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Geometry of Flow Pattern from Single Source

C. K. Au1

Abstract: Tracking the flow fronts arising from a pri-
mary source in a bounded space with obstacles is a prob-
lem which often requires intensive computation. As the
flow propagates through the obstacles, the flow pattern
is complicated. This phenomenon is mainly due to the
existence of the secondary sources which can be identi-
fied in the flow field by visibility. Comparing the flow
fronts propagation and the wave equation reveals that the
complexity is caused by the propagation phenomena: re-
flection, refraction, diffraction and interference. This pa-
per investigates a geometric technique to combine these
phenomena for computing flow fronts.

keyword: flow fronts, reflection, refraction, diffrac-
tion, interference

1 Overview

One of the earliest methods for constructing the progres-
sion of wave fronts is due to Huygens. Each point on a
wave front is considered as a secondary source that prop-
agates in radial direction with due regards to directionally
dependent velocities – the envelope of which forms the
wave front for the next instance in time. Geometrically,
it is recalled fondly the notion of a “variable radius off-
set”. The offset radii differ not only at different point on
a curve but also in different directions, giving the effect
of an anisotropic medium with tensor properties. In the
presence of abrupt discontinuity such as a blunt obstacle,
phase must also be taken into account in the superpo-
sition of amplitudes. This latter consideration of phase
owes to Fresnel in his study of diffraction.

An obstacle in a flow stream presents two apertures,
through which the material flows around it. Beyond the
obstacle, the two branches of the flow meet and inter-
act. Depending on the velocity and material coefficients,
there can be vortices and chaos. Intellectually, at the
wave or phenomenological level (whereby flow of mate-
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rial is modeled as partial differential equations), a lot has
already been done in the last one hundred years. Indeed,
thanks to inexpensive computing power, solutions to fluid
flow problems are abundantly available by the various
modeling techniques such as the finite element method
and numerical integration schemes. Yet, at the particu-
late level (where atoms or molecules interact), there is
a large amount of current activities. Perhaps stimulated
the promise in biotechnology and nanotechnology, bi-
ologists, chemists, material scientists and physicists are
studying “molecular dynamics” with vigor. It may be
prudent to ask what the intellectual obstacle, that might
challenge most researchers, would be. The answer ap-
pears simple, though the mean is not: the curse of combi-
natorial explosion. Manifested in the form of the “Many
Body Problem”, such a challenge has been recognized
by many distinguished scientists, from Newton’s time to
the present day. (It may be interesting to know that the
Feynman diagram, for analyzing the Many Body Prob-
lem, involves series expansion – with each term being a
set of wave equations demanding their own solutions.) It
appears that the challenge remains daunting at the partic-
ulate level.

By combining the wave and the particulate approaches,
this paper offers a fast geometric approximation to flow
propagation. Figure 1 illustrates the geometric solution,
as compared to the numerical solution (from a commer-
cially available package for simulating mould flow by fi-
nite element method). A source emitting flow is located
at the lower left corner of a maze. The flow propagates
through the partitions of the maze which act as the obsta-
cles. It may be noted that the spacing between the suc-
cessive flow fronts in the geometric solution is uniform.
This is because of the simplicity in the geometry adopted
by this paper.

2 Source

For each source j, define a space time function φ(r, t) for
an arbitrary point p in a domain D(=R2) as a mapping φ:
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(a) geometric solution (b) numerical solution 

Figure 1 : The geometric and numerical solution of the flow in a maze

R×R→R such that:

φ(r, t) = (t j − t)+
r
v j

(1)

where t j and v j are the characteristics of the source j that
are non-negative constants; and r is the distance from any
point p to the source j.

Space time function (1) satisfies the flow front ΓΓΓ equation
from a point source is derived from the conservation law

∂φ
∂t

+
∂(v j ·φ)

∂r
= 0 (2)

where v j is the velocity of the flow and;

r is the distance between the source and the flow front.

