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Integrated Green’s Function Molecular Dynamics Method for Multiscale
Modeling of Nanostructures: Application to Au Nanoisland in Cu1
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Abstract: An integrated Green’s function and molecu-
lar dynamics technique is developed for multiscale mod-
eling of a nanostructure in a semi-infinite crystal lattice.
The equilibrium configuration of the atoms inside and
around the nanostructure is calculated by using molec-
ular dynamics that accounts for nonlinear interatomic
forces. The molecular dynamics is coupled with the lat-
tice statics Green’s function for a large crystallite con-
taining a million or more atoms. This gives a fully atom-
istic description of a nanostructure in a large crystallite
that includes the effect of nonlinear forces. The lattice
statics Green’s function is then related to the anisotropic
continuum Green’s function that is used to model the free
surface and also to relate the discrete lattice distortion to
measurable parameters such as the displacement and the
strain fields at the free surface. Thus the model seam-
lessly links the length scales from sub-nano in the core of
the nanostructure to macroscopic parameters at the free
surface. The model is applied to calculate the equilib-
rium configuration of atoms in and around an Au nanois-
land embedded in fcc Cu, and the displacement and the
strain fields on a free (0,0,1) surface in fcc Cu in which
the nanoisland is embedded.

keyword: multiscale modeling, lattice statics Green’s
functions, molecular dynamics, strain field, nanoislands,
Au in Cu

1 Introduction

Currently there is a strong scientific and technological
interest in nanostructures such as quantum dots, metallic
nanoislands, etc. embedded in a matrix. The semicon-
ductor quantum dots have potential applications to ex-
tremely efficient solid state devices. Similarly, metallic
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nanostructures are attracting a lot of attention because of
their novel electronic and magnetic properties. The phe-
nomenology and potential future uses of materials pro-
duced by the deposition of nanoclusters of metal atoms
on surfaces were reviewed recently by Binns (2001).
These materials have also attracted efforts to model their
behavior by molecular dynamics, for example by Pala-
cios (1999) and several others.

Modeling offers insight into, and possible prediction of,
the behavior of the clusters, such as their preferred loca-
tion and configuration as a function of size and energy
of the incident particle and the temperature and structure
of the substrate. It is, however, necessary to use multi-
scale modeling techniques for nanomaterials since con-
ventional models based upon continuum mechanics are
not fully applicable to nanostructures. Excellent reviews
of the current perspective of computational nanotechnol-
ogy and some specific techniques for multiscale mod-
eling have been given by Srivastava and Atluri (2002),
Ghoniem and Cho (2002), Shen and Atluri (2004), and
Zhigilei and Dongare (2002).

Here we describe an integrated Green’s function and
molecular dynamics based multiscale modeling method
for nanoislands of one material within a host lattice of a
different material. The advantage of this method is that it
can predict observable surface signatures above nanois-
lands buried within the host material. It also gives the
strain field surrounding the nanoisland, which controls
the interaction of the nanoisland with the surface and
with other clusters. The strain field due to a nanoisland
is an important characteristic of the material because it
largely determines the self assembly of nanostructures,
which is a promising method of fabricating large arrays
of nanostructures.

Our method is generally applicable to nanostructures
such as quantum dots or metallic nanoislands. In this pa-
per we illustrate our technique by applying it to a gold
(Au) nanoinclusion in copper (Cu). We calculate the
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elastic characteristics of an Au nanoinclusion in fcc Cu
lattice by using a multiscale model that links seamlessly
the subnano meter (atomistic) scale to the micrometer
scale and to macro continuum scales in solids. We model
the full discrete fcc lattice structure of the Au nanois-
land, and the embedding host Cu lattice consisting of a
million atoms. In addition, our model accounts for a free
surface in the host lattice. We calculate the discrete lat-
tice distortion in and around the nanoinclusion and the re-
sulting continuum strain and the displacement fields due
to the nanoinclusion on the free surface of the Cu lat-
tice. The seamless relationship between the discrete lat-
tice distortions that are defined as discrete variables at the
subnanometer scale and the strain and the displacement
fields that are continuum variables at the macro scale is
achieved by our new multiscale modeling technique. The
strain and the displacement fields can be measured at the
free surface and can be used to characterize the elastic
properties of the composite Au/Cu materials system.

