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A New Implementation of the Meshless Finite Volume Method, Through the
MLPG “Mixed” Approach
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Abstract: The Meshless Finite Volume Method
(MFVM) is developed for solving elasto-static problems,
through a new Meshless Local Petrov-Galerkin (MLPG)
“Mixed” approach. In this MLPG mixed approach, both
the strains as well as displacements are interpolated, at
randomly distributed points in the domain, through lo-
cal meshless interpolation schemes such as the mov-
ing least squares(MLS) or radial basis functions(RBF).
The nodal values of strains are expressed in terms of
the independently interpolated nodal values of displace-
ments, by simply enforcing the strain-displacement rela-
tionships directly by collocation at the nodal points. The
MLPG local weak form is then written for the equilib-
rium equations over the local sub-domains, by using the
nodal strains as the independent variables. By taking the
Heaviside function as the test function, the local domain
integration is avoided; this leads to a Meshless Finite Vol-
ume Method, which is a counterpart to the mesh-based
finite volume method that is popular in computational
fluid dynamics. The present approach eliminates the ex-
pensive process of directly differentiating the MLS inter-
polations for displacements in the entire domain, to find
the strains, especially in 3D cases. Numerical examples
are included to demonstrate the advantages of the present
methods: (i) lower-order polynomial basis can be used in
the MLS interpolations; (ii) smaller support sizes can be
used in the MLPG approach; and (iii) higher accuracies
and computational efficiencies are obtained.
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1 Introduction

The meshless methods have been found to be attractive,
mainly due to the possibility of overcoming the draw-
backs of mesh-based methods, such as the labor-intensive
process of mesh-generation, locking, poor derivative so-
lutions, etc. The meshless methods may also eliminate
the mesh distortion problems once the solid/structure un-
dergoes large deformations, in which case, adaptive re-
finement and adaptive remeshing are required. Several
meshless methods have been developed, based on global
weak forms, such as the smooth particle hydrodynamics
(SPH), and the element-free methods and so on. They
require certain meshes or background cells [over the so-
lution domain, for purposes of integration of the weak-
form], which may also become distorted during large
deformations. In contrast, the meshless local Petrov-
Galerkin (MLPG) approach pioneered by Atluri and his
colleagues [Atluri (2004)] is based on writing the lo-
cal weak forms of PDEs, over overlapping local sub-
domains. The integration of the weak-form is also per-
formed within the local sub-domains; thus negating any
need for any kind of meshes or background cells, mak-
ing the MLPG approach a truly meshless method. The
MLPG approach has been used to solve various problems
successfully, including those in elasto-statics [Li, Shen,
Han and Atluri (2003); Han and Atluri (2003ab,2004a)],
elasto-dynamics [Han and Atluri (2004b)], fracture me-
chanics [Atluri, Kim and Cho (1999)], and fluid mechan-
ics [Lin and Atluri (2001)] and so on. All these suc-
cesses demonstrate that the MLPG method is one of the
most promising alternative methods for computational
mechanics.

As a general framework for meshless methods, the
MLPG approach provides the flexibility in choosing the
trial and test functions, as well as the sizes and shapes of
local sub-domains, and employs various[unsymmetric or
symmetric] weak forms of PDEs. As a special case, the
Heaviside function can be chosen as the test function,
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and applied to the symmetric-weak forms over the local
sub-domains; thus eliminating the domain integrals [la-
beled as MLPG-5Atluri and Shen (2002)]. It has a clear
physical meaning that the local weak form represents the
momentum balance law of the local sub-domains. This
is very similar to the finite volume methods, which have
been widely used in computational fluid mechanics. The
finite volume methods are usually second-order accurate,
based on the integral form of the governing equations,
over the non-overlapping sub-domains. The MLPG5
method leads to what may be called as the “Meshless Fi-
nite Volume Methods [MFVM]. With the use of iterative
solvers, the finite volume methods are more efficient to
treat the coupling and non-linearity in an iterative way. In
recent years industrial computational fluid dynamics has
been dealing with the meshes of the order of up to 100
million cells. The smooth particle hydrodynamics (SPH)
uses the so-called particles, interacting with each other
through the meshless approximations [Lucy (1977); Gin-
gold and Monaghan (1977)]. Since the standard SPH
method has the problem to interpolate exactly when the
particles are unevenly spaced and sized, many improve-
ments were made to improve the completeness of the
SPH approximation, such as the normalization [Johnson
and Beissel (1996)] and the MLS approximation [Dilts
(1999)].

The problems of similar scale also exist in structural anal-
ysis, especially for those undergoing the large nonlinear
deformations under high-speed impact loading as in the
case of a projectile penetration problem. It is well known
that this has been beyond the capability of the traditional
finite element methods, due to the mesh problems and the
poor accuracy of the second-order variables. For exam-
ple, in projectile penetration simulations, Johnson, Stryk,
Beissel, and Holmquist (2002) used a SPH based algo-
rithm to convert extremely distorted finite elements into
particles to alleviate eroding (dropping) element mass
from the calculation and to avoid solution time steps be-
coming extremely small. The MFVM described in this
paper may offer a viable alternative for this class of prob-
lems.