The flow front ΓΓΓ is defined as ΓΓΓ(t) = {r|φ(r, t) = 0}.
For a point source j, the initial front is given as ΓΓΓ(0) =
{r|φ(0, t j) = 0} and the source starts emitting at time t j.
Equation (2) is a kinematic description of the propaga-
tion of the front in the direction perpendicular to itself.
The flow front ΓΓΓ(t) = {r|φ(r, t) = 0} suggests that both
space (in term of r) and time (in term of t) are needed to
consider in the tracking process.

Differentiating equation (2) with respect to time t and
space r with the assumption of constant velocity v j yields
the equation

∂2φ
∂t2 = v2

j
∂2φ
∂r2 (3)

The similarity between equation (3) and the planar wave
equation reveals that wave propagation phenomena such

as reflection, refraction, diffraction and interference are
expected in the flow.

A source j in a two-dimensional free space without
boundaries is characterized by two parameters: the prop-
agation velocity v j and the time of emission t j. For
isotropic medium with constant refractive index, the cir-
cular flow fronts are emitted spatially. Temporally, the
radius of the circular flow fronts increase with time. The
space time function of such a source can be represented
by an inverted cone with a “stem” as shown in figure 2(a).
The propagation velocity v j is the arctangent of the cone
angle. The stem is the geometric representation of the
delay in emission. In the case of medium with variable
refractive index, the space time geodesic will no longer
be a straight line and the cone will be distorted. For in-
stance, a medium with refractive index as linear function
of the y coordinate from the source gives a catenary as
the geodesic. The distorted cone in space time is shown
in figure 2(b). The metric of such a space is no longer
Euclidean.

Consider the propagation in a two dimensional Euclidean
space with a primary source. The emission delay is zero.
The other (N − 1) secondary sources arise owing to the
obstacles in the space, hence manifesting a time delay in
their engagement. Hence, the space time function for all
these N sources (both primary and secondary) are repre-
sented by a set of N inverted cones with various stems.
The delay for a secondary source is the time for the prop-
agation from one source to another. The resultant space
time function of the propagation is represented by a com-
posite cone which is the Boolean sum of all the inverted
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Figure 2 : Model of a source

cones. The calculation for the geometric approximation
of the flow fronts becomes a simple matter of taking hor-
izontal time slices of a composite cone.

To construct the composite cone, techniques for identi-
fying a secondary source (as the apex of a cone with a
time delay) are borrowed from geometrical optics, with
the aid of figure 3.

Reflection occurs in the flow from a primary source in
a bounded domain; see figure 3(a). Trivially, the virtual
source is located at equal distance but on the other side
of a reflector.

Refraction arises in the flow through an interface between
two media; see figure 3(b). The location of a virtual
source is not entirely obvious.

Diffraction appears in the flow from a small area to a

large area. Figure 3(c) shows how the flow front turns
around the corners as it propagates from a small channel
to a larger channel.

Interference happens in the flow behind an obstacle. Fig-
ure 3(d) shows a triangular obstacle in the flow stream.
In fluids, this is a two-channel flow; from optics, there
are two apertures. Waves emerging through them will
interfere while a “weld line” will be created in material
flow.

Flow front generation arises in many areas such as bi-
ology, logistics and manufacturing. The most vivid
example from manufacturing would be the mould and
die filling. Tracking the flow fronts is important since
the flow pattern affects the quality of the part. Front
tracking methods [Defermos (1972), Holden, Holden,
and Hoegh-Krohn (1988)] are based on a Lagrangian
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(a) flow in a bounded domain (b) one channel flow with 
abrupt change in medium 

(c) flow, one channel, with 
abrupt change in geometry  

 (d) two channels flow 

Figure 3 : Melt flows in various situations

formulation. Numerical instability is the major issue
of these methods. Grid based methods such as nar-
row band method [Sethian (1999)] and fast marching
method [Chopp (1993)] are two common approaches to
solve the partial differential equations. Level set method
[Sethian (1996)] avoids such complex problem by using a
level set function which is given an Eulerian co-ordinate
system to represent the moving fronts. Besides flow front
tracking, level set method is widely used in various ap-
plications such as geometric optics [Cheng, Kang, Osher,
Shim, and Tsai (2004)], heterogeneous material mod-
elling [Sheen, Seo, and Cho (2003)] etc.