The presence of a nanoinclusion in an otherwise perfect
host lattice can be treated as a lattice defect. The defect
causes distortion of the host lattice. At the atomistic level
the lattice distortion is expressed in terms of the displace-
ments of atoms from their original lattice sites which are
difficult to measure. In the continuum model of the solid,
the lattice distortion is expressed as the strain or the dis-
placement field. These are very important parameters
that characterize the elastic properties of the defect.

In order to interpret the experimental results on strain
and the displacement fields, one needs to calculate these
quantities at a free surface since that is where the mea-
surements are usually made. The free surface itself is a
defect in the lattice, which is normally modeled as an in-
finite solid. Hence the free surface changes the lattice
distortion caused by the defect. It is therefore necessary
to model a lattice containing a nanoinclusion as well as a
free surface. Presently, multiscale models are not avail-
able in the literature that treat the nanostructure in a fully
discrete manner and account for free surface in the host
lattice.

A purely discrete lattice model of a free surface would
require very extensive computational effort and still suf-
fer from some fundamental uncertainties such as that in
the interatomic potential. Good model interatomic po-
tentials are available for atoms in the bulk of the crys-
tal but they may not be valid at the surface because of
the rearrangements of electronic orbitals. On the other

hand, an extended macroscopic defect like a free surface
can be adequately modeled by using the continuum the-
ory by imposing the free surface boundary condition on
the Christoffel equation. During the past several decades,
the continuum model [Ting(1996)] has been extensively
and successfully used for modeling the elastic response
of solids containing extended defects such as a free sur-
face. Our approach, therefore, is to develop a multiscale
model that uses discrete atomistic theory to model the
lattice in and around the nanoinclusion and use the con-
tinuum theory to model the free surface in a unified inte-
grated formalism.

A mathematical model representing a lattice containing a
nanoinclusion and a surface needs to satisfy the follow-
ing criteria: (i) the theory must account for the discrete
lattice structure of the lattice in and around the nanoin-
clusion and, therefore the model crystallite must be suffi-
ciently larger than the naninclusion, (ii) the model crys-
tallite must be large enough to include a free surface and
for the lattice distortions to smear out into a continuum so
that the continuum parameters like the strain and the dis-
placement fields can be defined, (iii) the continuum pa-
rameters have to account for the elastic anisotropy since
most materials of practical interest are anisotropic, (iii)
the theory must include nonlinear interactions between
atoms inside and close to the nanoinclusion even if the
host lattice is harmonic, and, finally (iv) the model should
be computationally efficient so that the calculations can
be carried out on an ordinary desktop which would en-
able a researcher to get quick answers to ‘what if’ type
questions in the design of experiments.

The criteria (i), (ii), and (iii) require the model to be
multiscale and bridge the length scales from the atom-
istic through to the macro continuum. None of the ex-
isting models in the literature (for review and other ref-
erences, see, for example, [Ortiz and Phillips (1999),
Phillips (1998)]) meet all the above four criteria. The
lattice statics Green’s function (LSGF) method [Tewary
(1973), Thomson et. al (1992)] is computationally ef-
ficient and can model large crystallites but does not ac-
count for the nonlinear interactions. The molecular dy-
namics (MD) accounts for nonlinear forces but is usu-
ally limited to crystallites of only a few hundred atoms.
Powerful techniques based upon MD have been devel-
oped by Vashishta, Kalia, and Nakano (2003) to model
crystallites containing up to 10 million atoms but these
techniques are computationally intensive. MD calcula-
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tions using flexible boundary conditions derived from the
Green’s function [see, for example, Rao et. al. (1998),
Sinclair et. al. (1978)] and purely numerical techniques
[see, for example, Tadmore et. al. (1996)] based upon fi-
nite element methods have been developed for some de-
fect systems. No existing multiscale modeling technique
has been applied to a nanoinclusion and a free surface in
a large model crystallite, which is the object of our paper.