In the present work, a new meshless finite volume
method [MFVM] is developed for solving elasto-static
problems, through an MLPG “mixed” approach. The
Heaviside function is used as the test function, in
the local-weak-form of the equilibrium equation. In-
dependent meshless approximations are used for both

the strains, as well as the displacements. The strain-
displacement compatibility is enforced at nodal points by
using the collocation method; thus expressing the inde-
pendent nodal strains in terms of nodal displacements.
These strains are then used in the local symmetric weak-
form of the equilibrium equations. It retains the same
physical meaning as the momentum balance law of the
local sub-domains, while the accuracy of the secondary
variables has been improved. Theoretically, the present
method requires that the trial functions possess only C0
continuity. In contrast, C1 continuities are required for
the trial functions if the derivatives of the displacements
are directly used in the weak-form. Numerically, the
strains are interpolated directly via the meshless approx-
imations, without the calculation of the derivatives of
the shape functions. The MLPG mixed method is thus
computationally more efficient, because the calculation
of the derivatives of the interpolation functions in the
meshless approximations, everywhere in the vdomain,
is computationally costly. In addition, the second-order
polynomial bases are required for the better approxima-
tion, to avoid shear-locking if the MLS is used [Han
and Atluri (2004a)], in the primal MLPG method (based
only on displacement interpolations) Also in the MLPG
primal method, a larger support size should be chosen,
in order to make the MLS approximation non-singular,
which leads to over-smoothed results. The present mixed
method requires only a first-order polynomial basis in the
MLS approximations of both strains as well as displace-
ments. A smaller support size can be used in the present
MLPG mixed method, and the number of nodes is re-
duced dramatically, especially for 3D cases. The local
integrals in the present method contain only the strains,
without involving the derivatives of the displacement ex-
plicitly. Thus, the present MFVM method, based on the
MLPG mixed approach, is more suitable for non-linear
problems with large deformations.

The main body of the paper begins with a brief descrip-
tion of the augmented RBF, and MLS approximations in
Section 2. The MLPG finite volume method is formu-
lated in Section 3. The numerical implementation with
the pseudo codes is presented in Section 4. Numerical
examples are given in Section 6, and the conclusions and
discussions are given in Section 7.
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2 Meshless Approximations

This section summarizes, for the sake of completeness,
the meshless approximations for the MLPG methods, in-
cluding the radial basis functions (RBF) and the moving
least squares (MLS). More details can be found in [Atluri
(2004)].

The MLS method of interpolation is generally considered
to be one of the best schemes to interpolate random data
with a reasonable accuracy, because of its completeness,
robustness and continuity. With the MLS, the distribution
of a function u in Ωs can be approximated, over a number
of scattered local points {xi}, (i = 1,2, ...,n), as,

u(x) = pT (x)a(x) ∀x ∈ Ωs (1)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT(xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (2)

where wi(x) are the weight functions and ûiare the ficti-
tious nodal values.

One may obtain the shape function as,

u(x) = pT (x)A−1(x)B(x)û≡ ΦΦΦT (x)û ∀x ∈ ∂Ωx (3)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (4)

The weight function in Eq. (2) defines the range of in-
fluence of node I. Normally it has a compact support. A
fourth order spline weight function is used in the present
study.

The radial basis functions (RBF) approximation pos-
sesses the Dirac delta function property of the shape
functions, and leads to a simplicity of their derivatives.
However, they lack completeness, as in the standard
SPH. It has been improved by introducing additional
polynomials, as the augmented RBF. The RBF approxi-
mation is globally continuous only for the case when the

approximation is also global. The shape functions are
non-continuous if they are used locally [Han and Atluri
(2004a)].

Consider a sub-domain Ωs, the neighborhood of a point
x, which is local in the solution domain. To approxi-
mate the distribution of function u in Ωs, over a number
of scattered points {xi}, (i = 1,2, ...,n), the local aug-
mented RBFs interpolate u(x) of u, ∀x ∈ Ωs can be de-
fined by [Golberg, Chen and Bowman (1999)]

u(x) = RT (x)a+PT (x)b ∀x ∈ Ωs (5)

where RT (x) = [R1(x),R2(x), ...,Rn(x)] is a set of
radial basis functions centered around the n scat-
tered points; aT = [a1,a2, ...,an] is a vector of con-
stant coefficients; PT (x) = [p1(x), p2(x), ... , pm(x)] =
[1,x,y, z,x2,y2, z2,xy,yz, zx, ....] is a monomial basis of or-
der m; bT = [b1,b2, ...,bm] is a vector of constant coeffi-
cients. The radial basis function has the following gen-
eral form

Ri (x) = Ri (ri) and ri = ‖x−xi‖ (6)

