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2D Incompressible Viscous Flows at Moderate and High Reynolds Numbers

Alfredo Nicolás1 and Blanca Bermúdez2

Abstract: 2D incompressible vicous flows from the
unsteady Navier-Stokes equations in stream function-
vorticity variables are presented. The results are ob-
tained using a simple numerical procedure based on a
fixed point iterative process to solve the nonlinear elliptic
system that results once a second order time discretiza-
tion is performed. Flows on the unregularized unit driven
cavity are reported up to Reynolds numbers Re=5000
to compare them with those reported by other authors
and supposed to be correct. Various long time compu-
tations are presented for Re=10000 to see its evolution
as time-dependent flow. Moreover, results are reported
for Re = 10000, Re = 15000 and Re = 20000 to see how
their flow looks like close from its departure t = 0; with
these kind of results transition to turbulence is observed
as time or Reynolds number increases because of the in-
crement of new small structures (subvortices or eddies).

1 Introduction

The main goal of this short paper is to present 2D incom-
pressible viscous flows from the unsteady Navier-Stokes
equations in stream function-vorticity variables. These
flows are obtained applying a numerical procedure based
mainly on a fixed point iterative process, extended to
the boundary, to solve the nonlinear elliptic system that
results once a convenient second order time discretiza-
tion is made. The iterative process leads to the solution
of, uncoupled, well-conditioned, symmetric linear ellip-
tic problems for which very efficient solvers exist either
by finite differences or finite elements as far as rectangu-
lar domains are considered.

Flows on the unregularized unit driven cavity are
reported to validate the numerical procedure up to
Reynolds numbers Re=5000 with those of Goyon (1996)
for the unsteady problem, where a different method is
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bbj@solarium.cs.buap.mx

used in the same stream function-vorticity formulation
and the same boundary conditions work out here; the
validation is reinforced comparing some results with the
ones in Schreiber and Keller (1983) from the steady prob-
lem in terms also of such formulation.

Beyond the validation just mentioned, the capability
of the numerical procedure for handling high Reynolds
numbers is described. Various long time computations
for Re=10000 are shown to illustrate the evolution as
time-dependent flow; with this specific case we go fur-
ther on the discussion in Goyon (1996), and Pan and
Glowinski (2000) that for high Reynolds numbers the
flow is time-dependent (supposed to be so for Reynolds
numbers > 7500). For higher Reynolds numbers (up to
Re = 20000) we show results at the beginning of the flow
based on the fact that the numerical procedure has the
ability to start directly from the initial condition at t = 0
and not necessarily from a smaller Reynolds number pre-
viously calculated.

Unlike the numerical scheme in Bermúdez and Nicolás
(1999), where very coarse meshes are used since an up-
winding effect is taken into account, here no upwinding
ingredient is considered. Then, the meshes for the results
of this work follow the size dictated by the thickness of
the boundary layer (of order of Re−1/2); furthermore, no
refining on the mesh is required near the boundary.

Among recent meshless methods related with this work
we can mention Lin and Atluri (2001) and Tsai et al.
(2202). In the former, the steady-state incompressible
Navier-Stokes equations are studied in its general primi-
tive variables formulation (general in the sense that, un-
like the stream function-vorticity variables, 3D problems
can be tackled). To satisfy the un-avoidable incompress-
ibility constraint, the standard mixed formulation is mod-
ified by adding approximate ”perturbation” terms based
on residual forms of the Euler-Lagrange equations to the
local weak formulation of such constraint. Despite the
3D generality of the Meshless Local Petrov-Galerkin nu-
merical scheme and the appropriate upwinding scheme
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to stabilize convection dominated problems that are con-
sidered, the numerical experiments, so far, involve only
2D problems at moderate Reynolds numbers. In the lat-
ter, a Meshless BEM method is developed to solve 3D
Stokes flows in terms of the velocity-vorticity formula-
tion which is the 3D version of the 2D stream function-
vorticity one. Surprisingly, the iterative process used is
very close to ours, the only difference is that ours is a
truly fixed point one and a different time discretization is
used. Actually, Tsai et al. claim that their method can
be extended to the 3D velocity-vorticity Navier-Stokes
equations and it seems that ours too. However, we can
not guarantee in advance the same 2D performance since
the 3D Navier-Stokes problem is very different; a new
non trivial term appears: the term that gives rise to a phe-
nomenon referred to as vortex stretching (Doering and
Gibbon, 1995, p. 10)

