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Computation of Energy Release Rates for Kinking Cracks based on Virtual Crack
Closure Technique

De Xie1, Anthony M. Waas1,2, Khaled W. Shahwan3, Jessica A. Schroeder4, Raymond G. Boeman5

Abstract: A numerical method based on the virtual
crack closure technique (VCCT) [Rybicki and Kanni-
nen (1977)] and in conjunction with the finite element
(FE) method is presented to compute strain energy re-
lease rates for cracks that kink. The method partitions the
strain energy release rate and provides an efficient means
to compute values of the mode I (GI) and mode II (GII

) energy release rate at the tip of a kinking crack. The
solution procedure is shown to be computationally effi-
cient and operationally simple, involving only the nodal
forces and displacements near the crack tip. Example
problems with kinking cracks in a homogeneous mate-
rial, and a layered two constituent material are presented
to illustrate the current approach.

keyword: kinking crack, virtual crack closure tech-
nique, energy release rate

1 Introduction

Interest in using fracture mechanics based approaches
to assess the durability and damage tolerance capabil-
ity of structures is growing [Atluri (1997)]. Practical
engineering structures usually possess complicated ge-
ometric configurations, nonlinear material behavior and
uncertain details of the loading environment. These
complications are now routinely addressed by resort-
ing to a robust computational approach, such as the fi-
nite element (FE) method, the boundary element method
and, more recently, through advances in the mesh free
Galerkin method [Atluri (2004), Atluri and Shen (2002),
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Belytschko, Lu, and Gu (1994), Atluri and Zhu (2000)]
for stress analyses. In those instances, where failure by
fracture is of concern, the virtual crack closure technique
(VCCT) [Rybicki and Kanninen (1977)] and cohesive
zone models are finding increased application through
implementation via the FE method.

The VCCT has been widely applied to interfacial cracks
to compute total and component energy release rates
(G,GI and GII), based on the results from a FE stress
analysis. It is a technique that is relatively insensitive
to the mesh pattern and mesh density. VCCT was intro-
duced by [Rybicki and Kanninen (1977)] for line cracks
and was extended by [Shivakumar, Tan, and Newman
(1988)] for planar cracks. An overview of the VCCT for
interfacial cracks with a fixed (self-similar) crack front is
provided by [Krueger (2002)], where a discussion with
respect to different applications and a summary of his-
torical development are presented. Recently, [Xie and
Biggers (2004)] proposed a two-vector algorithm to trace
a crack front so that the VCCT can be applied to mov-
ing delamination problems without using adaptive re-
meshing.

Slant cracks under mixed mode loading have been stud-
ied extensively. [Ishikawa (1980)] proposed a two step
VCCT approach to separate the strain energy release rate
components through the variation of the stiffness ma-
trix of the crack tip elements. Combining weight func-
tion concept and VCCT, [Sha and Yang (1985)] devel-
oped procedures to calculate stress intensity factors di-
rectly and accurately. [Raju (1987)] developed the ex-
plicit expressions for strain energy release rate compo-
nents for higher order and singular elements in terms of
nodal forces and displacements. [Shivakumar and Raju
(1992)] presented a general formulation of the equivalent
domain integral method for mixed-mode fracture prob-
lems in cracked solids. For dynamic fracture mechan-
ics, [Nishioka and Atluri (1983)] introduced a new path-
independent integral which has the meaning of energy
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release rate for a propagating crack under mixed mode
loading. In Ref [Nishioka and Atluri (1984)], Nishioka
and Atluri analyzed the dynamic propagation of a slant
crack under mixed-mode loading which is and has been
used as a benchmark example in dynamic fracture me-
chanics.

The formulations developed for VCCT of a slant crack
cannot be applied to a kinking crack since the former re-
lies on self similar crack growth while in the later, the
crack path changes direction. However, by adopting a
different formulation in conjunction with the VCCT, en-
ergy release rates can be computed to evaluate the trajec-
tory of kinking cracks and kinking crack fronts.

For simple configurations of adhesively bonded strips,
with similar adherends, beam theory can be adopted
[Chen and Dillard (2001)] to obtain energy release
rates analytically. For planar structures, such as plates,
[Hayashi and Nemat-Nasser (1981), Azhdari and Nemat-
Nasser (1996)] and [He and Hutchinson (1991)] devel-
oped procedures to analytically obtain strain energy re-
lease rates by solving a series of integral equations.
Based on Betti’s reciprocal theorem, [Palaniswamy and
Knauss (1978)] proposed an analytical expression for the
total energy release rate, G, which requires a two-step
analyses. [Becker, Cannon, and Ritchie (2001)], imple-
mented a two-step VCCT to calculate the strain energy
release rate for crack kinking in functionally graded ma-
terials.