To determine the coefficients a and b, one may enforce
the interpolation to satisfy the given values at the scat-
tered points, as:

u(xi) = RT (xi)a+PT (xi)bi = 1,2, ...,n or

ue = R0a+P0b (7a)

and

n

∑
i=1

p j(xi)ai = 0 j = 1,2, ...,m or PT
0 a = 0 (7b)

By solving Eq. (7), and substituting the solution into Eq.
(5), one may obtain the shape function as:

u(x) =
[
RT (x),PT (x)

]
Gue ≡ ΦΦΦT (x)ue ∀x ∈ Ωs (8)

where the matrix G is defined as:

G ≡
[

R0 P0

PT
0 0

]−1

(9)

In the present study, the compactly supported RBFs are
used in a local way, and chosen as the weight function
used in the MLS.
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3 MLPG Finite Volume Method and Numerical Dis-
cretization

Consider a linear elastic body in a 3D domain Ω, with a
boundary ∂Ω, shown in Figure 1. The solid is assumed
to undergo infinitesimal deformations. The equations of
balance of linear and angular momentum can be written
as:

x

sΩ

Figure 1 : A local sub-domain around point x

σi j, j + fi = 0; σi j = σ ji; (),i ≡ ∂
∂ξi

(10)

where σi j is the stress tensor, which corresponds to the
displacement field ui; fi is the body force. The corre-
sponding boundary conditions are given as follows,

ui = ui on Γu (11a)

ti ≡ σi jn j = t i on Γt (11b)

where ui and t i are the prescribed displacements and trac-
tions, respectively, on the displacement boundary Γu and
on the traction boundary Γt , and ni is the unit outward
normal to the boundary Γ.

In the MLPG approaches, one may write a weak form
over a local sub-domain Ωs, which may have an arbitrary
shape, and contain the a point x in question. A gener-
alized local weak form of the differential equation (10)
over a local sub-domain Ωs, can be written as:∫

Ωs

(σi j, j + fi)vidΩ = 0 (12)

where ui and vi are the trial and test functions, respec-
tively.

By applying the divergence theorem, Eq. (12) may be
rewritten in a symmetric weak form as [Han and Atluri
(2004a)]:∫

∂Ωs

σi jn jvidΓ−
∫

Ωs

(σi jvi, j − fivi)dΩ = 0 (13)

Imposing the traction boundary conditions in (11), one
obtains∫

Ls

tividΓ+
∫

Γsu

tividΓ+
∫

Γst

tividΓ

−
∫

Ωs

(σi jvi, j − fivi)dΩ = 0 (14)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary, and Ls is the
other part of the local boundary which is inside the solu-
tion domain. Γsu = Γs∩Γu is the intersection between the
local boundary ∂Ωs and the global displacement bound-
ary Γu; Γst = Γs ∩Γt is a part of the boundary over which
the natural boundary conditions are specified.

Therefore, a local symmetric weak form (LSWF) in lin-
ear elasticity can be written as:∫

Ωs

σi jvi, jdΩ−
∫

Ls

tividΓ−
∫

Γsu

tividΓ

=
∫

Γst

t ividΓ+
∫

Ωs

fividΩ (15)

One may use the Heaviside function as the test function
inj the local symmetric weak form in Eq. (15), and ob-
tain,

−
∫

Ls

tidΓ−
∫

Γsu

tidΓ =
∫

Γst

tidΓ+
∫

Ωs

fidΩ (16)

Eq. (16) has the physical meaning that it represents the
balance law of the local sub-domain Ωs, with the traction
boundary conditions being enforced [Atluri (2004); Li,
Shen, Han, and Atluri (2003)].

With the constitutive relations of an isotropic linear elas-
tic homogeneous solid, the tractions in Eq. (16) can be
written in term of the strains:

ti = σi jn j = Ei jklεkln j (17)

where,

Ei jkl = λδi jδkl +µ(δikδ jl +δil δ jk) (18)
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with λ and µ being the Lame’s constants.

Consider a local sub-domain Ωs, centered on each nodal
point x(I); then the approximation of traction vectors on
the boundary of Ωs can be expressed by considering the
nodal strains as independent variables. With the use of
the shape function in Section 2, the strains are indepen-
dently interpolated, as,

εkl(x) =
N

∑
K=1

Φ(K)(x)ε(K)
kl (19)

With Eqs. (17) and (19), one may discretize the local
symmetric weak-form of Eq. (16), as,

−
N

∑
K=1

[
∫

Ls

Φ(K)(x)Ei jkln jdΓ] ε(K)
kl

−
N

∑
K=1

[
∫

Γsu

Φ(K)(x)Ei jkln jdΓ] ε(K)
kl

=
∫

Γst

t idΓ+
∫

Ωs

fidΩ (20)

