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Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity

J. Sladek!, V. Sladek!, S.N. Atluri’

Abstract: A meshless method based on the local
Petrov-Galerkin approach is proposed for solution of
static and elastodynamic problems in a homogeneous
anisotropic medium. The Heaviside step function is used
as the test functions in the local weak form. It is lead-
ing to derive local boundary integral equations (LBIEs).
For transient elastodynamic problems the Laplace trans-
for technique is applied and the LBIEs are given in the
Laplace transform domain. The analyzed domain is cov-
ered by small subdomains with a simple geometry such
as circles in 2-d problems. The final form of local inte-
gral equations has a pure contour character only in elas-
tostatics. In elastodynamics an additional domain inte-
gral is involved due to inertia terms. The moving least
square (MLS) method is used for approximation of phys-
ical quantities in LBIEs.

keyword: meshless method, local weak form, Heav-
iside step function, moving least squares interpolation,
Laplace transform

1 Introduction

A lot of new advanced composite materials used for light
and strength structures have anisotropic properties. They
are mostly utilized in aerospace structures. It put a re-
quirement to have a reliable and accurate computational
method to solve boundary value problems in anisotropic
solids. Conventional computational methods with do-
main (FEM) or boundary (BEM) discretizations have
their own drawbacks to solve such kind of problems. It
is efficient to apply the conventional boundary element
method (BEM) mainly to problems where the fundamen-
tal solution is available. The anisotropy increases the
number of elastic constants in Hooke’s law, hence the
construction of fundamental solutions become difficult.
In 2-d elastostatic problems the fundamental solution is
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available in a closed form [Eshelby et al. (1953); Schclar
(1994)] and it is given in a complex variable space. Sev-
eral numerical analyses have been applied to 2-d elasto-
static problems [Cruse and Swedlow (1971)] and in spe-
cific problems like half-plane [Dumir and Mehta (1987);
Pan et al. (1998)], fracture mechanics [Snyder and Cruse
(1975); Clements and Haselgrove (1983); Sollero and
Aliabadi (1993), (1995); Pan and Amadei (1996); Ang
and Telles (2004)] and piezoelectric solids [Pan (1999)].
Closed form fundamental solutions for 3-d anisotropic
elasticity exist only for special cases like transversally
isotropic or cubic media [Ding et al. (1997)].

Various BEM formulations have been successfully ap-
plied to transient elastodynamic problems in isotropic
bodies. As regards the time variable treatment one can
distinguish three main approaches including the Laplace
or Fourier transform formulations [Manolis and Beskos
(1988); Dominguez (1993); Sladek and Sladek (1984)],
time integration formulation [Cole et al. (1978); Shanz
and Antes (1997)], and the mass matrix formulation with
domain approximation of inertia terms [ Nardini and
Brebbia (1983); Perez-Gavilan and Aliabadi (2000)]. In
time integration BEM formulation, spatial as well as tem-
poral discretization is required. The fundamental solu-
tions in such a case is quite complicated. It prolongs
computational time for evaluation of integrals. In the
Laplace transform BEM approach, the fundamental so-
lution is also complex and several quasi-static bound-
ary value problems are to be solved for various values
of the Laplace transform parameters. In the mass ma-
trix formulation, one uses the static fundamental solution
which is rather simple. However, it leads to boundary-
domain integral formulation, because the static funda-
mental solution is not the solution of the elastodynamic
governing equation. Although the domain integral of
inertia terms can be converted into boundary integrals
by the dual reciprocity method, some additional inte-
rior nodes to the boundary ones are required for better
spatial approximation of inertia terms. Despite its vast
number of applications to dynamic isotropic problems,
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few works are found for analyzing dynamic anisotropic
problems [Wang and Achenbach (1996); Albuquerque
et al. (2002a,b); Kogl and Gaul (2000)]. The main
drawback of boundary element anisotropic formulations
is the absence of well-established fundamental solutions.
Most anisotropic fundamental solutions for elastodynam-
ics demand numerical integration [Wang and Achenbach
(1996)]. The mass matrix formulation is used by Albu-
querque et al. (2002a,b).