In this paper, the expression for G given by [Palaniswamy
and Knauss (1978)], is partitioned into mode I and mode
II components and its equivalent approximation is used to
develop a new one-step-VCCT for kinking cracks. The
approach is validated by examining a centrally cracked
plate subjected to mode I remote loading, for two dif-
ferent material combinations. The approach has been
implemented into the commercial FE analysis software
ABAQUS. The one-step VCCT for kinking cracks is
found to be efficient, robust and simple to use in engi-
neering analysis.

2 Formulation

Figure 1 shows the coordinate system for the parent inter-
facial crack and its child kinking crack. The parent crack
lies at the interface between material (1) and (2) and has
an initial length “a”. The crack grows into (kinks) mate-
rial (1) at an angle of ω to produce a child crack with a

K1,K2X2

r

Material (1)a
X1

Material (2)KI,KIIa

Figure 1 : Coordinate systems for interface crack and
kinking crack

length “∆a”. The stress intensity factors KI and KII are
associated with the parent crack while K1 and K2 corre-
spond to the child crack. Two different implementations
of the VCCT are developed; a two-step-analysis and a
one-step-analysis.

2.1 Review of two-step-analysis

The energy required to create the kinking crack can be
evaluated by computing the strain energy change with re-
spect to two cases corresponding to crack length “a” and
“a+∆a”. Then the total strain energy release rate for a
kinking crack can be calculated using Irwin’s definition
[Irwin (1956)]

G =
U(a+∆a)−U(a)

2B∆a
(1)

where, B is the thickness of the cracked body. To apply
a two-step-analysis, two different FEA corresponding to
two different crack lengths that are infinitesimally dif-
ferent from each other are performed, see Figure 2 for
details. The first analysis corresponds to the parent crack
with crack tip configuration shown in Figure 2(a) which
produces the strain energy U(a). In the second analy-
sis, a node is split to generate the kinking crack at the
desired angle ω and the strain energy in this case is de-
noted as U(a+∆a). Then the strain energy release rate
is calculated from equation (1). Radial type meshes are
highly recommended to accommodate the kinking angle,
though this is not mandatory.

The strain energy release rate can also be computed lo-
cally at the crack tip. Based on Betti’s reciprocal theo-
rem, Palaniswamy and Knauss ‘proposed an expression



Computation of Energy Release Rates for Kinking Cracks 517

aMaterial (1) Material (1) 

aa Material (2) Material (2) 

State I: U(a) State II: U(a+ a)

Figure 2 : Crack tip configurations for the two example problems considered

for the energy release rate of a kinking crack as

G(ω)

= lim
∆a→0

1
2∆aB

∆a∫
0

[
σ(1)

θθ (r,ω)∆u(2)
θ (r,ω)

+ τ(1)
rθ (r,ω)∆u(2)

r (r,ω)
]

dr (2)

where σ(1)
θθ (r,ω) and τ(1)

rθ (r,ω) are the stress components
along the kinking crack line of the unkinked state (state
I in Figure 2) and ∆u(2)

θ (r,ω),∆u(2)
r (r,ω) are the opening

displacement across the kinking faces corresponding to
the kinked state (state II in Figure 2). In Ref [Becker,
Cannon, and Ritchie (2001)], the authors used the stress
field from the unkinked FEA analysis and the opening
displacements from the kinked FEA analysis to perform
integration on equation (2).

2.2 Partition and Approximation of G(ω)

The direct integral, equation (2), involves the singular
field at the crack tip. Therefore, the stress at those nodes,
which are close to the crack tip, cannot be directly used
in numerical integration. To overcome this, fine meshes
and singular finite elements at the crack tip (see [Ander-
son (1991)]) are necessary. An alternative approach is
to work directly with nodal forces to avoid the integra-
tion and the use of crack tip stresses. Following what has
been done for straight cracks by [Rybicki and Kanninen
(1977)], the following numerical evaluation of equation

(2) is proposed. Let

G(ω) = GI(ω)+GII(ω) (3a)

GI(ω) =
F (1)

θ12∆u(2)
θ12 +F (1)

θ34∆u(2)
θ34

2∆aB
(3b)

GII(ω) =
F (1)

r12 ∆u(2)
r12 +F (1)

r34 ∆u(2)
r34

2∆aB
(3c)

where, GI(ω) and GII(ω) are the mode I and mode II en-
ergy release rates for the kinking crack, respectively. Fig-
ure 3 shows the scheme for this two-step analysis. Fθ and
Fr are the nodal forces that the FEA can provide more
accurately than the local stress at the crack tip. Equation
(3b) and equation (3c) provide the individual mode I and
mode II crack tip energy release rates G1 and GII which
are desired in mixed mode fracture problems. Based on
equation (3), an efficient one step analysis for energy re-
lease rate calculation for kinking cracks is proposed next.