It clearly shows that no derivatives of the shape functions
are involved in the local integrals. Instead, if Eq. (20)
is written in terms of the displacement variables, these
integrals will involve the derivatives of the shape func-
tions [Atluri (2004)]. It is well known that the meshless
approximation is not efficient in calculating such deriva-
tives everywhere in the domain, especially when the
MLS approximation is used. Thus, the efficiency of the
present method is improved over the traditional MLPG
[primal] displacement methods. Secondly, the require-
ment of the completeness and continuity of the shape
functions is reduced by one-order, because the strains,
which are the secondary field variables, are approximated
independently of the displacements. Thus, lower-order
polynomial terms are required in the meshless approxi-
mations, and a smaller nodal influence size can be cho-
sen, to speed up the calculation of the shape functions.
On the other hand, the number of equations in Eq. (20)
is less than the number of the independent strain vari-
ables, because the nodal strain variables are more than
the displacement ones[ in 3D, there are six nodal-strain
variables, but only 3 displacement nodal-variables]. One
may reduce the number of the variables by transform-
ing the strain variables back to the displacement variables
via the collocation methods, without any changes to Eq.
(20). First, the interpolation of displacements can also be

accomplished by using the same shape function, for the
nodal displacement variables, and written as,

ui(x) =
N

∑
J=1

Φ(J)(x)u(J)
i (21)

For linear elasto-statics, the strain-displacement relations
are:

εkl =
1
2
(uk,l +ul,k) (22)

The standard collocation method may be applied to en-
force Eq. (22) only at each nodal point x(I), instead of
the entire solution domain. Thus, the nodal strain vari-
ables are expressed in terms of the nodal displacement
variables, as

εkl(x(I)) =
1
2
[uk,l(x(I))+ul,k(x(I))] (23)

With the displacement approximation in Eq. (21), the
two sets of nodal variables can be transformed through a
linear algebraic matrix:

ε(I)
kl = H(I)(J)

klm u(J)
m (24)

where the transformation matrix H is banded.

The number of system equations is then reduced to the
same number as the nodal-displacement variables, after
the transformation. In addition, such a transformation is
performed locally, and the system matrix retains its band-
edness. For numerical implementation, it is not neces-
sary to calculate and store the matrix H explicitly. The
integrals in Eq. (20) are only related to a few nodal points
which are near to the point of interestion, x(I), which
means only a very small portion of the transformation
matrix H is used. It is possible to calculate this portion
from Eq. (24) dynamically, which is less computation-
ally costly with only a few local nodal points involved.

With the meshless approximations, another problem is
that the essential boundary conditions can not be imposed
directly even with the use of the RBF approximation, be-
cause the shape function possesses the Dirac delta prop-
erty only at the corresponding nodes. Although one may
impose the essential boundary conditions at all nodes on
the prescribed displacement boundary, these conditions
are still not satisfied everywhere on the boundary, except
at the nodal points. The reason is that the boundary val-
ues everywhere on the boundary, even through the RBF
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approximation, depend not only on the boundary nodes,
but also on the related ones inside the domain. This is
quite different from those in the element-based methods,
in which the boundary values are interpolated through
only the nodes at the boundary nodes. In the present
study, the collocation method is also used to impose the
displacement boundary conditions. For a nodal point x(I),
if its ith displacement DOF belongs to the displacement

boundary, i.e., u
(I)
i ∈Γsu, the corresponding system equa-

tion can be replaced by the one generated from the collo-
cation for this particular DOF, as

αui(x(I)) = αui(x(I)) (25)

This standard collocation still keeps the system equations
sparse and banded.

It should be pointed out that the present method is for-
mulated based on the nodal points fully within the local
sub-domains, as shown in Eqs. (20), (24) and 4. It makes
the present method ready for parallel computation and
work with iterative solvers or for solving transient im-
pact problems [Han and Atluri (2004b)].

4 Numerical Implementation

Several numerical aspects are discussed in this section,
mainly focusing on the issues in numerical implementa-
tion and related techniques. The pseudo codes in MAT-
LAB are given in each topic. Even though all algorithms
are demonstrated for 2D problems in this section, they
are extendable for the 3D cases, quite easily.

4.1 Data Preparation

Although only the scattered nodal points are required
in the meshless method, it is not efficient to define the
boundaries for a complicated domain. The easiest way
is to use the robust Delaunay algorithm to triangulate the
solution domain into triangles. These triangles are only
used to define the solution domain and have no quality
requirement, because they are not used for the interpola-
tion or the integration. The steps in Table 1 are used to
prepare the data for any general problems.

4.2 Quadrature Techniques

In the present method, the tractions are involved in the
integrals, which need to be evaluated over the boundary
of the local sub-domains. Polynomial termas for the trac-
tion can not be expected over the entire local boundary,
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Figure 2 : a local sub-domain around point x

which may not be covered by all local nodes. In addi-
tion, the integrals contain the normal n to the bound-
ary, and the trigonometric functions are involved. It
is well known that the conventional numerical quadra-
ture schemes are designed for polynomials, but are not
efficient for trigonometric functions [Han and Atluri
(2004)]. For 2D problems, the numerical errors may be
controlled by simply increasing the order of the Gauss
quadrature scheme, or subdividing the domain of integra-
tion into small segments for better accuracy. It has been
reported that the subdivision algorithm is much more ef-
ficient, than in the case when the integration is performed
over the entire domain with a large number of integration
points [Atluri, Kim and Cho (1999), Sellountos and Poly-
zos (2003)]. For those nodes on the global boundary, the
intersection between the local and global boundaries also
needs some special treatment. In the present implemen-
tation, a simple subdivision algorithm is used to simplify
the numerical quadrature and improve the accuracy.