Meshing is the fundamental to both grid based methods
and finite element method to solve for the flow prob-
lem. Finite elements are accurate enough to solve for
the two and, two and half dimensional flow front ad-
vancement problem. Medial axis and surface [Quadros,
Ramaswami, Prinz, Gurumoorthy (2000)] are the tech-
niques to extract the mid-plane of a three dimensional
geometric model. Two dimensional mesh is generated
on the mid-plane model.

3 Visibility

The flow path is the propagation route in the flow field.
Under the principle of least action, these flow paths are
the geodesic curves, which are equivalent to the lines of

sight, from the source. Under the assumption of no exter-
nal forces acting in the flow field, the line of sight would
be a straight line. The partition of the flow field covered
by the flow from a source is the region which is totally
visible by the source. As a result, the line of sight can be
constructed from any point in the partition to the source.

Huygen’s principle describes the local propagating pat-
tern from a source j by considering each point on the
flow front as a point source. Hence, each point on the
rim of the inverted cone is a source. The envelope that
contains all the local propagating patterns constitutes the
new flow front. Visibility from a point source is em-
ployed to identify the secondary source. For a given
polygon, the lines of sight are generated from the source
in various directions. Secondary source arises when any
of the lines of sight hits a reentrant vertex. In the figure 4,
abk1k2cdefgh is a bounded polygon of flow field. j is the
primary source. jk1 is the line of sight from j. The par-
tition abk1gh is covered by the primary source j, hence
every point in this partition is visible to the source j. A
secondary source k1 is identified when the line of sight
from j hits the vertices of the polygon since k1 is the
only point source on the flow front that enters the parti-
tion k1k2cdefg. Due to the existence of another reentrant
vertex k2, the partition is further sub-divided into two
sub-partitions: k1k2efg and k2cde. Every point in the
partitions k1k2efg and k2cde is visible to the secondary



Geometry of Flow Pattern 413

source k1 and k2 respectively.If t j and v are the source
characteristics of j, then source characteristics for sec-

ondary sources k1 and k2 are tk1 = t j +
d jk1

v (where d jk1

is the distance between j and k1) and vk1 = v (constant

filling velocity is assumed) and; tk21 = t j +
d jk1

v + d jk2
v and

vk2 = v respectively.
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Figure 4 : Secondary source identification by visibility

4 Voronoi diagram

Besides the geometry of the polygon and the obstacle,
the geometry of the flow front in two dimensional Eu-
clidean domain depends upon the geometry of the source.
For instance, linear flow fronts will be generated from a
line source in a medium with constant index of refrac-
tion while a point source gives the circular flow fronts.
The complexity of the flow increases with the number of
sources. The arising of multiple sources would be due to
either the multiple primary sources such as the multiple-
gate cavity in injection moulding or the obstacles in the
flow field. As the flow propagates around the obstacles,
secondary sources exist. The flow field is partitioned into
several regions in these cases, one for each source (either
primary or secondary) to fill up. Hence, a Voronoi di-
agram exists in the flow field partitioning. The frontier
between the Voronoi cells, termed as Voronoi curve, is
where the flow fronts meet. The weld line in the plas-
tic injection moulding is the flow phenomenon due to the
Voronoi cells. The partitioning of the three-gate cavity in
figure 5 is a typical example of the Voronoi diagram in
computational geometry.

Figure 5 : Voronoi diagram of a multi-gate cavity

For each source j, either a gate or a secondary source
induced by the obstacles; possesses two source charac-
teristics: v j and t j. The geometry of the Voronoi curve
between two partitions covered by two sources j and k
is defined by the ratio of these two characteristics [Au
and Woo (2004)]: α = vk

v j
and β = tk

t j
. More detail dis-

cussions on Voronoi diagrams can be found in [Okabe,
Boots, Sugihara, and Chiu (2000)]. Yet there is a deeper
and more beautiful structure in the equilibrium between
two sources, owing to the parametrization of the quartic
polynomial by α and β [Au and Woo (2004)].