2.3 One-step-analysis approach

The basic idea for the one step analysis (Figure 4) is to
replace the displacement opening along the kinking crack
line in the second step (∆u(2)

r ,∆u(2)
θ ) in equation (3) with

the displacement opening behind the parent crack in the
first step (∆u(1),∆v(1)). Then all the variables in equa-
tion (3) are computed within one step. The displace-
ment fields at a crack tip can be expressed as [Anderson
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Figure 3 : Crack tip configurations for local analysis of kinking cracks
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Figure 4 : One step analysis which relates node pairs (1,2) to (5,6) and (3,4) to (7,8)

(1991)],

u =
KI

2µ

√
r

2π
cos

(
θ
2

)[
κ−1+2sin2

(
θ
2

)]

+
KII

2µ

√
r

2π
sin

(
θ
2

)[
κ+1+2cos2

(
θ
2

)]
(4a)

v =
KI

2µ

√
r

2π
sin

(
θ
2

)[
κ+1−2cos2

(
θ
2

)]

− KII

2µ

√
r

2π
cos

(
θ
2

)[
κ−1−2sin2

(
θ
2

)]
(4b)

where, µ is the shear modulus, κ= (3-ν)/(1+ν) for plane
stress, and ν is the Poisson’s ratio. For the parent inter-
facial crack, the displacement components of the upper
(θ = π,κ = κ1,µ = µ1) and lower (θ =−π,κ = κ2, µ = µ2)
crack surfaces are

u+ =
κ1 +1

2µ1

√
|X1|
2π

KII ; v+ =
κ1 +1

2µ1

√
|X1|
2π

KI (5a)

u− = −κ2 +1
2µ2

√
|X1|
2π

KII ; v− = −κ2 +1
2µ2

√
|X1|
2π

KI

(5b)

The crack opening, for the parent crack, in state (1) is

∆u(1) = u+−u− =
(

κ1 +1
2µ1

+
κ2 +1

2µ2

)√
|X1|
2π

KII (6a)

∆v(1) = v+−v− =
(

κ1 +1
2µ1

+
κ2 +1

2µ2

)√
|X1|
2π

KI (6b)

For the child-kinking crack, the displacement compo-
nents of the upper and lower crack surfaces are taken as

u+
r =

κ1 +1
2µ1

√
r

2π
K2(ω); u+

θ =
κ1 +1

2µ1

√
r

2π
K1(ω)

(7a)
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u−r = −
κ1+1
2µ1

ω+ κ2+1
2µ2

π
ω+π

√
r

2π
K2(ω);

u−θ = −
κ1+1
2µ1

ω+ κ2+1
2µ2

π
ω+π

√
r

2π
K1(ω) (7b)

and the crack opening for the kinking crack at state (2) is

∆u(2)
r = u+

r −u−r =
κ1+1
2µ1

(2ω+π)+ κ2+1
2µ2

π
ω+π

√
r

2π
K2(ω)

(8a)

∆u(2)
θ = u+

θ −u−θ =
κ1+1
2µ1

(2ω+π)+ κ2+1
2µ2

π
ω+π

√
r

2π
K1(ω)

(8b)

At the parent crack tip, the stress components having
contributions to the kinking child crack, in a polar co-
ordinate system, with origin at the crack tip, for mixed
mode loading are given by [Anderson (1991)]

σωω =
KI√
2πr

C11(ω)+
KII√
2πr

C12(ω) (9a)

τrω =
KI√
2πr

C21(ω)+
KII√
2πr

C22(ω) (9b)

where

C11(ω) =
1
4

[
3cos

(ω
2

)
+cos

(
3ω
2

)]
; (10a)

C12(ω) = −1
4

[
3sin

(ω
2

)
+3sin

(
3ω
2

)]
(10b)

C21(ω) =
1
4

[
sin

(ω
2

)
+ sin

(
3ω
2

)]
; (10c)