Consider a local circular sub-domain centered at node I,
x(I), with a radius denoted by r(I)

0 . By drawing a line from
node I to its neighbor node J, {x(J)}, (J = 1,2, ...,m), a
point can be obtained at the intersection between the line
and the local circle, denoted by {y(J)}, (J = 1,2, ...,m).
A subset of these intersecting points is used to divide
the integration domain, i.e. the local circle. It should
be pointed out that the intersection points between the
local and global boundaries are automatically included
in y(J). Then these special points are kept in the sub-
set and used as the starting and ending points. A set of
angles is obtained for performing the numerical integra-
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Table 1 : Sample codes for data preparation

i) read model data 

load ‘node.dat’ node; % node contains the node coordinates in rows, as 
% [ x1, y1; x2, y2; … ; xn yn] 

load ‘element.dat’ element; % element contains the triangles in rows, as 
% […; n1_Ti, n2_Ti, n3_Ti; …] 

numnode=size(node,1);     % number of nodes 
numelem=size(element,1); % number of triangles 

ii) search the global boundary 

% mlpgedge contains the definition of the global boundary 
% with anti-clock-wise node pairs in rows, as 
% [… … … ; n1_of_Pi, n2_Pi; … …] 

mlpgedge = setdiff( ... 
            [element(:,[1 2]);element(:,[2 3]);element(:,[3 1])], ... 
            [element(:,[2 1]);element(:,[3 2]);element(:,[1 3])], ... 
            'rows'); 
clear element;  % the triangles are removed after searching the global boundary 

iii) search neighbor nodes 

% mlpgnode contains the neighbor node information in rows, as 
% [… … ; m, I, n1, n2, … n_m-1;… …] 
% where m is the number of the neighbor node of node I, include node I itself. 

supportSize = 2.05; % the radius of the nodal influence domain 
testSize = 0.55;  % the radius of the local sub-domain 

mlpgnode = zeros(numnode,1); 
for i=1:numnode 
    d =sqrt((node(:,1)-node(i,1)).^2 + (node(:,2)-node(i,2)).^2); 
    neighNode = find(d < supportSize+testSize); 
    mlpgnode(i,1:size(neighNode,1)+1) = [size(neighNode,1) i setdiff(neighNode,[i])']; 
end
clear d neighNode; 

tion, as {θ0, θ1, · · · , θt}. The starting angle θ0 is not
equal to the ending angle θt for the nodes on the global
boundary. In the present study, the radii of the local sub-
domains for the nodes within the solution domain are so
chosen that the local sub-domains do not intersect with
the global boundary. Thereafter, the subdivided angles
cover the entire local circle for these internal nodes. The
subdivision is illustrated in Figure 2.

In addition, the subdivision can also be used to divide the
local sub-domain in pie slices with node I as the center,

if domain integrals are required, such as the body forces.
Then, all the integrals over the local sub-domain can be
calculated by using the simple Gaussian quadrature.

The codes in Table 2 are used to determine the local sub-
division.

4.3 Post Processing

For the MLS approximation, the fictitious nodal values
are obtained after solving the system equations. A simple
procedure in Table 3 is used to calculate the actual nodal
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Table 2 : Sample codes for quadrature techniques

i) search the starting and ending angles for the nodes on the global boundary 

% mlpgangle contains the starting and ending angles for all nodes 
% [… … … ; starting_angle_of_Node_I, ending_angle_of_Node_I; … …] 
% -inf and inf are used, respectively, for the internal nodes 

mlpgangle = zeros(numnode,2); 
dr = node(mlpgedge(:,2),:) - node(mlpgedge(:,1),:); % length of all boundary edges 
% calculate the angles of the boundary edges 
% and used as the starting angle of the first node of the edge 
mlpgangle(mlpgedge(:,1),1) = cart2pol(dr(:,1),dr(:,2)); 
mlpgangle(find(mlpgangle>pi-eps),1)=-pi; % remove the numerical tolerance 

% reverse the angle of the boundary edges,  
% and used as the ending angle of the second node of the edge 
mlpgangle(mlpgedge(:,2),2) = pi+mlpgangle(mlpgedge(:,1),1); 