In Section 2 the problem is formulated, in Section 3 the
numerical procedure is described, the numerical experi-
ments appear in Section 4 and in Section 5 some conclu-
sions are made. On Section 4 we proceed as follows: 1)
For Re = 400 a kind of mesh convergence is presented
showing some velocity profiles on three different meshes
and then show the vorticity contours and streamlines,
from the optimal of these meshes, to compare them with
those in Schreiber and Keller (1983) obtained from the
steady problem; next, flows for Re = 1000 and Re = 5000
are compared with the ones in Schreiber an Keller and/or
in Goyon (1996). 2) Various long time computations are
presented for Re = 10000. They show that the flow is
time-dependent; one of these results shows that at time
T = 275 the flow almost passes over the steady one of
Schreiber and Keller, and then it changes as time goes
on. 3) Results for Re = 10000,15000,20000 at the be-
ginnig of the flow are shown to see how the number of
subvortices (or ”eddies”) increases as the Reynolds num-
ber grows and, at least for Re = 10000, how the number
of them increases as time increases; both situations lay-
ing like in transition to turbulence (Landau and Lifshitz,
1989).

Even though the meshes for high Reynolds numbers
seemed to be finer than usual3, considerably finer than
the ones in Lin and Atluri (2001) and in Bermúdez and
Nicolás (1999), there is not too much computational ef-
fort based on the well conditioning of the resultant al-

3 1
256 × 1

256 , 1
384 × 1

384 , 1
512 × 1

512 for Re = 10000,15000 and 20000
respectively

gebraic linear systems, which are solved efficiently with
iterative methods in medium computers. About stability,
the time step ∆t ranges from 0.01 for moderate Reynolds
numbers to 0.0025 for high ones (this latter value being a
natural demand to capture the fast dynamics of the flows
due to small viscosities). For Re = 400 the right result
can be obtained with a time step bigger than 0.01 but the
number of iterations of the fixed point process increases
in such a way that computing time is worse. This situa-
tion is a constant for the Reynolds numbers studied so far.
For the results reported, we have chosen the reasonable
time step no less than most unsteady numerical proce-
dures use, for instance ∆t = 0.0025 is used in Goyon’s
work for Re = 10000.

2 The Navier-Stokes equations

Let Ω ⊂ R2 be the region of the flow of an unsteady in-
compressible viscous fluid, and Γ its boundary. This kind
of flow may be modeled by the following Navier-Stokes
equations in terms of the stream function-vorticity vari-
ables

{
∆ψ = ω in Ω , t > 0 (a)
ωt −ν∆ω+u ·∇ω = 0 in Ω , t > 0 , (b)

(1)

where the velocity u = (u1,u2) (primitive variable) and
the stream function ψ are related by

{
u1 = ∂ψ

∂y , u2 = −∂ψ
∂x , (2)

and the vorticity ω by

ω =
∂u1

∂y
− ∂u2

∂x
; (3)

the viscosity parameter ν is given by ν = 1
Re , with Re

denoting the Reynolds number.

This work is only concerned with the well known, un-
regularized unit driven cavity problem which implies re-
circulation phenomena because of its velocity bound-
ary condition; then, equations (1) are set in the domain
Ω = (0,1)× (0,1) and the boundary condition, in terms
of the primitive variable u, is defined by u = (1,0) at the
moving boundary (the top one) and u = (0,0) elsewhere.

By (2), ψ is a constant function on solid and fixed walls;
at the moving wall y = 1, a constant function for ψ is also
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obtained. Then, following Goyon (1996), ψ = 0 is cho-
sen on Γ. As mentioned in Dean, Glowinski and Piron-
neau (1991) and in Peyret and Taylor (1983), ψ is overde-
termined on the boundary (∂ψ

∂n |Γ is also known) and no
boundary condition is given for ω; to overcome this diffi-
culty various alternatives have been proposed (see, for in-
stance Dean et al. and Peyret and Taylor just mentioned).
This work follows the alternative for rectangular domains
given by Goyon (1996); thus, by Taylor expansions of
(1a) on the boundary, with hx and hy as the space steps,
and considering hx = hy = h for the driven cavity under
study, the following O(h2) relations are obtained

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω(0,y, t) = 1
2h2 [8ψ(h,y, t)−ψ(2h,y,t)]