5 Flow front propagation

An undistorted space time function for a point source j is
an inverted cone. The flow paths from j to a specific point
in the flow field are the projection of the geodesics from
the apex of the cone to corresponding points on the space
time function on to the space. Hence, if constant flow ve-
locity is assumed, the flow paths from a point source j are
in radial direction perpendicular to the fronts. The phe-
nomena of reflection, refraction, diffraction and interfer-
ence are due to the distortion of the space time function
which causes changes in the flow.

5.1 Reflection

The space time function of a source j emitting at t j with
velocity v j in Euclidean domain is an inverted cone and
is considered as flat since its Gaussian radius is zero.

The reflected path in the flow field is governed by the law
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(a) the space time function of a source due to reflection

(b) sectioning of the space time function (c) flow front 

Figure 6 : The flow front due to reflection

of reflection

sinθ1

sinθ2
= −1 (4)

where θ1 and θ2 are the angle of incidence and reflec-
tion. The negative sign indicates the reverse path due to
reflection.

The existence of the boundary (act as a reflector) pro-
duces a virtual source k. This virtual source produces an-
other virtual inverted cone which distorts the space time

function as shown in figure 6(a). Since α =
∣∣∣ vk

v j

∣∣∣ = 1 and

β = 1(both sources emit at the same time). The reflec-
tor in this case is the Voronoi curve between two “sites”:
j and k. The path in the flow field from the source j
to a point p through reflection is the space projection of
geodesic curve from j to the point corresponding to p on
the distorted space time. Figure 6(b) shows the section-
ing of the space time function due to reflection and the
flow fronts are obtained by the space projection as shown
in figure 6(c).

Figure 7(a) shows a flow front with reflection suppressed.
The flow front obtained by space projection is compared

with the filling pattern produced by Moldflow2 in figure
7(b). The Moldflow plot does not show the reflection
probably due to the low Reynold’s number. Hence, either
the soft boundaries or boundary sink are assumed.

In this paper, the number of reflections is limited to zero.
In other words, given a reflector, a primary source gener-
ates no virtual sources.

5.2 Refraction

The path of the flow due to refraction is determined by
the Snell’s law

sinθ1

sinθ2
= η (5)

where θ1 and θ2 are the angle of incidence and refraction
and; η is the index of refraction.

Comparing equation (4) and (5) reveals that both reflec-
tion and refraction are topologically equivalent. Hence,
the space time function should also be distorted due to

2 Moldflow is a plastic flow analysis software based on finite ele-
ment method from Moldflow Inc. (http://www.moldflow.com)
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(a) flow front with reflection suppressed (b) Moldflow plot 

Figure 7 : The flow fronts and the Moldflow plot
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Figure 8 : Flow fronts in refractive environment

the refraction. Figure 8 illustrates the propagation of the
flow front in refractive environment. This phenomenon
in the flow is manly caused by the variation of flow ve-
locity in different medium of the flow field.

At t0, the flow front is at p0. After a time interval ∆t, the
flow front hits the interface at p1 and virtually p′

1 while
the flow front propagates from p0 top′

0. At t0 + 2∆t, the
flow front at p1,p′

1 and p′
0 moves to p2,p′

2 and p”0. The
flow fronts through the points p1,p′

1, p′
0 and p2,p′

2,p”0 are
approximated by two circular arcs C1 and C2. Obviously,
these arcs are not concentric, but they are collinear with
the source j.

Hence if the flow fronts in the fast moving medium are
generated by a secondary source k due to refraction along
the interface, then this source is a moving source [Au
and Woo (2004)]. Figure 9 illustrates the relationship
between the primary source j and secondary source k.

