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Numerical Treatment of Domain Integrals without Internal Cells in
Three-Dimensional BIEM Formulations

Yoshihiro Ochiai 1 and Vladimir Sladek2

Abstract: The conventional boundary element method
(BEM) uses internal cells for the domain integralsCwhen
solving nonlinear problems or problems with domain ef-
fects. This paper is concerned with conversion of the do-
main integral into boundary ones and some non-integral
terms in a three-dimensional BIEM, which does not re-
quire the use of internal cells. This method uses arbi-
trary internal points instead of internal cells. The method
is based on a three-dimensional interpolation method in
this paper by using a polyharmonic function with volume
distribution. In view of this interpolation method, the
three-dimensional numerical integration is replaced by
boundary ones and preceding calculation of some bound-
ary densities and interior unknowns. The domain dis-
cretizetion procedure is completely eliminated. In order
to investigate the efficiency of this method, several nu-
merical examples are given.

keyword: Boundary Element Method, Domain inte-
grals, Heat Conduction, Interpolation, Polyharmonic
functions, Multiple-Reciprocity Method

1 Introduction

Recently, a great attention has been devoted to the devel-
opment of various discretization methods based on mesh-
less approximations [Atluri et al (2002, 2003), Han and
Atluri (2003), Liu (2003), Atluri (2004)]. Only some of
them are truly meshless. Anyway, a serious interest and
valuable progress can be observed in the development
of computational methods which can be named as mesh
reduction method (MRM). The first recognized achieve-
ment in the development of MRM was the development
of the boundary integral equation methos (BIEM) or
boundary element method (BEM) [Brebbia et al (1984)].
The pure boundary integral formulation, however, is not
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available in general. Owing to the absence of the fun-
damental solutions in general nonlinear problems and/
or problems in non-homogeneous media, the fundamen-
tal solutions of simplified operators can be used with re-
sulting into the so-called boundary-domain formulations.
Then, the discretization of the domain into cells is re-
quired because of unknown field variables involved in
domain integral integrands. In order to avoid the use of
internal cells, multiple-reciprocity BEM and dual reci-
procity BEM have been proposed [Nowak, et al.(1994).
Partrige, et. al. (1991)]. The first author has already pro-
posed an improved multiple-reciprocity BEM or triple-
reciprocity BEM [Ochiai et al., (1995, 1996, 2001)].
In this method, a distributed value is interpolated using
boundary integral equations and polyharmonic functions
[Ochiai et al., (2001)]. On the other hand, the radial ba-
sis function (radius spline) has been proposed for use in
interpolating an arbitrary distribution, and is useful for
scattered data [Dyn (1987), Welch, et al. (1992)].

In this paper, a numerical multiple integration method is
proposed using the proposed multidimensional interpola-
tion method, which is based on boundary integral equa-
tions and polyharmonic functions and new polyharmonic
functions with volume distribution. If a given region
can be transformed into several standard regions (inter-
nal cells) for which a rule of approximate integration is
available, then the integration in the given region can be
computed numerically [Davis and Rabinowitz, (1984)].
In this study, the multiple integration is numerically car-
ried out by using boundary integral equations, and the
three-dimensional domain integration is transformed into
a two-dimensional boundary integration. Thus one di-
mension is reduced by this method. This method uses
arbitrary internal points instead of internal cells, and re-
quires values on a boundary of a region and values at
arbitrary internal points. This method is based on a mod-
ified multiple-reciprocity BEM (triple-reciprocity BEM)
for heat conduction analysis with heat generation [Ochiai
et al., (1995, 1996)]. This integration is effective for
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boundary-domain formulations because internal cells are
not required for computation of domain integrals. Thus,
it is useful for solving inelastic problems and for ther-
mal stress analysis with arbitrary internal heat genera-
tion. Several examples are given in order to investigate
the efficiency of this method.

2 Theory

2.1 Domain integral

In BEM formulations, we have often to deal with the do-
main integral [Brebbia, et al.(1986)]

I(p) =
∫

Ω
F1(p,q)W1(q)dΩ (1)

where Ω is a domain. The functions F1(p,q) and W1(q)
are an integral kernel and an arbitrary distributed func-
tion, respectively. The notations p and q are respectively
an observation point and a loading point. The distribu-
tion of function W1(q) throughout the domain is assumed
to be known a priori.