ω(1,y, t) = 1
2h2 [8ψ(1−h,y, t)−

ψ(1−2h,y, t)]
ω(x,0, t) = 1

2h2 [8ψ(x,h, t)−ψ(x,2h, t)]
ω(x,1, t) = 1

2h2 [8ψ(x,1−h, t)−
ψ(x,1−2h, t)]+ 3

h

(4)

For the sake of completeness, Taylor expansion (omitting
the time variable t) for ψ(x,1−h) and ψ(x,1−2h) gives

∂2ψ
∂y2 (x,1) =

1
2h2 [8ψ(x,1−h)−ψ(x,1−2h)]

− 7
2h2 ψ(x,1)+

3
h

∂ψ
∂y

(x,1)+O(h2). (5)

Noting that ψ(x,1) = 0, ∂ψ
∂y (x,1) = 1 and ∂2ψ

∂x2 (x,1) =
0, then, taking back the time variable, (5) implies

ω(x,1, t) = ∆ψ(x,1, t) =
1

2h2 [8ψ(x,1− h, t)− ψ(x,1 −
2h, t)]+

3
h

+O(h2).

In addition, ω(x,0) = ω0(x) denotes the initial condition
for the vorticity which, by (3), has to satisfy ω0 = ∂u01

∂y −
∂u02

x if u0 = (u01,u02) is the initial velocity.

3 Numerical procedure

About the time discretization, for the time derivative ap-
pearing in the vorticity equation (1.b) the following well
known second-order approximation is used

ωt(x,n∆t) =
3ωn+1 −4ωn +ωn−1

2∆t
, xεΩ , (6)

where n≥ 1, ∆t denotes the time step and ω r ≡ω(x, r∆t).

The resulting time discretization system reads

{
∆ψn+1 = ωn+1 ,
αωn+1−ν∆ωn+1 +un+1 ·∇ωn+1 = fω ,

(7)

where α = 3
2∆t , fω = 4ωn−ωn−1

2∆t ; the components u1 and u2

of u, in terms of ψ, are given by (2).

Then, at each time step, a nonlinear system of elliptic
equations of the following form has to be solved

⎧⎪⎪⎨
⎪⎪⎩

∆ψ = ω in Ω ,
ψ = 0 on Γ;
αω−ν∆ω+u ·∇ω = f in Ω ,

ω = ωbc on Γ.

(8)

To obtain (ψ1,ω1) in (7), an Euler first-order approxi-
mation is applied for the time derivative through a subse-
quence with a smaller time step to keep up with second-
order accuracy; a system of the form (8) is also obtained.

Taking into account that the elliptic system (8), in ad-
dition to be nonlinear, is of non-potential (or transport)
type, a fixed point iterative process is used to solve it.
This process is similar to one applied to thermal prob-
lems, in connection with mixed convection in primitive
variables, Bermúdez and Nicolás (1999). A distinctive
aspect here is that the iterative process is extended until
the boundary to handle the ω boundary conditions given
implicitly by interior values of ψ in (4).

Denoting R(ω,ψ)≡ αω−ν∆ω+u ·∇ω− f in Ω ;

then, system (8) is equivalent to

{
∆ψ = ω in Ω , ψ = 0 on Γ,

R(ω,ψ) = 0 in Ω , ω = ωbc on Γ.
(9)

Then, (9) is solved, at the time level (n+1), by the fixed
point iterative process:

With ω0 = ωn given, until convergence on ω solve

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆ψm+1 = ωm in Ω , ψm+1 = 0 on Γ ;

ωm+1 = ωm −ρ(αI−ν∆)−1

R(ωm,ψm+1) in Ω , ρ > 0 ,

ωm+1 = ωm+1
bc on Γ ;

(10)

and then, take (ωn+1,ψn+1) = (ωm+1,ψm+1).
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Figure 1 : Re=400; perfiles at y=0.5 (left) and at x=0.5 (right): h=1/40 (+), h=1/80 (continuous), h=1/160 (...)

Finally, system (10) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

∆ψm+1 = ωm in Ω , ψm+1 = 0 on Γ ;
(αI−ν∆)ωm+1 = (αI−ν∆)ωm

−ρR(ωm,ψm+1) in Ω,

ωm+1 = ωm+1
bc on Γ .

(11)

It turns out that at each iteration two uncoupled elliptic
linear problems associated to the operators ∆ and αI−ν∆
are solved; it should be noted that the non-symmetric part
for ω has been taken to the right hand side thanks to the
iterative process. Therefore, the solution of the original
system, at each iteration of each time level, leads to the
solution of standard symmetric linear elliptic problems.