In spite of the great success of the finite and bound-
ary element methods as effective numerical tools for the
solution of boundary value problems on complex do-
mains, there is still a growing interest in development
of new advanced methods. Many meshless formulations
are becoming to be popular due to their high adaptiv-
ity and a low cost to prepare input data for numerical
analysis. A variety of meshless methods has been pro-
posed so far [Belytschko et al. (1994); Atluri and Shen
(2002a); Atluri (2004)]. Many of them are derived from
a weak-form formulation on global domain [Belytschko
et al. (1994)] or a set of local subdomains [Atluri and
Shen (2002a,b); Atluri (2004); Sladek et al. (2003a,b);
Mikhailov (2002)]. In the global formulation background
cells are required for the integration of the weak form. In
methods based on local weak-form formulation no cells
are required and therefore they are often referred to call
as truly meshless methods. If for the geometry of sub-
domains a simple form is chosen, numerical integrations
can be easily carried out over them. The meshless local
Petrov-Galerkin (MLPG) method is fundamental base for
the derivation of many meshless formulations, since trial
and test functions are chosen from different functional
spaces. The fundamental solution as the test function is
leading to accurate numerical results and it was utilized
in former papers for isotropic homogeneous and continu-
ously nonhomogeneous bodies under static [Atluri et al.
(2000); Sladek et al. (2000)] and dynamic loads [Sladek
et al. (2003a, b)]. However, in an anisotropic elastic-
ity the fundamental solution is complex or unavailable
in a closed form. From complex fundamental solution
it is very difficult to derive the Green’s function which
vanishes on the local boundary of circular subdomain.
It is inappropriate to utilize such a non-vanishing funda-
mental solution as the test function in derivation of lo-
cal boundary integral equations, since both the displace-
ments and tractions are unknown on the boundary of the
interior sub-domain.
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In this paper, the Heaviside step function is used as
the test function. It yields a pure contour integral for-
mulation on local boundaries for anisotropic elastostat-
ics, while in elastodynamics an additional domain in-
tegral of inertia terms is involved. The spatial varia-
tion of the displacement is approximated by the moving
least-square (MLS) scheme. After performing the spa-
tial integrations, one obtains the system ordinary differ-
ential equations for certain nodal unknowns. That system
is solved numerically by the Houbolt finite difference
scheme [Houbolt (1950)] as a time stepping method. Al-
ternatively, the Laplace transform is applied to elimi-
nate the time variable. Then, the local boundary integral
equations are derived for Laplace transforms. Several
quasi-static boundary value problems have to be solved
for various values of the Laplace transform parameter.
The Stehfest inversion method is applied to obtain the
time-dependent solutions. The integral equations have a
very simple nonsingular form. Moreover, both the con-
tour and domain integrations can be easily carried out
on circular sub-domains. The boundary conditions on
the global boundary are satisfied by collocation of the
MLS-approximation expressions for the displacements at
boundary nodal points.

To demonstrate the accuracy of the present method more
numerical examples with simple and more complex ge-
ometry are considered for static and dynamic cases.

2 Equilibrium equations

Let us consider a linear elastodynamic problem in an
anisotropic domain € bounded by the boundary I". The
equilibrium equation can be expressed as

ijj(%,1) —piii(x,1) = —Xi(x,1) (1)

where 0;(x,) is the stress tensor, X;(x,) is the body
force vector, p is the mass density and u;(x,7) the dis-
placement vector and the dots indicate the second time
derivative. Comma denotes partial differentiation with
respect to the spatial coordinates. An elastostatical prob-
lem can be considered formally as a special case of
the elastodynamical one, with omitting the acceleration
ii;(x,t) in the equilibrium equation (1). Therefore, both
cases are analyzed simultaneously.

In the case of elastic material, the relation between stress
and strain are given by Hooke’s law for an anisotropic
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body

6;j(x,1) = Cijugn(X,t) = Cijuug(X,t) (2)
where C;jy; is the material tensor which exhibits the sym-
metries

Cijki = Cjixt = Cuij-

The traction vector #;(X,7) is related to the displacement
vector through Cauchy’s formula #; = 6;;n;, which leads
to

3)

ti(x,t) = Cijrug (X, t)nj(x)

where n; denotes a unit outward normal vector.