% regularize the starting and ending angles 
da = mlpgangle(:,2)-mlpgangle(:,1); 
ii = find(da > 2*pi); 
mlpgangle(ii,2) = mlpgangle(ii,2)-2*pi; 
ii = find(da < 0); 
mlpgangle(ii,1) = mlpgangle(ii,1)-2*pi; 

ii = setdiff([1:numnode]', mlpgedge(:,1));  % set -inf & inf for all internal nodes 
mlpgangle(ii,1) = -inf; 
mlpgangle(ii,2) = inf; 
clear dr da ii;  

ii) sub-divide the local circle 

% mlpgnode contains the sub-divided angles for integration 
% [… … … ; number_of_angles, sita_0, sita_1, …, sita_t; … …] 

f0 = linspace(0,1,9)'; % the maximum number of the angles is set to 10 
for i=1:numnode 
    ii = mlpgnode(i,3:mlpgnode(i,1)); % neighbor nodes excluding itself 
    sita = cart2pol(node(ii,1)-node(i,1),node(ii,2)-node(i,2));   % all intersecting  angles 

    startangle = max(mlpgangle(i,1),min(sita)); 
    ii = find(sita <startangle); 
    sita(ii) = sita(ii)+2*pi; 

    endangle = min(startangle+2*pi,mlpgangle(i,2)); 
    sita = sita(find(sita <=endangle)); 
    [f,sita] = ecdf(sita); % cumulative distribution function is used for subsetting 
    sita = sort(unique(sita(dsearchn(f,f0)))); 
    if(sita(1) > startangle+eps) % include the starting angle as the first one 
        sita = [startangle; sita]; 

end
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    if(sita(end) < endangle-eps) % include the ending angle as the last one 
        sita = [sita;endangle]; 
    end 
    mlpgintangle(i,1:size(sita,1)+1) = [size(sita,1) sita']; 
end
clear f0 ii sita startangle endangle 

iii) perform the numerical integration 

for n=1:numnode   % start of node loop 
    nn=mlpgnode(n,1);  % the number of the neighbor nodes    
    sctr=mlpgnode(n,2:nn+1); % IDs of all local scattered nodes, include node I 

    nseg = mlpgintangle(n,1); % the number of sub-divided angles 
    angle = mlpgintangle(n,2:nseg+1); % the angles 
    xn = node(n,:);  % coordinates of the node of interesting 
    pts = node(sctr,:);  % coordinates of all local nodes 

    for(seg = 1:nseg-1)  % sub-division loop 
        angle0 = angle(seg); 
        dangle = angle(seg+1)-angle0; 
        arclength = dangle*testSize; 
         
        for q=1:size(W,1)                      % quadrature loop 
            pt=Q(q,1);                             % quadrature point 
            wt=W(q);                               % quadrature weight 
            [nx, ny] = pol2cart(angle0+dangle*pt, 1);     %normal direction 
            x0 = xn+ [nx ny]* testSize;                    % integration point 
            N=mls_basis(mls_type,x0,pts,supportSize); %meshless appr. 
             
            %  weight = wt * arclength 
            %  integrations come here 

        end  % of quadrature loop 
    end % of sub-division loop 
end    % of node loop 
clear n nn sctr nseg angle xn pts angle0 dangle arclength q pt wt x0 N; 

values.

5 Numerical Examples

Several 2-D problems are solved to illustrate the effec-
tiveness of the present method. The numerical results of
the present method, as applied to carefully chosen prob-
lems in 2D elasto-statics, specifically (i) patch test, (ii)
cantilever beam, (iii) curved beam bent by a force at the
end, are discussed.

5.1 Cube under uniform tension

The first example is that of a standard patch test, shown
in Figure 3.

The material parameters are taken as E = 1.0, and ν =
0.25. The nodal configuration contains 9 nodes. Two
nodal configurations are used for the testing purpose: one
is regular and another is irregular, as shown in Figure 3.
In the patch tests, a uniform tensile stress is applied on
the upper edge, and proper displacement constraints are
applied to the lower edge.

The satisfaction of the patch test requires that the dis-
placements are linear on the lateral faces, and are con-
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Table 3 : Sample codes for post processing

i) calculate the actual nodal values from the fictitious ones 

% U contains the fictitious nodal values, as 
% [u1, u2, … , u_n]’ 

fictitiousU = U;  % save U to a temporary variable 

for n=1:numnode   % start of node loop 
    nn=mlpgnode(n,1);  % the number of the neighbor nodes    
    sctr=mlpgnode(n,2:nn+1); % IDs of all local scattered nodes, include node I 
    xn = node(n,:);  % coordinates of the node of interesting 
    pts = node(sctr,:);  % coordinates of all local nodes 
    N=mls_basis(mls_type,x0,pts,supportSize); %meshless approximation 

    U(n) = N'* fictitiousU (sctr); 

end    % of node loop 

clear fictitiousU n nn sctr xn pts N; 

2/3 1/3 

Figure 3 : A cube under uniform tension, and two nodal configurations

stant on the upper edge; and the stresses are constant in
the solution domain. It is found that the present method
passes the patch tests with both the MLS and RBF ap-
proximations. The maximum numerical errors are lim-
ited by the computer for two nodal configurations.