Earlier, we [Tewary (2004)] presented a multiscale
Green’s function (MSGF) technique to model a point de-
fect and a free surface in a fcc solid. This technique in-
tegrates the LSGF with the continuum Green’s function
(CGF) and is specifically meant for point defects in a
large crystallite containing a free surface. A similar tech-
nique has also been applied [Tewary and Yang (2003)] to
a Ge quantum dot in Si but without including nonlinear
effects which are expected to be significant in the core
of a nanostructure. In this paper, we extend this tech-
nique substantially to account for the nonlinear forces in
the core using MD and apply it to a nanoinclusion in a
million-atom model crystallite containing a free surface.
Our model integrates MD, LSGF, and CGF and meets all
the 5 criteria given above. We will refer to our model as
the GFMD model.

We use the Born van Karman model as the reference state
for the host lattice. In this model, the crystal Hamiltonian
is given by the interatomic force constants and the forces
on each lattice site in a lattice without defects are zero.
The presence of a defect in a lattice exerts direct forces
on the atoms and changes the interatomic force constants
within the range of interatomic interactions from the de-
fect and also changes the response or the Green’s func-
tion of the whole lattice. The lattice Green’s function of
the solid with defects is called the defect GF and is re-
lated to the perfect GF through the Dyson equation. In
the LSGF method one divides the vector space of the
whole lattice in a localized defect space where the forces
and the change in the crystal Hamiltonian are non zero
and a perturbed host lattice space where these changes
are zero. The displacements in the entire solid are given
by the product of the defect GF and the direct forces due
to the defect.

Instead of using the defect GF, it is possible to write
the displacements in an alternative form [Tewary (1973)]
as a product of the perfect LSGF and effective Kanzaki
forces. The Kanzaki forces are nonzero only in the de-
fect space. The advantage of writing the solution in this

form is that the perfect LSGF reduces asymptotically to
the CGF which can then be used to model an extended
defect like a free surface using the powerful techniques
of the continuum theory. The Kanzaki forces contain the
full contribution of the discrete structure of the lattice in
the defect space and are obtained by solving the Dyson
equation in the defect space. We use this correspondence
between the perfect LSGF and the CGF to incorporate
the effect of the free surfaces in our GFMD model. In
contrast, the defect GF does not [Tewary (2002,2004)]
reduce to the CGF except in the limit when the contribu-
tion of the defect itself becomes negligible. A technique
based upon replacing the defect GF by the CGF, there-
fore, will not give a reliable representation of the interac-
tion between nanostructures and free surfaces.

Since the host lattice is assumed to be harmonic, the non-
linear effects, if any, are localized close to the defect. We
include the entire region where nonlinear affects are sig-
nificant in the defect space. We model the defect space by
using MD and calculate the Kanzaki forces on all atoms
in the defect space. The Kanzaki forces are then used to
calculate the displacements in the entire lattice outside
the defect space. The defect space, which we treat by us-
ing MD, consists of 17169 atoms. The host lattice which
consists of a million atoms is treated in our model by us-
ing the LSGF method. In the asymptotic limit, far from
the defect space we use the continuum Mindlin Green’s
function to include the effect of the free surface and also
to calculate the elastic strain and the displacement field at
the surface. Powerful techniques [see, for example, Pan
(2002), Pan and Yuan (2000), Pan and Yang (2001)] for
calculating the Mindlin Green’s function are available in
the literature.

In our calculations, we use the many-body interatomic
potential derived by Cleri and Rosato (1993) between
Au-Au, Au-Cu, and Cu-Cu atoms. This potential ex-
tends up to 5th neighbor distance and correctly repro-
duces many observable physical properties of the bulk
sold such as vacancy formation energy, phonon frequen-
cies, elastic constants, etc. Recently this potential has
been used by Sandberg and Grimvall (2001) to calculate
the anharmonic contribution to the formation enthalpy of
a vacancy in Cu at high temperatures.