For a plane stress state of a 2-d anisotropic elastic body,
the generalized Hooke’s law is frequently written through
the second order tensor of material constants [Lekhnitskii
(1963)]

€11 Bir Biz Bis o1l
€n | =1 Bz B B o» |, “4)
Y12 Bis B Pes o2

where f3;; are the elastic compliances of the material. In
the case of plane strain conditions, the coefficients [3;;
should be replaced by f;; , where

By = By~ P22

The compliance coefficients can be expressed in terms of
engineering constants as

Bii=1/E;

B=1/E

Bi2=—Vi2/E1 = —V2/E2,
Bis =Mi2.1/E1 =M1,12/G12
Bas = MN122/E2 =M2,12/G12
Bes =1/G12 ©)

where Ej are the Young’s moduli refering to the axes xy,
G is the shear modulus for the plane, v;; are Poisson’s
ratios and 1M, and mM; j; are the mutual coefficients of
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first and second kind, respectively. For orthotropic ma-
terials B1s = Po¢ = 0. For plane stress problem in or-
thotropic materials one can write

O11 €1
6n | =D | en |, (6)
o2 2e12
where
E; /e E2V12/€ 0
D= E2V12/€ E2/€ 0
0 0 Gz

with e = 1 — £ (vip)* .

The following boundary and initial conditions are as-
sumed

ui(x,t) = d;(x,t)on I,

ti(x,t) =1;(x,t)on T}

ui(x,1)|,_o = ui(x,0) and ;(x,1)|,_, = 1;(x,0) in €,
where T, is the part of the global boundary with pre-

scribed displacement and on I’y the traction vector is pre-
scribed.

3 Local boundary integral equations in Laplace
transform domain

Applying the Laplace transformation to the governing
equation (1), we have

Gij.j(x,p) — pp’ui(x,p) = —Fi(x,p) , (7)

where
Fi(xvp) :Yi(xvp) —I—ppui(X,O) +pui(XaO)

is the redefined body force in the Laplace transform do-
main with initial boundary condition for displacements
u;(x,0) and velocities 1;(x,0).

The Laplace transform of function f(x,¢) is defined as

oo

LUf (0] =Tle.p) = [ fxne s,

0

where p is the Laplace transform parameter.

Instead of writing the global weak form for the above
governing equation, the MLPG methods construct the
weak form over local subdomains such as €, which is
a small region taken for each node inside the global do-
main [Atluri and Shen (2002a); Zhu et al. (1998)]. The
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local subdomains overlap each other, and cover the whole
global domain 2. The local subdomains could be of any
geometric shape and size. In the current paper, the local
subdomains are taken to be of circular shape. The local
weak form of the governing equation (7) can be written
as

| (B x.p) = pri(x.p) +Fi(x,p)] i (x) 42
Qs

=0 , ®)

where u (x) is a test function.
Using

* — .o * J— .o *
Gij jUi = (Gl]ui)j Gijl;

and applying the Gauss divergence theorem one can write

/ 55 (%, p)nj(X)uf (x)dT — / 53 (x, p)ul (x)dQ

0Q Qg

+ [ [orutp) + Filx p)] wi (x)d@ =0, ©)

Qg

where 0Q); is the boundary of the local subdomain which
consists of three parts 0Q; = Ly UT;; UT,. L; is the lo-
cal boundary that is totally inside global domain, Iy, is
the part of the local boundary which coincides with the
global traction boundary, i.e., I'y, = 0Q NT}, and simi-
larly Iy, is the part of local boundary that coincides with
the global displacement boundary, i.e., Ty, = 0Q, N T,.

If a Heaviside step function is chosen as the test function
u;(x) in each subdomain

i = {

and considering

1 at x € Q
0 at x ¢ Q

ti(x,p) =G;;(x, p)n;(x)

the local weak form (9) is leading to local boundary inte-
gral equations

/ 7i(x,p)dl + / [—pp’ti(x,p) + Fi(x,p)| dQ =0
Q) Q
(10)
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Rearranging unknown terms on the left hand side we get

/?i(X7p)dF+/fi(X7p)dF—/ppzﬁi(x,p)dﬂ
Q

LS rS u

— / (%, p)dT — [ Fi(x, p)dQ.
Ty Q

an

Equation (11) is recognized as the overall force equilib-
rium on the subdomain ;. In case of stationary prob-
lems the domain integral on the left hand side of this local
boundary integral equation disappears. Then, a pure con-
tour integral formulation is obtained under the assump-
tion of vanishing body sources and homogeneous initial
conditions.