5.2 Cantilever beam

The performances of the present MLPG formulations are
also evaluated, using the problem of a cantilever beam
under a transverse load, as shown in Figure 4, for which
the following exact solution is given in Timoshenko and
Goodier (1970):

ux = − Py

6EI

[
3x(2L−x)+(2+υ)(y2 −c2)

]
uy =

P

6EI

[
x2(3L−x)+3υ(L−x)y2 +(4+5υ)c2x

]
(26)

where the moment of inertia I the beam is given as,

I =
c3

3
(27)

and

E =

{
E

E
(1−υ)2

υ =
{

υ for plane stress
υ

(1−υ) for plane strain (28)
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Figure 4 : A cantilever beam under an end load

P
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P

(c) 441 nodes ( =0.5)d

(b) 125 nodes ( =1.0)d

(a) 39 nodes ( =2.0)d

Figure 5 : three nodal configurations for a cantilever beam

The corresponding stresses are

σx = −P
I
(L−x)y

σy = 0

σxy = − P
2I

(y2 −c2) (29)

The problem is solved for the plane stress case with P =
1, E = 1, c = 2, L = 24 and υ = 0.25. Regular uniform
nodal configurations with nodal distances, d, of 2.0, 1.0,

and 0.5 are used, as shown in Figure 5. The numbers of
nodes are 39, 125, and 441, respectively.

First, the problem is solved by using the MLS approx-
imation, with a support size of 1.15d and a test size of
0.6d. The vertical displacements are shown in Figure
6a, b, and c, for the three nodal configurations, respec-
tively. They agree with the analytical solution very well.
The relative error of the maximum displacement is 0.8%
even when a very coarse nodal configuration with only
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Figure 6a : Normalized vertical displacement of a cantilever beam under an end loading
(39 nodes with nodal distance d = 2.0)
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Figure 6b : Normalized vertical displacement of a cantilever beam under an end loading
(125 nodes with nodal distance d = 1.0)
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Figure 6c : Normalized vertical displacement of a cantilever beam under an end loading
(441 nodes with nodal distance d = 0.5)

39 nodes is used, as shown in Figure 6a.

The effects of the approximation methods, the support
size, and the test-domain size are studied for the present
method (MLPG FVM). The approximations are the MLS
with the first order polynomials (labeled as MLS1), the
MLS with second order polynomials (labeled as MLS2),
and the RBF augmented with the first order polynomi-
als (labeled as RBF), respectively. The support size and
the test size are related to the nodal distance, d. Nor-
mally, the ratio of the support size is greater than 1.0. It
should be greater than 2.0 for the MLS2, to make sure
that there are enough points to support the nodes on the
global boundary. The ratio of the test-domain size is cho-
sen to be less than 1.0 in the present study. They are de-
tailed in the following sub-sections.

5.2.1 Effects of the test-domain size

The local sub-domain is one of the key concepts for the
MLPG approach. As over-lapping sub-domains are used,
the test-domain size (or the size of the sub-domain) af-
fects the accuracy of the solution and the efficiency of the
method. It is very different from the non-over-lapping
methods, in which the background cells are required to

partition the solution domain. In the present study, the
test-domain size is chosen to be proportional to the nodal
distance, d. Theoretically, the ratio is very flexible. In
practice, it is chosen to be less than 1.0 to ensure that
the local sub-domains of the internal nodes are entirely
within the solution domain, without being intersected by
the global boundary. It is chosen to be greater than 0.5 to
ensure the sub-domains are over-lapping. In the present
study, four ratios are used as 0.5, 0.6, 0.7 and 0.8. The
support size is fixed as 1.15d for the MLS1 and the RBF,
and 2.5d for the MLS2.

As all methods give the reasonable results, the relative er-
rors of the maximum displacements are used to examine
the effects of the test-domain size. Three nodal config-
urations are used to examine the displacement errors, as
shown Figure 7a,b, and c, respectively.

The MLS1 gives the most accurate results among the
three approximations. The maximum error is 0.8% even
only 39 nodes are used. It can be seen that good accu-
racy is obtained when the test-domain size is 0.6d. It is
noticeable that the accuracy is less sensitive to the test-
domain size from 0.5 ∼ 0.7d, as the sub-domains are
slightly over-lapping. However, the RBF approximation
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Figure 7a : Influence of the test-domain size in a cantilever beam under an end load
(39 nodes with nodal distance d = 2.0)
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Figure 7b : Influence of the test-domain size in a cantilever beam under an end load
(125 nodes with nodal distance d = 1.0)
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Figure 7c : Influence of the test-domain size in a cantilever beam under an end load
(441 nodes with nodal distance d =0.5)

becomes more stable when a larger test-domain size is
used. It may be due to the non-continuous shape func-
tion.

5.2.2 Effects of the support size

The support size (or the size of the influence domain) is a
very important in meshless methods. It is related to both
the accuracy of the solution, as well as the computational
efficiency. For a smaller size, the meshless approxima-
tion algorithms may be singular and the shape function
can not be constructed because of too few nodes. The
support size is also chosen to be proportional to the nodal
distance. In the present study, four ratios are used for the
MLS1 and the RBF, as 1.15, 1.25, 1.5, and 1.8, and three
for the MLS2 are 2.05, 2.5 and 2.8. The test size is cho-
sen as 0.6d.