The theory of our GFMD model is described in Sec. II.
The application of the GFMD model to an Au nanois-
land in Cu is given in Sec. III which gives the calculated
values of the nonlinear lattice distortion in and around
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the nanoinclusion and the elastic strain and displacement
fields at the free (1,0,0) surface. Finally a brief discus-
sion of the results and conclusions are presented in Sec.
IV.

2 Theory and application of the GFMD model to Au
nanoinclusion in Cu

We consider the Born von Karman model [Maradudin et.
al. (1971)] of a monatomic fcc Bravais lattice assuming
short-range interatomic interactions. The treatment given
here, therefore, is not as such applicable to ionic solids
that have long-range Coulomb interactions. We assume a
Cartesian frame of reference with an atomic site as origin
and the coordinate axes parallel to the crystallographic
axes. We denote the lattice sites by vector indices l, l’
etc. A vector index l has 3 components denoted by l 1, l2,
and l3. The Cartesian indices will be denoted i, j, k, etc.
Summation over repeated Cartesian indices is assumed.

The 3 x 3 force constant matrix between atoms at l and
l’ will be denoted by l, l’ The (i,j) matrix element φ ij (l,
l’) of the force constant matrix gives the force on the
atom l in the direction i if the atom l’ is displaced by
a unit amount in the direction j. The force on atom l
and its displacement from equilibrium position will be
denoted, respectively, by Ft(l) and u(l), which are 3d (3-
dimensional) vectors or 3x1 column matrices. The dis-
placement vectors u(l) at each lattice site give the relax-
ation of the lattice or the lattice distortion caused by the
defect. In the representation of the lattice sites, φ can be
regarded as a 3N x 3N matrix where N is the number of
atoms in the Born von Karman supercell. In the same
representation, F and u are 3N x 1 column matrices.

The potential energy of the crystal can be written as fol-
lows:

W∗ = ∑ lWl(xl), (1)

where

xl = rl +ul (2)

denotes the instantaneous position of the atom l, r l its
equilibrium lattice site, and W l is its potential energy
in the field of all other atoms. The sum over l in Eq.
(1) extends over all the atoms in the crystal. A perfect
lattice with no defects has translation symmetry, so the
form of the potential energy function is same for all the

atoms so the function W l is independent of l. We also
assume that the perfect lattice is purely harmonic, that
is, the interaction between the host atoms when they are
located at or near the perfect lattice sites, can be repre-
sented by a series containing up to quadratic power of
displacements. In the Born von Karman approximation
the emphasis is on the second and higher derivatives of
the energy. The reference value is set to zero arbitrarily,
and the first derivative is zero by definition of the equi-
librium lattice spacing.

We assume a model in which nA sites of the host lattice at
the center of the supercell are occupied by foreign atoms.
All the foreign atoms are assumed to be of the same kind,
which fill all the fcc lattice sites in a cube of edge length
2A centered at the origin of the coordinates. We shall
refer to this cube as the inner core of the defect in contrast
to the outer core and the shell to be defined later.

We further identify a cube of edge length 2B that en-
closes the nA foreign atoms and nB host atoms such that
the total number of lattice sites in the outer cube are n A+
nB. This outer cube is also centered at the origin of co-
ordinates. We will refer to the region between the outer
cube of edge length 2B and the inner cube of edge length
2A as the outer core. We will refer to the combined inner
and outer core as the core cube or the defect cube. The
size of the outer cube is chosen such that it includes at
least all those atoms with which the atoms of the inner
core interact directly. It may include some extra atoms
in order to form a complete cube with all lattice sites oc-
cupied. Obviously, in this model the atoms of the inner
core will not directly interact with any atom of the host
lattice outside the outer cube.