It is well known that for the space discretization of ellip-
tic problems like those in (11), either finite differences
or finite elements may be used, as far as rectangular
domains are concerned; it is also known that in either
case very efficient solvers exist. In the finite element
case, variational formulations have to be chosen and then
restrict them to the finite dimensional finite elements
spaces, for instance like those in Gunzburger (1989),
Dean, Glowinski and Pironneau (1991) and Glowinski
(2003). For the specific results in the following Section
4, the second order approximation of the Fishpack solver
(Adams, Swarztrauber and Sweet, 1980) has been used,
where the algebraic linear systems are solved through an
efficient cyclic reduction iterative method (Sweet, 1977);
then, such second order approximation in space com-
bined with the second order one for vorticity boundary

conditions (4) and the second order approximation in
time (6) imply that the whole approximate problem is
based on second order discretizations.

4 Numerical experiments

In the experiments that follow ∆t = 0.01 for Reynolds
numbers from Re = 400 to Re = 5000 and ∆t = 0.0025
for higher ones; h denotes the space step size.

1). The results for Re = 400,1000,5000 correspond to
the asymptotic steady state obtained from the solution of
the non-steady problem. Re = 1000 and Re = 5000 are
compared with the ones in Goyon (1996); and Re = 400
and Re = 1000 are compared with those in Schreiber and
Keller (1983).

Figure 1 shows the profiles at y = 0.5 (left) and x = 0.5
(right) for Re = 400 on three diferent meshes: h =
1/40,1/80,1/160. It is observed that there is good
agreement for the last two. Then, we choose h = 1/80
as the optimal one (the coarse one to give the accu-
racy required). We reinforce this choice showing in Fig-
ure 2 the corresponding vorticity contours (left) and the
streamlines (right) which agree perfectly with the ones in
Schreiber and Keller (1983). Based on this kind of mesh
independence, for larger Reynolds numbers we choose
the right mesh as the one that gives the vorticity contours
and streamlines reported by other authors to be correct.

Figure 3 shows the vorticity contours and the stream-
lines for Re = 1000 with h = 1/120 and Figure 4 the
corresponding profiles at y = 0.5 and x = 0.5; both, con-
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Figure 2 : Re=400 (vs S. & Keller)

Figure 3 : Re=1000 (vs S. & Keller)

tours and profiles agree with the ones in Schreiber and
Keller (they do not show profiles for Re = 400). Figure 5
shows the corresponding contours for Re = 1000 but this
time with the contour values given by Goyon (1996). In
both cases the vorticity fails to be correct if a bigger h
is used. Goyon obtains this result with h = 1/128; then
ours is a bit better, and much better our previous result
for Re = 400 obtained with h = 1/80 since Goyon does
not show Re = 400 but shows Re = 100 with h = 1/128.

Figura 6 shows the corresponding vorticity contours and
streamlines for Re = 5000 with h = 1/256, same h as in
Goyon, and they agree with the ones in Goyon.

2). A set of results follows, with h = 1/256 and ∆t =
0.0025, for Re = 10000 to illustrate the evolution as time-
dependent flow (like before, vorticity contours are the left
ones and stream lines the right ones).

Figure 7 shows the flow at T = 275 and it is observed that
it almost reaches the Schreiber and Keller result from the
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Figure 4 : Re=1000 (vs S. & Keller)

Figure 5 : Re=1000 (vs Goyon)

steady problem. This ”almost” means that the stream-
lines agree very well, but, to have all the contour struc-
tures for the vorticity up to some small distortion mainly
on the upstream top corner, the contour values ±5. (two
out of six) have to be moved to ±5.62. For this case,
Figure 8 shows the profiles at y = 0.5 (left) and x = 0.5
(right); the profiles in Schreiber and Keller out of the
boundary layer look almost straight while ours look a lit-
tle bit curved, due possibly to the movement of two vor-
ticity contour values and the small distortion mentioned.
In conclusion we could say that this flow is not reaching

exactly the state given by the steady problem and it may
be seen as a first indication to be a time-dependent flow.