The relative errors of the maximum displacements are
shown in Figure 8.

Again, the MLS1 gives the most accurate results among
the three approximations. In addition, the results are less
sensitive to the support size when the MLS1 is used with
a smaller support size. It makes the present method very
efficient by speeding up the MLS approximation. The

MLS2 is also less sensitive to the support size. However,
the RBF gives better results when the suitable support
size is used.

5.2.3 Convergence rate

The convergence rate is studied with three nodal config-
urations. The test-domain size is chosen to be 0.6d, and
the support size is 1.15d for the MLS1 and RBF and 2.5d
for the MLS2. The relative errors of the maximum dis-
placement are used for showing the convergence rate in
Figure 9.

The results clearly show that a stable convergence rate
is obtained for the present MLPG finite volume method
with all three approximations.

5.3 Curved beam

As the last example, the problem of a curved beam un-
der an end load is used to evaluate the present method.
The problem is shown in Figure 10, for which the fol-
lowing exact solution is given in Timoshenko and Good-
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Figure 8a : Influence of the support size in a cantilever beam under an end load
(39 nodes with nodal distance d = 2.0)
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Figure 8b : Influence of the support size in a cantilever beam under an end load
(125 nodes with nodal distance d = 1.0)
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Figure 8c : Influence of the support size in a cantilever beam under an end load
(441 nodes with nodal distance d =0.5)
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Figure 9 : Convergence rate in a cantilever beam under an end load
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Figure 10 : A curved bar with an end load

ier (1970):

ur =
P

E
[−2Dθcosθ+ sinθ(D(1−υ) logr

+A(1−3υ)r2 +
B(1+υ)

r2 )

+K sinθ+Lcos θ]

uθ =
P

E
[2Dθ sinθ−cos θ(−D(1−υ) logr

+A(5+υ)r2 +
B(1+υ)

r2 )

+D(1+υ)cosθ+K cosθ+Lsinθ] (30)

where the constants are given as,

N = a2 −b2 +(a2 +b2) log
b
a

A =
1

2N
B = −a2b2

2N

D = −a2 +b2

N
L = Dπ

K = −(D(1−υ) logr0 +A(1−3υ)r2
0 +

B(1+υ)
r2

0

)

r0 =
a+b

2
(31)

The corresponding stresses are

σr = P(2Ar− 2B
r3 +

D
r

) sinθ

σθ = P(6Ar +
2B
r3 +

D
r
) sinθ

σrθ = −P(2Ar− 2B
r3 +

D
r
)cosθ

(32)

The problem is solved for the plane stress case with P =
1, E = 1, a = 13, b = 17 and υ = 0.25. Regular uniform
nodal configurations with nodal distances, d, of 2.0, 1.0,
and 0.5 are used, as shown in Figure 11. The numbers of
nodes are 39, 125, and 441, respectively.

The displacement and stress fields are more complicated
than those in the case of a straight beam, with many non-
polynomial terms. However, the first order MLS approx-
imation is still used to solve this problem, with a support
size of 1.25d and a test-domain size of 0.6d. The hor-
izontal and vertical displacements are shown in Figure
12a, b, and c, for the three nodal configurations, respec-
tively. They agree with the analytical solution very well.

The relative errors of the maximum displacements are
less than 2% even when only 39 nodes are used, as shown
in Figure 12a, and they are reduced to less than 0.08%
when 441 nodes are used. The influence of the test do-
main size is also studied in this problem, as shown in
Figure 13.

Again, it confirms that the MLS approximation is not
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(a) 39 nodes ( =2.0)d

Figure 11 : three nodal configurations for a curved cantilever beam

sensitive to the test-domain size when the local sub-
domains are slightly over-lapped. The present method
also gives a fast convergence rate by using three nodal
configurations, as shown Figure 14.

6 Closure

A new Meshless Finite Volume Method (MFVM) is de-
veloped through a new MLPG ”Mixed” approach. The
differentiation of the shape function is eliminated, by
interpolating the strains directly, as independent vari-
ables in the local weak form. It reduces the continuity-
requirement on the trial function by one-order, and a
smaller support size can be used in the meshless approx-

imations with a lower-order polynomial basis. The com-
putational efficiency is improved, due to these two key
aspects in the newly developed meshless method. The
numerical results demonstrate the accuracy of the present
methods for problems whose analytical solutions con-
tain both polynomial and non-polynomial basis. Con-
vergence studies in the numerical examples show that
the present method possesses an excellent rate of con-
vergence.
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Figure 12a : Normalized displacements of a curved cantilever beam under an end loading
(39 nodes with nodal distance d = 2.0)
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Figure 12b : Normalized displacements of a curved cantilever beam under an end loading
(125 nodes with nodal distance d = 1.0)
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Figure 12c : Normalized displacements of a curved cantilever beam under an end loading
(441 nodes with nodal distance d = 0.5)
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Figure 13 : Influence of the test-domain size in a curved cantilever beam under an end load
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Figure 14 : Convergence rate in a curved cantilever beam under an end load
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