The core cube of edge length 2B is treated as the defect in
our model lattice. All lattice sites in the supercell outside
the core are occupied by the atoms of the same kind as
the host. We further identify a shell region by drawing
another cube of edge length 2C containing n lattice sites
that encloses the defect cube and is also centered at the
origin of the coordinates. The size of the shell cube is
assumed to be much smaller than the size of the Born von
Karman supercell. We will refer to this outermost cube
as the shell cube and the region between the shell cube
and the core cube as the shell region. If nC is the number
of lattice sites in the shell region then n = n C + nB + nA.
All nC lattice sites of the shell region are occupied by the
atoms of the same kind as the host. The region of the
supercell outside the shell cube will be referred to as the
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host region.

Now we write the total potential energy of the entire crys-
tal given by Eq. (1) in the following form:

W∗ =∑ ∗
l’Wh(xl’)+∑ s

l”Wh’(xl”)+∑ c
LWc(xL), (3)

where Wh is the potential function for a host atom which
is interacting only with other host atoms, W h’ is the po-
tential function for a host atom interacting with other host
atoms as well as atoms in the defect cube, and Wc is the
potential function of an atom in the defect cube interact-
ing with other defect or host atoms. The superscripts *,
s, and c over the summation signs on the right hand side
(RHS) of Eq. (3) indicate that the summation is over a
limited range of sites: the index l’ goes over all lattice
sites outside the shell cube. The index l” goes over all
lattice sites in the shell region (excludes the core, both in-
ner and outer), and L goes over all the lattice sites of the
defect (outer as well as inner core) cube. In the present
paper we shall assume a many-body potential so each po-
tential function would depend upon the coordinates of
many atoms which will be specified later.

In this scheme of partition of the lattice into different re-
gions as defined above, the terms in the first summation
on the RHS of Eq. (3) depend explicitly upon the coordi-
nates of the host atoms outside the shell cube and inside
the shell region. The terms in the second summation on
the RHS depend explicitly upon the coordinates of the
host atoms outside the shell cube, inside the shell region,
and in the outer core of the defect cube. They do not de-
pend upon the coordinates of the foreign atoms that are
confined to the inner core. The foreign atoms do not in-
teract directly with the host atoms in the shell region and
beyond. The terms in the third summation on the RHS
depend explicitly upon the coordinates of the foreign and
the host atoms in the core and the shell regions.

We rewrite Eq. (3) as follows:

W∗ = W0 +∆W, (4)

where

W0 = ∑ lWh(xl), (5)

∆W = ∑ s
l”∆Wh’(xl”)+∑c

L∆Wc(xL) (6)

∆Wh’(xl”) = Wh’(xl”)−Wh(xl”), (7)

and

∆Wc(xL) = Wc(xL)−Wh(xL). (8)

The sum in Eq. (5) is over all the lattice sites of the per-
fect lattice and W0 gives the energy of the perfect but
distorted lattice when the crystal does not contain any
foreign atoms and the atoms are located at xl given by
Eq. (2). We define this distorted perfect lattice as our
reference state. The interaction between each atom in the
perfect lattice is assumed to be harmonic. The harmonic
energy in the reference state will be given later in Eq. (9).
The change in the energy of the reference state caused by
the presence of the defect is given by ∆W.

We further assume that the atomic displacements in the
shell region are so small that their cubic and higher pow-
ers can be neglected in the Taylor expansion of the po-
tential energy. If the displacements in the shell regions
were large, then we would choose a larger inner core such
that these displacements are small enough for the har-
monic approximation to be valid. Hence the interaction
between the shell atoms amongst themselves and with the
atoms in the host region can be assumed to be harmonic.
On the other hand the displacements of the atoms in the
core cube may be large. Hence the interaction between
the atoms in the shell region and those in the outer core
may be nonlinear. In general, the interaction between the
atoms in the core will be nonlinear.