In the MLPG method the test and trial function are not
necessarily from the same functional spaces. For inter-
nal nodes, the test function is chosen as the Heaviside
step function with support on the local subdomain. The
trial function, on the other hand, is chosen to be the mov-
ing least squares (MLS) interpolation over a number of
nodes randomly spread within the domain of influence.
While the local subdomain is defined as the support of
the test function on which the integration is carried out,
the domain of influence is defined as a region where the
weight function is not zero and all nodes lying inside are
considered for interpolation. The approximated function
can be written as [Atluri and Shen (2002a,b)]

' (x,p) =@ (x)-d(p) = Y, 0" (x)&"(p) (12)

where the nodal values @“(p) are fictitious parameters
and ¢“(x) is the shape function associated with the node
a. The number of nodes, n, used for the approximation
of u;(x, p) is determined by the weight function w*(x). A
4" order spline type weight function is considered in the
present work

(13)

where d = ||x —x“|| and r“ is the size of the support do-
main. It is seen that C! continuity is ensured over the
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entire domain, therefore the continuity condition of trac-
tions is satisfied.

The traction vectors 7;(X, p) at a boundary point X € 9€2
are approximated in terms of the same nodal values @“(p)
as

<h

t"(x.p) = N(x)D iB“(x)ﬁ%p) (14)

where the matrix N(x) is related to the normal vector n(x)
on 0, by

. ni 0 ny
N(X)_[ 0 ny nj ]

and the matrix B¢ is represented by the gradients of the
shape functions as

o9 0
B =| 0 04
o5 0

Obeying the boundary conditions at those nodal points on
the global boundary, where displacements are prescribed,
and making use of the approximation formulae (12), one
obtains the discretized form of the displacement bound-
ary conditions given as

n

Y 0*(Q)a"(p) =u(G,p) for {e T,

a=1

15)

Furthermore, in view of the MLS-approximation (12)
and (14) for unknown fields in the local boundary inte-
gral equations (11), we obtain the discretized LIE

> () [ N(x)DB(x)ar
a=1 I

3 @ (p) / N(x)DB* (x)dT
a=1 r

su

o X () [ 0*(x)a0
g

- / t(x, p)dT— / F(x,p)dQ (16)
o

Ty

which are considered on the sub-domains adjacent to in-
terior nodes as well as to the boundary nodes on I';.
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Collecting the discretized LIE together with the dis-
cretized boundary conditions for displacements, we get
the complete system of algebraic equations for computa-
tion of nodal unknowns which are the Laplace transforms
of fictitious parameters @“(p).

The time dependent values of the transformed variables
can be obtained by an inverse transform. There are many
inversion methods available for the Laplace transforma-
tion. As the Laplace transform inversion is an ill-posed
problem, small truncation errors can be greatly magni-
fied in the inversion process and lead to poor numeri-
cal results. In the present analysis the Stehfest algorithm
[Stehfest (1970)] is used. An approximate value f, of the
inverse f(¢) for a specific time 7 is given by

m2 Y, _/In2
() o
i=1
where
~min(i,N/2)
v = (_I)N/2+z Z
k=[(i+1)/2]
/2 !
KN/ (2k)! 1)

(NJ2— k) Tkl (k— 1)1 (i— k)1 (2k—1i)!

The selected number N = 10 with a single precision arith-
metic is optimal to receive accurate results. It means
that for each time ¢, it is needed to solve N boundary
value problems for the corresponding Laplace parame-
ters p = iln2/t, with i = 1,2,....N. If M denotes the
number of the time instants in which we are interested
to know f(¢), the number of the Laplace transform solu-
tions f(p;) is then M x N.

4 Time dependent Local boundary integral equa-
tions

The local weak form of the governing equation (1) can
be written as

/[Gij,j(xvf)—Piii(XJ)JrXi(XJ)] ui (x)dQ =0 . (19)
Q,

Applying the Gauss divergence theorem to the first inte-
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gral one obtains

/ 63 (%, 1) (x)u} (x)dT / O (%, 1)1 ,(X)dQ
0Q; Q,
+/[—Pﬁi(X,1)—|—Xi(X,t)] ui (x)dQ =0

Qg

(20)