Figures 9 and 10 show the flow at final times T = 500 and
T = 1500 respectively. In Figure 9 a seventh circle ap-
pears in the central vortex of the streamlines (associated
with small negative values) corresponding to the con-
tour value −0.11 which is unreacheable nor at T = 275
neither by the steady problem (actually, the eighth one
if we count the distorted circle given by the separation
line, with contour value−0.00001, that separates the sec-
ondary subvortices from the central one); we mention
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Figure 6 : Re=5000 (vs Goyon)

Figure 7 : Re=10000 at T=275 (almost S. & Keller steady problem)

in passing that this last contour value, −0.00001, gives
rise to the tertiary subvortex in the right bottom corner
too, which is moving clockwise like the central vortex.
In Figure 10, several new things happen: the upstrean
top secondary subvortex has been split into two ones but
still being secondary subvortices since they correspond
to small positive values and they are moving counter-
clockwise, with the separation line in between. Thus, the
number of subvortices has increased as time has elapsed.

Moreover, the 3D graph of the stream function has en-
larged negatively more; this being reflected in the ap-
pearance of two new small circles in the central vortex
at smaller negative values, −0.113 and −0.1136 which
definitely do not appear at T = 500 (as a consequence,
the seventh circle at T = 500 has become bigger).

3). A set of results follows for Re = 10000, 15000, 20000
to show how the flow looks like close from its departure
t = 0. We recall that for these flows ∆t = .0025 too.
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Figure 8 : Re=10000 (vs S. & Keller)

Figure 9 : Re=10000 at T=500

Figures 11, 12 and 13 show the flow at fixed final time
T = 25 for Reynolds numbers Re = 10000 with h =
1/256, Re = 15000 with h = 1/384 and Re = 20000
with h = 1/512 respectively. The aim with these high
Reynolds numbers is to show: a) the increase on the num-
ber of subvortices as the Reynolds number increases; b)
the higher the Reynolds number the faster the movement
of the center of the central vortex from down (left) to top
(right) and then down again (clockwise) on the stream-
lines and, as can be observed, how such movement is
also reflected in a similar way on the vorticity contours.
It can also be pointed out that the small circle of the cen-

tral vortex for Re = 10000 is obtained with the contour
value -0.08 while the one of Re = 15000 and 20000 is
obtained with -0.06; that is, the graph of the stream func-
tion for the smallest Reynolds number falls more than the
others for higher ones.

On the other hand, for Re = 10000 fixed the number of
subvortices increases as time increases, as can be ob-
served on Figures 11, 9 and 10. Therefore, from this
and 3.a) above, as pointed out in the Introduction, like in
transition to turbulence (Landau and Lifshitz, 1989) the
number of subvortices (or eddies) increases as either the
Reynolds number or time increases.
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Figure 10 : Re=10000 at T=1500

Figure 11 : Re=10000 at T=25

About the meshes for Re ≥ 10000 we would like to say
that for Re = 10000 we have chosen h = 1/256 because
it reflects more likely the result of Schreiber and Keller
from the steady problem (it is a kind of guide to ob-
tain the right result, like the way we choose the right
meshes to get the right flows for 400 ≤ Re ≤ 5000).
For Re = 15000,20000 we have chosen those meshes to
reach the physical meaning mentioned in 3.b) above, and
to be consistent with 3.a), since that is what we expect
as Re increases because the flow is faster for smaller vis-

cosities, which is also in agreement for Re = 10000 with
h = 1/256. Results for Re = 15000 and Re = 20000 were
obtained with h = 1/320 and h = 1/384 respectively but
they do not reflect such situation, at least not as clearly as
the ones shown. We may say that in these cases we are
choosing the ”optimal” mesh based on physical grounds.

5 Conclusions

2D incompressible viscous flows up to Reynolds num-
bers Re = 20000 have been presented. These flows
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Figure 12 : Re=15000 at T=25

Figure 13 : Re=20000 at T=25

are obtained with a simple numerical procedure based
mainly on a fixed point iterative process to solve the non-
linear elliptic system that results after time discretiza-
tion on the unsteady Navier-Stokes equations in stream
function-vorticity variables. The numerical procedure
has already been proved to be good in capturing asymp-
totic steady states and computational experiments carried
out so far indicate that it seems to be stable regardless
of the value of the Reynolds number. Its simplicity al-
lows us to get long time computations for some high

Reynolds numbers as well as to see how the flow looks
like close from its departure t = 0 for Reynolds num-
bers sufficiently larges. In addition, up to Reynolds num-
bers Re = 10000 the numerical procedure shows to be
robust and fast enough to handle the associated mem-
ory demanding flow control problem in stream function-
vorticity variables (Glowinski, 2003, Chapter X), which
can lead to the control of turbulence, an important ques-
tion for engineers (to either reduce or enhance it), Foias
et al. (2001).
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