Now we write the potential energy of each atom in the
reference state. The potential energy of each atom is
a sum of its interaction potential with all its neighbor-
ing atoms and depends upon the coordinates of all the
atoms contributing to the interaction potential. In the
harmonic approximation, the potential energy of the ref-
erence lattice is given by [Tewary (1973), Maradudin et.
al. (1971)] the following Taylor series:

W0 = ∑ lF0i(l)ui(l)+(1/2)∑ ll’[φφφ(l, l’)]ij ui(l)uj(l’),
(9)

where

F0i(l) = −∑ l”[∂Wh(xl”)/∂uli]0, (10)

[φφφl, l′]ij = ∑ l”[∂2Wh(xl”)/∂uli ∂ul’j ]0, (11)

and l” in Eq. (9) goes over all the lattice sites of the
reference lattice. The derivatives in Eqs. (10) and (11)
are evaluated at 0 displacements. In what follows, for
brevity, we will not explicitly show the Cartesian indices



364 Copyright c© 2004 Tech Science Press CMES, vol.6, no.4, pp.359-371, 2004

i, j, etc except when needed to avoid any confusion. It
will be understood that the derivatives are defined with
respect to individual Cartesian components of the dis-
placements as in Eqs. (10) and (11).

In our model, we shall assume a many-body potential
function derived by Cleri and Rosato (1993) for the in-
teratomic interactions. This potential extends up to 5th
neighbors of each atom and depends upon the coordi-
nates of 79 atoms in fcc structure. The summations in
Eqs. (10) and (11) extend over all the atoms in the ref-
erence lattice whose potential energy depends upon the
displacement of the reference atom l. For the same rea-
son, although φφφ(l, l’) relates only a pair of atoms, in case
of a many-body potential as considered in this paper, it
depends upon the coordinates all the atoms included in
the many-body potential. In case of the reference lattice,
the linear term F0(l) in the Taylor series in Eq. (9) is 0 for
all l because of the translation symmetry and the equilib-
rium condition [Maradudin et. al. (1971)]. The higher
order terms in Eq. (9) are neglected in the harmonic ap-
proximation.

The atomic displacements at equilibrium are obtained by
minimizing the total energy of the defect state given by
Eq. (4) which gives

∂W0(xl)/∂ul = Ft(l), (12)

where

Ft(l) = −∂[∑ s
l”∆Wh’(xl”)+∑c

L∆Wc(xL)]/∂ul. (13)

Using Eq. (11), we write Eq. (12) in the matrix notation
as follows

φφφu = Ft. (14)

The solution of Eq. (14) is

u = GFt, (15)

where G, the Green’s function matrix [Tewary (1973),
Maradudin et. al. (1971)], is the inverse of φφφ. So

G(l, l’)φφφ(l, l’) = δδδ(l, l’), (16)

where δδδ(l,l’) is the Dirac’s delta function which is 1 for l
= l’ and 0 otherwise.

From Eq. (15), the atomic displacement of the atom l can
be written explicitly as

ul = ∑ l’G(l, l’)Ft(l’). (17)

The summation in Eq. (17) is over all the lattice sites
occupied by the host as well as the foreign atoms. First,
we note that Ft(l) is 0 for all l in the host region because
of the following. The contribution of the first term in Eq.
(13) to the force on the atoms of the host region is 0 since
the two terms in Eq. (7) will cancel out. The contribution
of the second term in Eq. (13) is also 0 because the atoms
in the core region do not interact directly with the atoms
in the host region and hence do not exert any force on the
atoms in the host region. We can therefore restrict the
summation in Eq. (17) to the shell and the core regions.

The vector space of all sites in the shell and the core re-
gions can now be identified as the defect space as de-
fined in [Tewary (1973)]. Equation (17) gives the lat-
tice distortion in terms of the perfect LSGF instead of
the defect GF, and a force term that is calculated at the
relaxed lattice sites instead of the original lattice sites.
We can, therefore, identify Ft as the Kanzaki force de-
fined in Tewary (1973). The solution given by Eq. (17)
is equivalent to that obtained in terms of the defect GF
which is given by the solution of the Dyson’s equation
[Tewary (1973), Maradudin et. al. (1971)] in the defect
space. The defect GF technique [Tewary (1973)] is appli-
cable to weak defects when the harmonic approximation
is valid for ∆W.