2.2 Interpolation using polyharmonic function

In order avoid the use of domain integral, an interpola-
tion method using boundary integrals is introduced. The
following equations can be used in the three-dimensional
interpolation [Ochiai et al. (1996, 2000, 2001) ]:

∇2W1 = −W2 (2)

∇2W2(q)≈ −
M

∑
m=1

W3mχm(q), q, qm ∈ Ω (3)

The support function χm(q) is defined as

chim(q)(q) =
{

1, i f |q−qm| ≤ A
0, i f |q−qm|> A

(4)

where A being the radius of spherical support domain.
The interior nodal values W3m are unknown. From
Eqs.(2) and (3), the following equation can be obtained.

∇4W1 =
M

∑
m=1

W3mχm(q) (5)

We shall assume W2=0 on the boundary. Equations (2)
and (3) are solved using boundary integral equations.

Then, a polyharmonic function Tf is introduced.

Tf (P,Q) =
r2 f−3

4π(2 f −2)!
, ( f = 1,2,3, .....),

r = |P−Q| (6)

The polyharmonic functions obey the following relation

∇2Tf+1 = Tf with ∇2T1(r) = −δ(r) (7)

The polyharmonic function with volume distribution Tf A,
which expresses the state of the uniformly distributed
polyharmonic function Tf in a spherical region with ra-
dius A, as shown in Fig.1, is introduced in order to obtain
a smooth interpolation [Ochiai (2001)].

Figure 1 : Notations for polyharmonic function with vol-
ume distribution

Tf A(P,Q) =
∫ A

0

∫ 2π

0

∫ π

0
Tf (P,q)a2 sinθdθdφda (8)

The polyharmonic functions with volume distribution
Tf A , as shown in Fig. 2, can be explicitly shown as

T1A =
A3

3r
r > A, (9)

T1A =
3A2 − r2

6
r ≤ A, (10)

T2A =
A3

6r
(r2 +

A2

5
) r > A, (11)
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Figure 2 : Polyharmonic function Tf and Polyharmonic
function with volume distribution Tf A

T2A = −r4 −15A4 −10r2A2

120
r ≤ A. (12)

The polyharmonic functions with volume distribution
Tf A obey the next relation

∇2Tf+1A = Tf A. (13)

On the other hand, the density of W1 can be expressed us-
ing the Gauss divergence theorem two times and Eqs.(2),
(3), (7) and (13) as follows:

cW1(p) = −
2

∑
f=1

(−1) f
∫

∂Ω
{Tf (p,Q)

∂Wf (Q)
∂n

− ∂Tf (p,Q)
∂n

Wf (Q)}dΓ(Q)

−
M

∑
m=1

T2A(p,qm)W3m (14)

where ∂Ω is the boundary of the domain, c = 0.5 on the
smooth boundary and c = 1 in the domain. Furthermore,
W2 starting Eq.(3), the boundary density W2(P) can be

expressed as

cW2(P)

=
∫

∂Ω
{T1(P,Q)

∂W2(Q)
∂n

− ∂T1(P,Q)
∂n

W2(Q)}dΓ(Q)

+
M

∑
m=1

T1A(P,qm)W3m (15)

Approaching the interior point p and q to the boundary,
we shall use the capital letter P and Q, respectively.

According to Eq.(14) the function W1(p) is represented
in terms of W3m and boundary densities Wf (Q) and
∂Wf (Q)/∂n. Since W1(Q) is known and W2(Q) = 0, we
need to compute ∂Wf (Q)/∂n and W3m before using the
representation by Eq.(14). For this purpose we can used
Eqs.(14) and (15) collocated at boundary points P as well
as Eq.(14) collocated at interior nodes qm. Constant el-
ements are used for the boundary. Replacing Wf and
∂Wf /∂n by vectors Wf and Vf , respectively, and discretiz-
ing Eq.(14), we obtain [Ochiai et al (1995, 1996)]

H1W1 = G1V1 +H2W2 −G2V2 −GI
2WP

3 , (16)

where H1H1H1, G1G1G1, H2H2H2, G2G2G2 and GI
2GI
2GI
2 are the matrices with the

following elements for a given boundary point ’i’ [Breb-
bia, et al.(1986)]:

H1i j =
1
2

δi j +
∫

Γ j

∂T1(Pi,Q)
∂n

dΓ j(Q) , (17)

G1i j =
∫

Γ j

T1(Pi,Q)dΓ j(Q) , (18)

H2i j =
∫

Γ j

∂T2(Pi,Q)
∂n

dΓ j(Q), (19)

G2i j =
∫

Γ j

T2(Pi,Q)dΓ j(Q) , (20)

GI
2i j = T2A(Pi,q j) , (21)

where the upper index I in Eq. (21) is related to contribu-
tion from interior nodes. The discretized form of Eq.(15)
is given as follows:

H1W2 = G1V2 +GI
1W3 , (22)

where GI
1GI
1GI
1 is a matrix with the following elements:

GI
1i j = T1A(Pi,q j) (23)
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In the same manner, using the vector notation WI
1 for

function values W1(pi) at internal points, from Eq.(14)
we obtain

WI
1 = −H3W1 +G3V1 +H4W2 −G4V2 −GI

3W3 , (24)

where H3H3H3, G3G3G3, H4H4H4, G4G4G4 and GI
3GI
3GI
3 are the matrices with the

following elements

H3i j =
∫

Γ j

∂T1(pi,Q)
∂n

dΓ j(Q) , (25)

G3i j =
∫

Γ j

T1(pi,Q)dΓ j(Q) , (26)

H4i j =
∫

Γ j

∂T2(pi,Q)
∂n

dΓ j(Q) , (27)

G4i j =
∫

Γ j

T2(pi,Q)dΓ j(Q) , (28)

GI
3i j = T2A(pi,q j) . (29)

In according with the assumption W2 = 0W2 = 0W2 = 0, Eqs.(16), (22)
and (24) yield the following system of equations for un-
knowns V1V1V1, V2V2V2 and W3W3W3.

⎡
⎢⎣

G1 −G2 −GI
2

000 G1 GI
1

G3 −G4 −GI
3

⎤
⎥⎦

⎧⎨
⎩

V1

V2

W3

⎫⎬
⎭ =

⎧⎨
⎩

H1W1

000

H3W1 +WI
1

⎫⎬
⎭ .

(30)

In the same manner,V2 = 0V2 = 0V2 = 0 can be assumed on a symmet-
ric axis in order to interpolate the symmetric distribution.
When using constant elements and dividing the boundary
into No elements and M internal points, the simultane-
ous linear algebraic equations with (2No +M) unknowns
must be solved.

2.3 Numerical Integration

Making use of the representation of W1(p) in term of V1V1V1,
V2V2V2 and W3W3W3, one can express also an arbitrary integral (1)
in terms of the same quantities. For this purpose, the new
function Ff+1 is introduced by

∇2Ff+1 = Ff . (31)

The function Ff A is introduced in according with Eq. (8)
as follows:

Ff A(P,Q) =
∫ A

0

∫ 2π

0

∫ π

0
Ff (P,q)a2 sinθdθdφda. (32)

Using Eq.(31) and the Gauss divergence theorem, the fol-
lowing equation is obtained in view of Eqs. (2) and (3)

I(p) =
∫

Ω
∇2F2(p,q)W1(q)dΩ =

∫
∂Ω

{
−F2(p,Q)

∂W1(Q)
∂n

+
∂F2(p,Q)

∂n
W1(Q)

}
dΓ(Q)+

∫
Ω

F2(p,q)∇2W1(q)dΩ(q)

=
2

∑
f=1

(−1) f
∫

∂Ω
{Ff+1(p,Q)

∂Wf (Q)
∂n

− ∂Ff+1(p,Q)
∂n

Wf (Q)}dΓ(Q)

+
M

∑
m=1

F3A(p,qm)W3m. (33)

Thus, the considered domain integral is replaced by
boundary integrals and a sum with precomputed bound-
ary densities and interior nodal values W3m. The domain
discretization procedure is completely eliminated. Using
Eq.(31), the function Ff+1 in n−dimensions is obtained
as

Ff+1 =
∫

1
rn−1

[∫
rn−1Ff dr

]
dr , (34)

provided that Ff is dependent only on r = |P−Q|.
First, the following function is considered.