If we will use the same test function as in the Laplace
transform approach, the local boundary integral equation
(LBIE) has the form

ti(x,0)dU+ [ t;(x,6)dT — [ pii;(x,1)dQ

Jrsrs o

:—/fi(x,t)dl“—/xi(x,t)dﬂ. @1
QS

Ty

Substituting the MLS approximations for displacements
(12) and tractions (14) into (20), we get the set of dis-
cretized LBIEs

3 6 (r) / N(x)DB*(x)dT

a=1 L

3 a0 / N(x)DB*(x)dT
a=1 r

su

Y “(x)dQ
pug]u%w)

_ / T(x,1)dr— / X (x,1)dQ (22)
Q

Ty

considered at nodal points x ¢ T', . The discretized dis-
placement boundary conditions

n

2 0°(Q)ac(r) =u(C,r)

a=1

(23)

are considered at nodal points { € T,.

Depending on the boundary conditions, the system of or-
dinary differential equations (21) - (22) can be rearranged
in such a way that all known quantities are on the r.h.s.
Thus, in matrix form the system becomes

Li+Kx =P (24)

There are many time integration procedures for the so-
lution of this system of ordinary differential equations.
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In the present work the Houbolt method is applied. In
the Houbolt finite difference scheme [Houbolt (1950)]
the acceleration (ii = X) is expressed as

2Xo4 At — SXg +4Xp_Ar — Xp—2A1
At? ’

ir—i-m = (25 )

where At is the time step.

Substituting eq. (24) into eq. (23), we get the system of
algebraic equations for the unknowns X a¢:

2
[A—‘CZL + K] XAt

1
= LA—‘l72 {SX‘C —4X1_Ar ‘|’Xr—2m:} +P (26)
The value of the time step has to be appropriately se-
lected with respect to material parameters (propagation
velocities) and time dependence of the boundary condi-
tions.

5 Numerical examples

In this section numerical results will be presented to il-
lustrate the implementation and effectiveness of the pro-
posed method. In the first example, a thin circular or-
thotropic disc is rotating around x3 axis perpendicular to
the plane of disc. For such a case analytical solution is
available [Lekhnickii (1963)]. The stress components de-
pend only on the radial coordinate r :

G, = %pszz(l —A) [1 - (r/R)Z}

Gy = %pszz {a-a)[1- (/7| +24 (/07
Gro=0

_ Bi1+2B12+ B2
3B11 +2B12+ Bes + 3Pz’

where R is the radius of the disc, ® is angular freguency
and the constant A is an invariant with the transforma-
tion of the coordinate system. The same problem was
analyzed by Zhang et al. (1997) by the boundary ele-
ment method. We have used the same material constants
as in the mentioned work. They correspond to glass-
epoxy composite: E; = 48.26 GPa, E, = 17.24GPa,
Gy = 6.89GPa, vi; = 0.29. The body forces due the
rotation are

27

X = px10)2
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Xy = pJCz(,l)2 .

Since the constant A is an invariant with transformation
of the coordinate system, for simplicity, the material prin-
cipal axes are also taken as x; and x; here. Due to the
symmetry with respect to x; and x, axes, only the first
quarter of the disc is numerically modelled. For MLS
approximations we have used totally 99 nodes with 37 of
them were located on global boundary of analyzed do-
main. The radius of the disc is

05

04
(%]
(<5}
7
L 031
@
°
(]
N
=
£ 021
) - = = - analytical - radial stress .
<
- hoop stress *.
| A MLPG - radial stress b
01 A
o - hoop stress .
0 T T T T
0 0,2 04 0,6 08 1

radial distance r/R

Figure 1 : Variation of radial and hoop stresses with ra-
dial coordinate in the rotating disc

considered to be R = 1. The radius of circular subdo-
mains is selected as r;,. = 0.05. Results of radial and
hoop stresses, normalized by pw?R?, are compared with
the analytical solution in Figure 1. One can observe
excellent agreement between two sets of results on the
whole radial interval. The Sobolev norm of the stress er-
rors

| ohm _ Gexa(tl |

rS = HG"X"”H

1/2
x 100%with ||o|| = (fc&ﬂ)
Q

is 0,7%. The variation of normalized displacements with
radial coordinate is shown in Fig. 2. Results are normal-
ized by p&’R?/E,. Displacements in x, direction signif-
icantly exceed those in

483

025
X~
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Figure 2 : Variation of displacements with radial coordi-
nate in the rotating disc

perpendicular direction since E; > E,. Presented numer-
ical results for isotropic case correspond to £} = Ep =
17.24GPa, v = 0.29.