Equation (17) is a formal solution of the problem but its
RHS depend upon the displacements in the defect space
which are yet to be determined. Our main objective is
to calculate the atomic displacements outside the defect
space which give the measurable strain and displacement
fields but we need to calculate the displacements in the
shell and the core region as well. First we consider the
case when the index l in Eq. (17) is restricted to atoms
in the shell region outside the core cube. The index l’ in
Eq. (17) is restricted to all the atoms in the defect space.
Using Eqs. (7), (8), and (9), we write the following for
the total force on an atom l’ inside the defect space

Ft(l’) = Fs(l’)+Fc(l’) (18)

where

Fs(l’) =

∂[∑ s
l”Wh’(xl”)]/∂ul’ −∑h,s,c

l”[φφφ(l’, l”)]u(l”), (19)

Fc(l’)
= ∂[∑c

LWc(xL)]/∂ul’−∑ s,c
l”[φφφ(l’, l”)]u(l”). (20)
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The summation in the first term on the RHS of Eq. (19)
is over the atoms in shell region which interact with the
atom l’ that can be in the shell or the core. Similarly
the sum over L in Eq. (20) is over atoms in the core
region which interact with the atom l’. The summation
in the second term on the RHS of Eq. (19) is over all
atoms in the host, shell and core regions even though l’ is
confined to the shell region. This is because of the range
of interaction potential of the atom l’. The same applies
to Eq. (20) except that the range of interaction of an atom
in the core does not extend to the host region.

We calculate the force on atom l’ in the shell region as
given by Eq. (18). We consider the first term on the RHS
of Eq. (19). An atom in the shell region interacts with
atoms in the host region, the shell region, and the outer
core. Thus

Wh’(xl”)

= ∑hWh
h(xl”)+∑ sWs

h(xl”)+∑cWc
h’(xl”), (21)

where the superscripts h, s, and c over W on the RHS of
Eq. (21) denote contributions of the atoms from the host,
shell, and core regions respectively to the potential en-
ergy of the atom l” which is in the shell region. The first
two terms on the RHS of Eq. (21) are the same as for
host-host interactions. This explains why the subscript
under W in these two terms is h and not h’. Since we
have assumed the host-host interaction to be harmonic,
we can expand the first two terms in a Taylor series.
Thus, we obtain the following result for the contribution
to the force from the first term in Eq. (19):

Fs1(l’)
= ∑ h,s Fh,s(l’)+F∗ c(l’)+∑ h,s

l”[φφφ(l’, l”)]u(l”), (22)

where Fh,s (l’) denote the contribution to the force at the
atom l’ from the host and the shell regions, and

F∗ c(l’) = −∂Wc(l’)/∂ul’ (23)

is the contribution to the potential energy of the atom l’
from the core atoms. The summation in the first term
on the RHS of Eq. (22) is over all atoms in the host
and the shell region which contribute to the force on l’.
Note that Fh,s and φφφ are the first and the second Taylor
coefficients in the expansion of the potential energy and
are evaluated at 0 displacements as given in Eqs. (10) and

(11). In contrast, the derivative in Eq. (23) is evaluated
at the displaced position of the atom which includes the
effect of all higher order terms.

We see from Eqs. (19) and (22) that the contributions of
the host and the shell atoms to the term linear in displace-
ment cancel out. Hence we obtain

Fs(l’)
= Fh,s(l’)+F∗ c(l’)−∑ c

l”[φφφ(l’, l”)]u(l”). (24)

Now we consider the contribution of a particular atom l”
= L’ to the summation in the second term of Eqs. (24)
where L’ is in the core cube. The contribution of this
term to the displacement given by Eq. (17) is as follows:

ul = −∑ s
l’ G(l, l’)φφφ(l’,L’)u(L’), (25)

where l is outside the defect cube. Since L’ is in the core,
all the atoms that interact with this atom are inside the
shell or the core cubes and are therefore included in the
summation in Eq. (25). In view of Eq. (16) the RHS of
Eq. (25) is 0 since l �= L’. Hence, for l outside the core
cube, the last term on the RHS of Eq.(20) does not con-
tribute to the atomic displacements and can be neglected.