C22(ω) =
1
4

[
cos

(ω
2

)
+3cos

(
3ω
2

)]
(10d)

Suppose that an infinitesimal kinked crack initiates at an
angle ω from the parent crack, as shown in Figure 1. The
local stress intensity factors at the tip of this kinked crack
differ from those of the parent crack. Define the follow-
ing two stress intensity factors, K1(ω) and K2(ω), asso-
ciated with the kinked crack at an arbitrary angle ω,

K1(ω) = lim
r→0

(√
2πrσωω

)
K2(ω) = lim

r→0

(√
2πrτrω

)

(11)

where r is the distance from the parent crack tip. Using
this definition, one can show that

K1(ω) = C11KI +C12KII (12a)

K2(ω) = C21KI +C22KII (12b)

Then, by substituting (12) and (6) into (8), we have

∆u(2)
r =

2ω+π+ γπ
(ω+π)(1+ γ)

√
r

|X1|
(

C21∆v(1) +C22∆u(1)
)

(13a)

∆u(2)
θ =

2ω+π+ γπ
(ω+π)(1+ γ)

√
r

|X1|
(

C11∆v(1) +C12∆u(1)
)

(13b)

where

γ =
κ2 +1

2µ2

/
κ1 +1

2µ1

Now, the displacement components at step two
(∆u(2)

r ,∆u(2)
θ ) can be replaced by those at step one

(∆u(1),∆v(1)) by using Equation (13). Therefore, the vir-
tual crack closure technique can be applied within a one
step analysis.

2.4 Radial Type Mesh

Although it is not mandatory, the radial type mesh is
highly recommended. By using the radial type meshes
shown in Figure 4, the node pair (1,2) has the same dis-
tance to the kinking crack tip (r) as the node pair (5,6)
has to the parent crack tip (|X1|). Therefore, the term√

r/ |X1| can be cancelled in equation (13) and one can
have

∆u(2)
r12 = A

(
C21∆v(1)

56 +C22∆u(1)
56

)
(14a)

∆u(2)
θ12 = A

(
C11∆v(1)

56 +C12∆u(1)
56

)
(14b)

where

A =
2ω+π+ γπ

(ω+π)(1+ γ)
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W=100

a=20

Figure 5 : FEA mesh for the verification example

A similar procedure can be applied to node pairs (3, 4)
and (7, 8),

∆u(2)
r34 = A

(
C21∆v(1)

78 +C22∆u(1)
78

)
(15a)

∆u(2)
θ34 = A

(
C11∆v(1)

78 +C12∆u(1)
78

)
(15b)

By substituting (14) and (15) into (3), a one step VCCT
provides,

GI(ω) =
A

2∆aB

[
F(1)

θ12

(
C11∆v(1)

56 +C12∆u(1)
56

)

+F (1)
θ34

(
C11∆v(1)

78 +C12∆u(1)
78

)]
(16a)

GII(ω) =
A

2∆aB

[
F(1)

r12

(
C21∆v(1)

56 +C22∆u(1)
56

)

+F (1)
r34

(
C21∆v(1)

78 +C22∆u(1)
78

)]
(16b)

The nodal forces Fr and Fθ in the local coordinate system
can be expressed through Fx and Fy in the global coordi-
nate system as

Fr = Fy sinω+Fx cosω Fθ = Fy cosω−Fx sinω

Nodal forces (Fx,Fy ) and displacement openings (∆u,∆v)
can be read directly from the FEA output. These values
then are the input data to compute strain energy release
rates GI(ω) and GII(ω).

The above procedure for the one step VCCT has been
implemented into ABAQUS with the use of a user sub-
routine that allows the computation of GI(ω) and GII(ω)
simultaneously with the stress analysis performed by
ABAQUS.
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Table 1 : Strain energy release rate for cracks at ω = 0◦ (unit: N/mm)gy ( )

Two-step Approach  Analytical 

Eq. (1) Eq. (3) 

J-integral

From ABAQUS 

Case (a) 6.498 6.612 6.612 6.507 

Case (b) 3.938 3.886 3.886 3.829 

3 Verification

The proposed one step and two-step VCCT for kink-
ing cracks were validated by an example of a cen-
trally cracked plate subjected to a normal tensile stress
σ∞=10MPa as shown in Figure 5. The half crack length,
a, is taken to be 20mm and the plate width, W, is taken
as 100mm. The finite element mesh of the panel is also
shown in Figure 5. Two different cases were studied:

• Case (a): Homogeneous material E=1000 MPa,
ν=0.25

• Case (b): Bi-material E1=1000 MPa, ν1=0.25;
E2=4000MPa, ν2=0.25

Due to geometric and material symmetry conditions,
only one half of the panel needs to be considered. A
total of 8660 elements with 27000 nodes are employed.
The ABAQUS standard quadratic plane stress elements
“CPS8” and “CPS6” are used.