In the second numerical example an anisotropic bar with
material constants, E; = 1.31 - 10° MPa, E, = 0.13 -
10° MPa, Gy = 0.064 - 10°MPa, vi> = 0.038 and p = 10
is fixed at the upper end. The bar is loaded only by its
own weight. Plane strain conditions are assumed for a
square cross section with the side length equal to a = 1.
Analytical solution for normal stress and displacement
components in the direction of the weight are given as

022(x2) = pgx2

up(x2) = %Pgﬁzz(xz)z

A regular node distribution with 32 nodes is used for nu-
merical solution. Displacements and stresses are normal-
ized by pgﬁzg and pga, respectively. Variations of both
normalized quantities are presented in Figures 3 and 4.
Excellent agreement of numerical results with analytical
solution is observed for displacements and stresses.

In the third numerical example natural frequencies for
a simple orthotropic structure are computed. A beam
with length a = 2m and width b = 0.5m is fixed at both
ends with shorted sides. The following material prop-
erties are considered: E; = 1-10"'Pa, E, =210 Pa,
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—— Analytical
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Figure 3 : Variation of normalized displacements with
X2 coordinate in the bar under own weight

12

1 >
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normalized stresses

— Analytical
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O T T T T
04 0,6 08 1

X2 coordinate

Figure 4 : Variation of normalized stresses G, with
xp coordinate in the bar under own Weight

G2 = 0.769 - 10" Pa, v, = 0.3 and p = 8000kg/m>.
Plane stress conditions are assumed. The same problem
was analyzed by Albuquerque et al. (2002). A regular
node distribution with 120 nodes is used for numerical
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solution. We have compared our results with those ob-
tained by NASTRAN code (FEM analysis) where a fine
mesh with 400 quadrilateral elements was used. Rela-
tive errors of LBIE with respect to NASTRAN results
for natural frequencies are given in Table 1. In the first
five natural frequencies, the relative error is less than 1%.

Table 1 : Natural frequencies of bi-fixed beam

LBIE NASTRAN Relative error [%]
382 383.87 0.49

885 890.63 0.63
889 892.91 0.44

1482 1492.77 0.72

1759 1772.66 0.77

In the fourth numerical example, we analyze a long strip
subjected to prescribed traction vector with Heaviside
time dependence, t; = 10H(t —0) at the end x; = L, and
the opposite end is fixed in x;-direction, (Figure 5).

t,=10. H(z-0)

Long Orthotropic strip under a uniaxial ten-

The other boundaries are free of tractions. The length
of the strip is L = 10 and the width w = 2. Firstly,
the isotropic strip is analyzed with the following mate-
rial properties: E = 10*, Poisson ratio v = 0.2 and the
mass density p = 1. The numerical results obtained by
the present LBIE method in the Laplace transformed do-
main are compared with the conventional BEM results.
In the LBIE method 48 boundary nodes and additional
57 internal nodes with a regular distribution is used for
numerical modeling. Time variation of the displacement
component #; at the mid of the strip, x; = L/2, is shown
in Figure 6.
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0,012
1 —e—BIE
0,01 + - -o- -LBIE in Laplace
domain
i
0,008 - ’
= (<]
& 0,006 1
e
3
S
= 0,004 -
2
0,002 -
04
-0,002 —t Tttt
0 01 02 03 0,4 0,5 0,6
time [sec]

Figure 6 : Time variation of displacement component
up at the middle of the isotropic strip

traction t1

- -o- -LBIE

-30 T T T T T
0 01 0,2 0,3 0,4 0,5 0,6

time [sec]

Figure 7 : Time variation of the traction vector at the
fixed end of the isotropic strip

One can observe a quite good agreement of both present
results. The time variation of the traction vector at the
fixed end, x; =0, is shown in Figure 7.

