The same algorithms
are re-used in the present study.

3 Numerical Experiments

Several nonlinear problems in 2D and 3D are solved, to
illustrate the effectiveness of the present method. The
first two examples studied are 2D static problems, such as
the patch tests, including (i) a tensile bar, (ii) a cantilever
beam under shear load. The third example is the Taylor’s
impact problem, for explicit dynamics.
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3.1 A tensile bar

A tensile bar is analyzed as the first example. The rect-
angular bar is subjected to tensile deformation (in plane
strain) with shear free end conditions, as shown in Figure
1. It has a length of 1.0m and a width of 0.2m. The ma-
terial behaviour is taken to be neo-Hookean hyperelastic.
The strain energy is split into deviatoric and volumetric
parts to account for the incompressibility condition as:

Figure 1 : A bar under uniform tension

W0 = Wdeviatoric+Wvolumetric

Wdeviatoric = C10(I1 −3)

Wvolumetric =
9K
2

(J
1
3 −1)2 (29)

where

I1 = I1I
− 1

3
3 , I1 = tr(C)

I2 = I2I
− 2

3
3 , I2 =

1
2
(C : C− I2

1 )

I3 = det(C)

J = sqrt(I3)

and

C = FT ·Fis the right Cauchy-Green deformation tensor.

In the present study, the bulk modulus is taken as 2×
107 MPa and the shear modulus as 7.5× 106 MPa. The
bar is modeled with 100 nodes as 25 nodes in 4 rows. The
linear displacement fields are expected in the uniform de-
formations. The polynomials with first order complete-
ness are used for the MLS approximation in the present
study. Therefore, the present MLPG mixed method is ex-
pected to provide an accurate solution, in the patch test.
The original MLPG mixed method passed this patch test
for linear elastic problems [Atluri, Han and Rajendran
(2004)].

The bar is stretched to 7 times of its original length. The
numerical results obtained by using the present MLPG
method are compared with the analytical solution and the
FEM results, shown in Figure 2. A very good agreement
is observed between these solutions.
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Figure 2 : Tensile stress of a bar under uniform tension

3.2 Cantilever beam

The performance of the present MLPG formulations is
also evaluated, using the cantilever beam problem under
a transverse load, shown in Figure 3. The beam is con-
sidered to undergo large deformations, including large
strains and rotations. The linear elastic solution is given
in Timoshenko and Goodier (1970), as

P

L

2c 
x

y

Figure 3 : A cantilever beam with an end load

ux = − Py

6EI

[
3x(2L−x)+(2+υ)(y2−c2)

]

uy =
P

6EI

[
x2(3L−x)+3υ(L−x)y2 +(4+5υ)c2x

]
(30)
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where the moment of inertia I the beam is given as,

I =
c3

3
(31)

and

E =
{

E
E/(1−υ)2

υ =
{

υ for plane stress
υ/(1−υ) for plane strain

(32)

The corresponding stresses are

σx = −P
I
(L−x)y

σy = 0

σxy = − P
2I

(y2 −c2) (33)

The problem is solved for the plane stain case with L =
1.0, and c = 0.1. The same neo-Hookean hyperelastic
material is taken for the beam as it in the first example.
This problem has been used as an example by Atluri, Han
and Rajendran (2004) in the linear elasto-static case. The
effects of the MLS support and test sizes have also been
investigated. In the present study, we revisit this example
with for large deformations. Based on the numerical re-
sults by Atluri, Han and Rajendran (2004), a regular uni-
form nodal configuration with nodal distance, d, of 0.5 is
used. The number of nodes is 105. The first order MLS is
used for the meshless approximation, with a support size
of 1.15d and a test size of 0.6d. For comparison pur-
poses, a corresponding Quad-4 elements-based FE mesh
has also been created, from the same nodes, for the FEM
analysis with the commercial code MARC, .

A total transverse force of 7.58×105 N is applied at the
free end of the beam. There are 10 constant increment
steps to solve this problem by using the present MLPG
mixed method. The final vertical displacement at the
free end reaches 0.83, which is more than 4 times of the
height of the beam. The final deformed beam is shown in
Figure 5a. The problem is also solved by using MARC,
as a full nonlinear analysis. The FE results give the same
deformation shown in Figure 5b. The vertical displace-
ments are shown in Figure 6. It can be seen that the nu-
merical results agree well with those obtained by using
the FE code.

Figure 4 : Nodal configuration for a cantilever beam with
105 nodes

(a) The present MLPG mixed method 

(b) FEM 

Figure 5 : Vertical displacement field of the deformed
cantilever beam under a transverse load.

The vertical stress distribution obtained by using the
present MLPG method is shown in Figure 7a, and that
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Figure 6 : Vertical displacements of a cantilever beam
under a transverse load, along the lower and upper edges
of the beam.

by using the FE method in Figure 7b. Both methods
give the similar distributions. However, there is some
difference at the corners of two ends of the beam. The
stresses in the vertical direction at the lower and upper
free edges are shown in Figure 8. It shows that the MLPG
mixed method gives higher stresses at the fixed end, be-
cause of the stress concentration due to the fixed bound-
ary conditions. At the free end, the MLPG mixed method
gives the stress values that tend to zero as the parabolic
transverse load is applied. Such numerical results con-
firm that the MLPG mixed method gives more accurate
strain/stress (i.e. the derivative fields) results to enforce
the balance laws locally. It should be pointed out that the
current MLPG mixed method does not require any spe-
cial numerical treatments to avoid any shear locking. It
is straightforward to extend this method for other PDEs.