The space time function is distorted by the moving sec-
ondary source due to the change in propagation velocity
as shown in figure 10(a). The α and β ratios for these two

sources are vk
v j

and
∣∣∣
(

t j + d
v j

)
1
t j

∣∣∣ respectively, where d is

j locations of the 
moving secondary 
source k

Figure 9 : The space time of the primary and the moving
secondary source

the distance from the gate to the interface. The Voronoi
curve in this case is a straight line because β for these
sources is a constant (as d is not a constant). This is an
example of a Voronoi diagram of one fixed and one mov-
ing site. Slicing the distorted function and projecting on
to the space gives the flow fronts as depicted in figure
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(d) filling pattern generated by Moldflow 

(a) the distorted space time function due
to refraction

geodesic curve on the 
distorted space from j
to p due to reflection 

j

p

(b) sectioning of the space time
function 

(c) flow front 

Figure 10 : The flow front due to refraction

10(b). Figure 10(c) is the top view of the space. The
flow fronts are compared to the filling pattern generated
by Moldflow in figure 10(d).

5.3 Diffraction

The flow in the flow field will be deflected if there is an
abrupt change in flow width such as widened as shown in
figure 4(c). This also happens when the flow hits the ob-
stacles. For example, the inserts in mould and die cavity
are common obstacles in the flow since these inserts nar-

row the widths of the flow channel. Obviously, the flow
deflection is caused by the distortion of the space time
function due to the narrowness of the flow channel.

For an unbounded domain, the flow path will be a straight
line which is a geodesic curve in the flat Euclidean space.
This is analogous to the line of sight from the source (or
gate).

If the domain is bounded and with the assumption that
the boundary is absorbent offering no reflection, a sec-
ondary source arises at the point where the line of sight
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(d) filling pattern from Moldflow (c) flow fronts 

(b) sectioning the space time 
function 

(a) the distorted space time function 
due to diffraction 

k

Figure 11 : Flow front due to diffraction

hits the boundary (either the boundary of the polygon or
the obstacles). In this case, the flow field is partitioned
since there are more than one source, a primary and the
secondary sources. The secondary source is not inhibited
for the flow from the source and is stopped by the bound-
ary and the Voronoi curve. The space time geometry of
the source is trimmed off due to the boundary of the flow
field and the line of sight.

The source characteristics for primary source j is v j (as-
sume constant flow velocity) and t j(=0, zero time delay)
while the characteristics for the secondary source k is

v j and tk
(
= d jk

v j

)
, where d jk is the geodesic distance be-

tween j and k. Figure 11(a) shows the space time func-
tion. The secondary source is flared out due to the line of
sight jk.

The flow fronts are obtained by sectioning the distorted
space time geometry as illustrated in figure 11(b) and
projecting on to the (2D) space as shown in figure 11(c).

A similar Moldflow plot is shown in figure 11(d).

5.4 Interference

Under certain circumstances, two virtual sources exist
and cause interference (for wave propagation) or weld
line (for plastic flow). The flow field is partitioned ac-
cording to the line of sights from the sources. Interfer-
ence arises when there is more than one source in the
partition. In this case, a Voronoi curve is formed when
two flow front meet each other. With α = 1(constant flow
velocity is assumed), the lines of sight are the Voronoi
curves of the partitions.

The flow field is partitioned by the line of sight because
of the obstacles. These bounded partitions distort the
space time function. The distorted space time function
due to the diffractions is shown in figure 12(a). The flow
fronts are obtained by sectioning the distorted space time
function and projecting on to the space as depicted in fig-
ure 12(b). The flow fronts are shown in figure 12(c). Fig-
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(e) Filling pattern from Moldflow 

(a) distorted space time function (b) flow fronts from the space 
time function 

(c) flow front 
(d) bottom side of the space 

time function 

j
k1 k2

Figure 12 : Flow front due to diffractions and causes weld line

ure 12(d) shows the bottom view of the space time func-
tion (bottom view is used for easy visualization). The
time delays for the two secondary sources k1 and k2 are
also shown. The Modlflow plot is shown in figure 12(e)
for comparison.