F1(p,q) =
1
rk (k �= 2,3,4,5) (35)

where k is a real number. Substituting Eq.(35) into
Eq.(34), we obtain

F2 =
1

(2−k)(3−k)rk−2 , (36)

F3 =
1

(2−k)(3−k)(4−k)(5−k)rk−4 . (37)

Differentiating Eq.(36) with respect to normal vector n
on a boundary, we obtain

∂F2

∂n
=

r1−k

(3−k)
∂r
∂n

. (38)

∂F3

∂n
=

r3−k

(2−k)(3−k)(5−k)
∂r
∂n

(39)
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Substituting Eq. (37) into Eq. (32), we obtain

F3A =
2π
r

[{(7−k)A− r}(A+ r)7−k

+{(7−k)A+ r}(−A+ r)7−k]
8

∏
�=2

1
�−k

r > A, (40)

F3A =
2π
r

[{(7−k)A− r}(A+ r)7−k

−{(7−k)A+ r}(A− r)7−k]
8

∏
�=2

1
�−k

r ≤ A . (41)

The parameter k can be a negative real number. If the
parameter k > 3, the observation point p must be out of
the domain Ω. If k=0, Eq.(1) becomes

I =
∫

Ω
W1(q)dΩ, (42)

because F1(p,q) = 1. In this case, the integral value
I is not dependent on the observation point p [Ochiai
(2001)]. The point p can be out of the domain. From
Eqs. (36)-(40), we obtain

F2 =
r2

6
, (43)

F3 =
r4

120
, (44)

∂F2

∂n
=

r
3

∂r
∂n

, (45)

∂F3

∂n
=

r3

30
∂r
∂n

, (46)

F3A =
πA3

630
(3A4 +14A2r2 +7r4) . (47)

In the other frequently occurring case, the integral kernel
is given as follows:

F1 =
1
rk r,i (k �= 1,3,4,6 real number) , (48)

where r,i = ∂r/∂xi. Differentiating Eqs. (36), (37), (39)
and (40), we obtain

F2 =
1

(1−k)(4−k)rk−2 r,i , (49)

∂F2

∂n
=

1
(4−k)rk−1

[
ni

(1−k)
+

∂r
∂n

r,i

]
, (50)

F3 =
r4−k

(1−k)(3−k)(4−k)(6−k)
r,i , (51)

∂F3

∂n
=

r3−k

(1−k)(3−k)(4−k)(6−k)

[
ni +(3−k)

∂r
∂n

r,i

]
,

(52)

F3A =
2π(8−k)r,i

(1−k)r2 [−A{(A+ r)8−k

+(−A+ r)8−k}+ r{(8−k)A− r}(A+ r)7−k

+ r{(8−k)A+ r}(−A+ r)7−k]
8

∏
�=2

1
�−k +1

r > A ,

(53)

F3A =
2π(8−k)r,i

(1−k)r2 [−A{(A+ r)8−k

− (A− r)8−k}+ r{(8−k)A− r}(A+ r)7−k

+ r{(8−k)A+ r}(A− r)7−k]
8

∏
�=2

1
�−k +1

r ≤ A .

(54)

where ni is the component of the unit normal vector.

The next considered case is specified by the kernel

F1 =
1
rk

r,i r, j (k �= 0,2,3, 4,5,7 real number). (55)

Differentiating Eq.(35) with respect to xi and x j, we ob-
tain

∂2

∂xi∂x j
F1 =

−kδi j

rk+2 +
k(k +2)

rk+2 r,i r, j . (56)

Differentiating Eq.(36) with respect to xi and x j and
adding the term for the first term in Eq.(53), we obtain

F2 =
1

rk−2k(5−k)

[
2δi j

(2−k)(3−k)
− r,i r, j

]
. (57)

In the same manner, we obtain

∂F2

∂n
=

r1−k

k(5−k)

[{
2δi j

3−k
+kr,i r, j

}
∂r
∂n

−n jr,i−nir, j

]
,

(58)

F3 =
r4−k

k(2−k)(5−k)(7−k)