3.3 Taylor’s problem: high speed impact

The Taylor test is often used to determine the dynamic
yield stress of a material in a state of uniaxial stress. In
this test, a right circular cylinder is impacted against a
rigid wall. From measurements of the initial and final di-
mensions of the cylinder as well as the velocity of impact,
the dynamic yield stress is calculated from an analytical
relationship derived by Taylor (1948). However during
1990s, the Taylor test configuration has been routinely
used to validate constitutive models developed for appli-

(a) The present MLPG mixed method 

(b) FEM 

Figure 7 : Stress distribution in the vertical direction of
a cantilever beam under a transverse load code.

cations involving high strain rates. The high strain rate
model parameters are often determined and calibrated
using stress-strain curve data obtained from a number
of conventional dynamic tests. Nicholas and Rajendran
(1990) described these various dynamic tests and sev-
eral high starin rate constitutive models. Most of the test
configurations involve small strains and idealized stress /
strain states, such as uni-axial stress and one-dimensional
strain. The idea behind the Taylor test validation effort
is to compare the high-speed-camera- measured time-
resolved profiles (shapes or contours) of the plastically
deforming cylinder with the profiles obtained from com-
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Figure 8 : Vertical stress of a cantilever beam under a
transverse load, along the lower and upper edges of the
beam.

L

R

Figure 9 : Taylor’s problem: a solid cylinder impacting
a rigid surface

Figure 10 : A nodal configuration for the Taylor’s prob-
lem: 3872 nodes.

putational simulations. The loading conditions in Tay-
lor tests involve very large deformation (>100 percent),
multi-axial stress/strain state, high temperature, and very
high non-uniform strain rates.

The Taylor impact problem can simply be described as
a solid cylinder impacting a rigid surface in the normal
direction, shown in Figure 9. In the present study, a
cylinder with a length of 12.7cm (0.5 in) and a radius of
76.2cm (3 in) is impacting a rigid surface with an ini-
tial impact velocity of 300m/s. It is assumed that there
is no friction between the contact surfaces. The ma-
terial is chosen as the isotropic-hardening elasto-plastic
metal. The material properties are chosen as: the Young’s
modulus E = 199.948GPa, the Poisson’s ratio υ = 0.28,
the yield strength σs = 310.26MPa, and the harden-
ing tangent modulus H = E/100 = 1.99948GPa for the
nearly perfect plasticity. The cylinder is modeled with
a nodal configuration with 3872 nodes, shown in Figure
10. There is an initial gap of 0.1mm between the bottom
of the cylinder and rigid surface.
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(a) MLPG Mixed Method 

(b) Dyna3D 

Figure 11 : Vertical displacement distribution of the Tay-
lor’s problem while starting contact (at t = 2 micro sec-
onds)

This Taylor impact problem is simulated using the
present MLPG finite-volume mixed method, with a dy-
namic explicit algorithm for the direct time integration
[Han and Atluri (2004b)]. The vertical displacements are
shown in Figure 11a at 2 micro seconds, as the shock
wave is propagating from the bottom surface towards the
top surface of the cylinder. For comparison purposes,
the LLNL Dyna3D (2000) is also used to analyze this
problem, using the mesh generated from the same nodal

(a) MLPG Mixed Method 

(b) Dyna3D 

Figure 12 : Deformed profile of the cylinder (Taylor’s
problem) at t = 50 micro seconds

configuration. Comparing Figs 11a and 11b, the wave
propagation patterns from the MLPG and the Dyna3D
simulations are quite similar.

The top surface of the cylinder reaches the lowest point
at about 50 micro seconds. The deformed profile of
the cylinder is shown in Figure 12a by using the MLPG
mixed method, and in Figure 12b by using Dyna3D. Both
codes give similar profiles. However, the MLPG method
gives a straight corner while Dyna3D gives a curved one,
for this frictionless contact impact. The corners of the de-
formed profiles are enlarged in Figure 13. After reaching
the lowest point, the cylinder starts to bounce back. The
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(a) the MLPG Mixed Method  (b) Dyna3D 

Figure 13 : The lower corner of the deformed profile of
the cylinder (Taylor’s problem) at t = 50 micro seconds

final deformed profiles are shown in Figure 14 at the time
of 100 micro seconds. The cylinder is entirely released
from contact, and bounces back at a constant velocity, in
both the simulations.

In analyzing this problem, the present MLPG mixed
method is used without any hour-glass control, or any
other artificial numerical treatments. In contrast, one-
point Gauss integration scheme is used in Dyna3D with
hour-glass control. The total CPU times for the straight-
forward MLPG mixed method, and the Dyna3D with
hour-glass control and artificial viscosity, are almost
same. It clearly demonstrates the superior performance
of the present MLPG mixed method as compared to the
FEM methods.

4 Closure

The mixed finite volume method (FVM) is developed
for nonlinear problems, through the general MLPG ap-
proach. The MLS approximations are used for both
velocity and velocity-gradients interpolations, indepen-
dently. By enforcing the compatibility conditions only
at nodal points, the present mixed method leads to an
efficient quadrature scheme for performing the integrals
in the local weak forms. The numerical examples in
2D statics show the suitability of the present MLPG
mixed method for nonlinear problems with extremely
large deformations and rotations. For the high-speed im-
pact problems, the 3D Taylor-impact example demon-

(a) the MLPG mixed method 

(b) Dyna3D 

Figure 14 : Spring back of the cylinder (Taylor’s prob-
lem) after impact at t = 50 micro seconds

strates that the present mixed method possesses an ex-
cellent accuracy and efficiency, as compared to the FEM.
The present method requires no special numerical treat-
ments to handle the nonlinear static and dynamic prob-
lems, such as the reduced integration, hour-glass con-
trol, and so on. The present method is based on the local
weak form and the nodal forces are assembled locally. It
makes the present method suitable for parallel computa-
tion. With these distinct advantages, it can be concluded
that the present MLPG mixed method is one of the most
promising methods for the nonlinear problems with high-
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speed large deformations.
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