6 Example

The flow deflection is mainly caused by two features
in the flow field: obstacle and change in flow velocity.
When these features exist in the flow field, the space time

function is distorted. The flow paths in the flow field are
the projection of the geodesics on the space time function
on to the space.

Figure 13(a) shows a flow field with two different me-
dia so that the flow velocity ratio in region j and region
k is v j

vk
= 1

1.5 . An obstacle is in the region k. Flow enters
the filed from the source j. Refraction occurs at the in-
terface between region j and region k, hence the lines of
sight from the primary source j entering region k is not
straight lines. Four secondary sources k1, k2, k3 and k4
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(c) Moldflow plot 

j

region j region k 

obstacle 

line of sight 
k1k2

k3

k4

(a) cavity with secondary sources

(b) flow pattern

Figure 13 : A cavity with different flow velocity

are identified. Each secondary source possesses different
time delay and constant flow velocity in each region is
assumed. The flow front due to the distorted space time
is shown in figure 13(b).

Figure 14 shows the space time function at the instant
just before the two dimensional domain being fully filled
up. The time axis t of the function points downward for
easy visualization. The time delays for various secondary
sources are also shown in the figure. There is a discon-
tinuity in the space time function which accounts for the
existence of a Voronoi curve after the obstacle. Since the

time delays for secondary sources k3 and k4 are differ-
ent, the geometry of the Voronoi curve is a circular arc,
not a straight line as discussed in reference [Au and Woo
(2004)].

k1 k2 k3 k4

j

t

discontinuity

Figure 14 : The space time function of the flow field

7 Assumption revisited

Manufacturing operations such as moulding, casting,
heat treatment, rolling, forming, and forging involve
shape changes. Quantitative assessment and prediction
of the result have always required the solution to partial
differential equations from fluid dynamics and thermo-
dynamics, the modeling of which require insight in the
particular process under consideration. Then, too, the
solution to the partial differential equations involving in-
tegration under boundary conditions is known to be diffi-
cult. Approximation techniques necessarily incur errors.

The study of waves can be daunting, while its history
can be interesting. Typically, the work involves the mod-
elling of appropriate partial differential equations and
then solving them subject to the certain boundary con-
ditions. In the context of kinetic geometry, the waves
are the “moving fronts” or “evolving curves”. Yet, when
position and derivatives changes, one may also inquire
what remains invariant. The conservation of energy and
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momentum necessarily follows. As well, when multiple
paths for a change (or a variation) are possible, selection
naturally arises. Two branches of science prominently
anchor the geometric notion of waves and shortest path:
optics and continuum mechanics. Underlying both is op-
timality.

This paper gives an approximate solution to wave phe-
nomena arising in the flow field. It offers a fast analytical
solution to a class of partial differential equation, known
as the Hamilton-Jacobi equations in continuum mechan-
ics or the Eikonal equations in geometrical optics. Be-
cause the computation involves no more than algebra, the
performance is in real time. Yet, to be truly convincing, a
Kirchoff-like reverse-engineering of the wave equations
from the geometry is to be accomplished, monumental
the task appears to be.

The velocity of flow is assumed to be constant. In fact
it is governed by three major equations: continuity equa-
tion, momentum equation and energy equation. Repre-
senting the space time function of a source as an inverted
cone implies the constant filling velocity when solving
the flow front equation (2). This assumption simplifies
the flow. While the context is in the study of flow and
comparing with plastic mould injection, the technique
can be applied in numerous other areas such as chemi-
cal or biological agent.

In detailing the analytic scheme, the phenomena of dis-
torted circular flow front near the corners (as shown in
figure 1(a)) and non-uniform flow front spacing during
congestion (as shown in figure 1(b)) need further investi-
gation. Furthermore, the domain discussed in this paper
is of Euclidean space, flow front propagation (and hence,
the geodesics) in a non-Euclidean space needs more ex-
ploration.
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