Now, an orthotropic strip with the same geometry is an-
alyzed. The following material properties are consid-
ered: £y =2-10% E; = 10%, G12 =0.416-10% v|, =0.2
and p = 1. It means that all material parameters are the
same like in isotropic case except E; and we introduce
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0,012

—&— R=1

0,01
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displacement w
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Figure 8 : Influence of the Young’s moduli ratio in or-
thotropic strip on time variation of the displacement com-
ponent

parameter R = E; /E, = 2. With increasing R the ve-
locity of propagation waves in x; is enhanced and max-
imum value of displacements is reduced for larger value
of Young modulus. Time variations of displacements and
tractions for orthotropic strip are given in Figures 8 and
9, respectively. In orthotropic strip higher frequency of
picks of displacements and tractions is observed than in
the isotropic counterpart.

In the last numerical example a rectangular orthotropic
plate with a central crack is analyzed. Plate is loaded by
a uniform static load as is shown in Figure 10.

The following geometry is considered: w=1,a/w=0.5,
h =w. To test the proposed method an isotropic ma-
terial properties are considered: E = 10*, Poisson ratio
v =0.25. A regular node distribution with 400 and 900
nodes is used for numerical solutions, respectively. Rel-
ative errors with respect to Murakami’s handbook results
are given in Table 1. For a gradually changing node dis-
tribution at crack tip vicinity the number of nodes for nu-
merical modeling is expected to be smaller at the same
accuracy as for regular node distribution. Regular node
distribution is selected here only to simplify input data.

Rather hypothetical orthotropic material is used next to
have a possibility to compare results with Bowie and
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Figure 9 : Influence of the Young’s moduli ratio in or-
thotropic strip on time variation of the traction vector
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Figure 10 : Rectangular orthotropic plate with a central
crack

Freeze (1972). These material properties are chosen such
that the roots of the characteristic equation are purely
imaginary and one of them with the imaginary part equal

CMES, vol.6, no.5, pp.477-489, 2004

Table 2 : Normalized stress intensity factors

Sources Stress intensity factor | Relative errors
£ [%]
Murakami’s Handbook 1.32
400 nodes 1.290 2.27
LBIE 900 nodes 1,309 08

to unity. The shear modulus G, and Poisson’s ratio v,
were fixed and the Young’s moduli were evaluated as a
function of the parameter R = E| /E, with E; = G12(R +
2V + 1), E,=E; /R, G, =6GPa, v, = 0.03. Five var-
ious ratios were considered, R = 0.1, 0.5, 0.9, 2.5, 4.5.
The stress intensity factor is computed from the asymp-
totic expansion of displacements at the crack tip vicinity.
In a pure I mode crack opening one can write for dis-
placements on crack surface

2r
up =24/ —DK;
T

where 1 is a radial distance of the evaluation point from
the crack tip, K; is the stress intensity factor and

Py — i Py }
Hy—H2

D21 —Im{
Py = [ Bnui-l-ﬁlz — Bretik ]
l Bros + P2/t —PBas |

and yy, are rots of characteristic equation
Buis’ —2B16 + (2B12 + Beo)u” — 2Ba6u+Paz = 0

Results for normalized stress intensity factor, f; =
K;/o+\/ma for various R are given in Figure 11. The
present results show good agreement with Bowie and
Freeze (1972). Percentage error is less than 1,5%.

6 Conclusions

e A local boundary integral equation formulation
based on MLPG in Laplace transform-and time-
domain with meshless approximation has been suc-
cessfully implemented to solve 2-d initial-boundary
value problems for static and elastodynamic prob-
lems in anisotropic solids.
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Figure 11 : Variation of normalized stress intensity fac-
tor with Young’s moduli ratio

e The Heaviside step function is used as test func-
tion in the local symmetric weak form. The de-
rived local boundary-domain integral equations are
non-singular. The analyzed domain is divided into
small overlapping circular sub-domains on which
the local boundary integral equations are applied.
The proposed method is truly meshless methods,
wherein no elements or background cells are in-
volved in either the interpolation or the integration.

e The proposed method yields a pure contour integral
method for stationary boundary conditions even for
nonhomogeneous material properties. An extension
of the proposed method to continuously nonhomo-
geneous anisotropic bodies is expected in the near
future.

e The main drawback of the boundary element
anisotropic formulations is the absence of well-
established fundamental solutions in elastody-
namic.The proposed method is leading to a simple
integral formulation and can be easily generalized
to continuously nonhomogeneous solids. The com-
putational accuracy of the present method is compa-
rable with that of FEM. However, the efficiency and
the adaptability of the present method is higher than
in the conventional FEM because of eliminating the
mesh generation troubles.
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