[
4δi j

(3−k)(4−k)
− r,i r, j

]
,

(59)
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∂F3

∂n
=

r3−k

k(2−k)(5−k)(7−k)[{
4δi j

3−k
+(k−2)r,i r, j

}
∂r
∂n

− n jr,i−nir, j

]
(60)

F3A =
−2π(9−k)
(2−k)kr3 〈 δi j[−A

{
(A+ r)9−k +(−A+ r)9−k

}

+ r{(9−k)A− r}(A+ r)8−k

+ r{(9−k)A+ r}(−A+ r)8−k]
+ r,i r, j [3A{(A+ r)9−k +(−A+ r)9−k}
− r{3(9−k)A− r}(A+ r)8−k

− r{3(9−k)A+ r}(−A+ r)8−k

+r2{(9−k)A− r}(8−k)(A+ r)7−k

+r2{(9−k)A+ r}(8−k)(−A+ r)7−k] 〉
8

∏
�=2

1
�−k +2

+
2πδi j

kr
[{(7−k)A− r}(A+ r)7−k

+{(7−k)A+ r}(−A+ r)7−k]
8

∏
�=2

1
�−k

r > A,

(61)

F3A =
−2π(9−k)
(2−k)kr3 〈 δi j[−A{(A+ r)9−k− (A− r)9−k}

+ r{(9−k)A− r}(A+ r)8−k

+ r{(9−k)A+ r}(A− r)8−k]
+ r,i r, j [3A{(A+ r)9−k +(A− r)9−k}
− r{3(9−k)A− r}(A+ r)8−k

− r{3(9−k)A+ r}(A− r)8−k

+ r2{(9−k)A− r}(8−k)(A+ r)7−k

− r2{(9−k)A+ r}(8−k)(A− r)7−k] 〉
8

∏
�=2

1
�−k +2

+
2πδi j

kr
[{(7−k)A− r}(A+ r)7−k

−{(7−k)A+ r}(A− r)7−k]
8

∏
�=2

1
�−k

r ≤ A .

(62)

3 Numerical example

Examples for this interpolation using values at internal
points and on a boundary are shown. Figures 3(a) and
(b) show the surface and inner points of a bottle and a
fictitious boundary box.

The values on the bottle surface and at inner points are as-
sumed as 0 and –1, respectively. The value on the bound-
ary box is +1, and Fig.3(c ) shows obtained contour lines.
Figures 4(a) and (b) show two obtained surfaces of the
bottle using polyharmonic function with volume distri-
bution T2A and polyharmonic function T2, respectively.

These figures show that a smoother interpolation can be
obtained by using polyharmonic function with volume
distribution T2A. For the complicated example, Fig. 5
(a) and (b) show given surface points on a statue and the
shape obtained by ray casting method [Welch (1992)].

An example of numerical integration, which has an exact
value, is shown. To confirm the accuracy of the present
method, the integral of the distributed function in three
dimensions for a spherical region with radius a=10 mm,
as shown in Fig.6, is obtained. The function is given by

I1 =
∫

Ω

B2 − r2

B2 dΩ (63)

where r is the distance from the center. Figures 6(a) and
(b) show the square boundary elements and the arbitrary
internal points used for interpolation. The exact value
obtained from Eq.(58) is I1=8πB3/15 =1675.516. . . , and
the numerical value obtained by Eqs.(41) and (45), is
1691.04. Constant boundary elements are used for these
calculations. Similarly, the next value is obtained using
Eq.(52) in the case of k=1:

I2 =
∫

Ω

r,x r,x
r

B2 − r2

B2 dΩ (64)

Equations (57) and (58) become

F3A =
−πA3

5670
[δi j(

A6

r3 +189A2r +210r3)

−3r,i r, j (
A6

r3 −9
A4

r
+63A2r +105r3)] r > A,

(65)

F3A =
π

11340
[δi j(105A6 +567A4r2 +135A2r4 −7r6)

−12r2r,i r, j (63A4 +18A2r2 − r4)] r ≤ A

(66)

The exact value obtained from Eq.(60) is I1=104.719, and
the numerical value obtained by Eq.(33), assuming k=1,
is 106.121.
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(a)  Internal points (Surface: 0,  Inner points: –1)     (b) Boundary element (+1)  
                   