First, the two-step analysis using equation (3) was used
to compute the total energy release rate and compared
with an analytical solution. As the kinking angle is zero,
the analytical solution for the total energy release rate for
a bi-material crack is

G = (1−β2)(1+4ε2)

[
Y σ

√
πa

]2

E∗

where β and ε are the bi-material [Dundurs (1969)] con-
stants,

β =
µ1(κ2−1)−µ2(κ1−1)
µ1(κ2 +1)+µ2(κ1 +1)

ε =
1

2π
ln

(
1−β
1+β

)

1
E∗

=
1
2

(
1

E1
+

1
E2

)

Y is a geometry modification factor

Y =

√
2W
πa

tan
( πa

2W

)

When the two materials in a bi-material are identical, ε =
β = 0, and G becomes

G =

[
Y σ

√
πa

]2

E

The numerical results are compared with the analyti-
cal solutions for the crack along the interface (ω = 0◦).
Computed results are given in Table 1. The analytical
solution, and the two step VCCT based on equations (1)
and (3) are compared, along with a J-integral [ABAQUS]
computation from ABAQUS. It is seen that the present
two-step VCCT predictions are in excellent agreement
with the closed form solution.

When the crack kinking angle is not zero, the analytical
expression for G in a homogeneous material is

G =
[
C2

11(ω)+C2
21(ω)

] [
Y σ

√
πa

]2

E
,

where, C11(ω) and C21(ω) is as shown in equation (10).
The analytical solution and calculations based on equa-
tions (1) and (2) are plotted in Figure 6(a). The results
obtained from VCCT for a slant crack are also included
in this figure. It is clear that slant crack results based on
straight crack extension are not applicable to the kinking
crack problem. For the bi-material case, only calcula-
tions based on equations (1) and (2) are plotted in Figure
6(b). One can see that Equation (1) and equation (3) give
identical results for both material cases as expected since
they are equivalent based on Betti’s reciprocal theorem.
Equation (1), equation (3) and the analytical solution all
agree very well for the full range of kinking angles for
the homogeneous material.
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Figure 6 : Results for the strain energy release rate com-
puted using equation (3)

Compared to the expression given in (1), the expression
in (3) has the advantage of providing the partition of the
energy release rate. Compared to the expression in (2),
G given in (1) avoids the complications associated with
the integration. Therefore, the two-step VCCT is an ac-
curate, efficient and powerful tool for computing parti-
tioned energy release rates for crack kinking problems.
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Figure 7 : Strain energy release rates using the one step
VCCT

Next, the one step VCCT predictions are compared
against the two steps VCCT given by equation (3). The
total strain energy release rates obtained from the analyt-
ical solution and the two VCCT approaches are listed in
Table 2 for a zero crack-kinking angle. It is seen that the
present one-step approach is as accurate as the two-step
VCCT. Differences persist, but these are small compared
to the efficiency gained in using a one-step VCCT com-
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Table 2 : Strain energy release rate for cracks at ω = 0◦ (unit: N/mm)
Anayltical Two-step-analysis One-step-analysis

Case (a) 6.498 6.612 6.515

Case (b) 3.938 3.886 3.823

putation compared against a two-step VCCT approach.

Partition of the energy release rate is also studied. For
non-zero kink angles, Figure 7 shows good agreement
between the two VCCT approaches for both material
case (a) and material case (b). This agreement thus in-
dicates that the one-step VCCT approach is an efficient
and accurate procedure for computing the total and com-
ponent energy release rates for kinking cracks.

4 Conclusions

A new computational procedure to compute the energy
release rate in a two-dimensional setting for kinking
cracks based on the virtual crack closure technique has
been presented and validated. The present approach can
provide partitioned strain energy release rates for each
individual fracture mode. Other approaches to compute
strain energy release rates involve complications associ-
ated with direct integration of the singular fields in and
around the crack-tip. The present approach avoids these
complications and can be conveniently implemented in
commercial FEA software such as ABAQUS. The one-
step VCCT is an accurate, efficient and powerful tool in
engineering analysis for crack kinking problems.
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