                           (c ) Contour lines 

Figure 3 : Example of interpolation using boundary integral equations
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   (a)  T2A                        (b) T2

Figure 4 : Surfaces with value 0 using ray casting

The integral of a distributed function in three dimensions
for a cubic region with side length L=10 mm, as shown
in Fig.7(a), is obtained. The function is given by

I3 =
∫

Ω
rr,x sin(

xπ
L

) sin(
yπ
L

) sin(
zπ
L

)dΩ, (67)

where r is the distance from origin (0, 0, 0). Figure 3 (b)
shows internal points. Assuming k= -1 in Eq. (46), Eqs.
(50) and (51) become the following same function:

F3A =
r,i πA3r(5A4 +14A2r2 +5r4)

1050
. (68)

The numerical value using a double exponential for-
mura is I1=1290.061, and the numerical value obtained
is 1291.005.

Next, a steady temperature and temperature gradient dis-
tribution in a hollow cylindrical region with heat genera-
tion, as shown in Fig.8, is obtained using the BEM. The
heat generation W1 is given by

W1 = W0
b2 − r2

b2 −a2 , (69)

where a, b and r are inner and outer radii and the dis-
tance from the z axis, respectively. The upper and lower
boundaries are thermally insulated. It is assumed that
a=10 mm, b=30 mm and the inner and outer surfaces are
0◦. Heat conduction is λ, and W0/λ = 0.1◦ · mm−1 is also
assumed. Temperature T is obtained using the boundary

(a)   Internal points 

(b)  Obtained shape 

Figure 5 : Example of complicated interpolation
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(a) Boundary elements 

(b) Internal points 

Figure 6 : Spherical region

integral equation [Brebbia, et al.(1986)]:

cT (P) =
∫

∂Ω
{T1(P,Q)

∂T (Q)
∂n

− ∂T1(P,Q)
∂n

T (Q)}dΓ(Q)

+
1

4πλ

∫
Ω

(
1
r
)W1 dΩ (70)

Assuming k=1 in Eq.(35), the domain integral in Eq.(70)
is calculated. Eqs. (40) and (41) become

F3A =
πA3

630r
(3A4 +42A2r2 +35r4) r > A , (71)

(a) Boundary elements 

(b) Internal points 

Figure 7 : Cubic region

F3A =
π

1260
(35A6 +105A4r2 +21A2r4− r6) r ≤ A .

(72)
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(a) Boundary elements 

(b) Internal points 

Figure 8 : Cylindrical region (quarter region)

The temperature gradient in xi direction is obtained by

∂T (p)
∂xi

=
∫

∂Ω
{∂T1(p,Q)

∂xi

∂T (Q)
∂n

− ∂2T1(p,Q)
∂n∂xi

T (Q)}dΓ(Q)

− 1
4πλ

∫
Ω

1
r2 r,iW1 dΩ . (73)

The domain integral in Eq.(73) involves the kernel given
by Eq.(48) with k=2. Assuming k=2 in Eq.(43), the do-
main integral in Eq.(73) is calculated using Eq.(33). Eqs.

Figure 9 : Temperature distribution

(53) and (54) become

F3A =
−πr,i A3(−A4 +14A2r2 +35r4)

210r2 r > A , (74)

F3A =
−πr,i r(35A4 +14A2r2− r4)

210
r ≤ A . (75)

Figure 9 show the temperature distribution obtained by
this method. The solid line is the exact solution. Figure
10 show the temperature gradient distribution.

Constant boundary elements are used in order to easily
produce a three-dimensional program. A higher accu-
racy of numerical integration is achieved by using higher
order boundary elements.

4 Conclusion

A numerical treatment of domain integrals in 3-D bound-
ary integral formulations has been proposed without the
need to discretize the interior of the domain. Thus, the 3-
D boundary element implementation is applicable even
to integral formulations involving domain integrals. It
has been demonstrated that the integration using pro-
posed approach is useful for a domain integral in an ar-
bitrary domain, because the domain discretizetion pro-
cedure is completely eliminated. Numerical examples
have shown that the presented interpolation and integral
method will be useful in industrial fields.
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Figure 10 : Temperature gradient
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