Finally, we recall that the total force at any atom in the
reference state is 0. Hence

∑h,s,c Fh,s,c(l’) = 0 (26)

for all l’. This gives

∑h,s Fh,s(l’) = −Fc(l’). (27)

Using Eq. (27), Eq. (24) gives the following for l’ in the
shell cube:

Fs(l’) = −Fc(l’)+F∗ c(l’). (28)

Proceeding as above we calculate Fc(l’) given by Eq.
(20) for l’ in the shell region. This force arises because
the potential energy of the core atoms depends upon the
coordinates of the shell atoms. For l’ in the shell region
only the core atoms would contribute to the sum in the
harmonic term on the RHS of Eq. (20). However, as we
have shown earlier, the harmonic term arising from the
displacement of the core atoms does not contribute to the
displacements of the atoms in the shell and the host re-
gions. Hence Fc(l’) is given by only the first term in Eq.
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(20). Finally, we obtain the following for the total force
on an atom l’ in the shell region:

Ft(l’) = −Fc(l’)+F∗ cc(l’), (29)

where

F∗ cc(l’) = F∗ c(l’)−∂
[
∑c

LWc(xL)
]
/∂ul’ (30)

The last term on the RHS of Eq. (29) gives the total force
exerted on a shell atom from the core atoms. The first
term on the RHS of Eq. (30) arises from the potential
energy of the shell atoms which depends upon the coor-
dinates of the core atoms. The second term on the RHS
of Eq. (30) arises from the potential energy of the core
atoms which depends upon the coordinates of the shell
atoms. Physically, Eq. (29) means that the effective force
on an atom in the shell region is equal to the force exerted
on the atom due the core atoms minus the force the core
atom would have exerted if it were at the reference lat-
tice site. This force arises from the potential energy of
the shell atoms.

In order to use Eq. (17), we also need to calculate F t(l’)
for l’ in the core cube. In this case, we obtain

Ft(l’) = F
∗sc(l’)−∑ s

l”[φφφ(l’, l”)]u(l”), (31)

where

F
∗sc(l’) = −∂

[
∑ s

l”Wh’(xl”)
]
/∂ul’

−∂
[
∑ c

LWc(xL)
]
/∂ul’. (32)

The force given by Eq. (32) is the total force on a core
atom at its displaced position arising from the nonlinear
interaction between the shell and the core atoms. The
second term on the RHS of Eq. (31) gives the correction
term arising from the use of the perfect lattice Green’s
function instead of the defect lattice Green’s function.
As described before, the displacements of atoms in the
inner core do not contribute to the harmonic part of the
force. The force arising out of the nonlinear interaction
is relaxed to 0 in MD. Hence, the atoms of the inner core
do not contribute directly to the summation in Eq. (17).

We need to first solve Eq (17) for the shell displace-
ments with Ft(l’) for the shell and the core atoms by Eqs.
(29) and (31) respectively. We solve this set of nonlin-
ear equations by first using MD in the defect space. For
this purpose we consider the aggregate of all n atoms in

the defect space that includes the core cube and the shell
cube. We fix the position of the atoms in the shell region
to which the atoms in the defect space are coupled. We
apply standard molecular dynamics to this aggregate with
the boundary conditions that the n C shell atoms are fixed
at a position determined self consistently by Eq. (17).
In actual practice, we obtain the solution by iteration as
described below.

First we fix the nC shell region atoms at their original
lattice sites corresponding to u(l) =0 for the shell atoms.
Then we use MD for the nA + nB atoms in the core. This
gives equilibrium values of atomic displacements in the
core and F*sc = 0 for all atoms in the core cube but non-
zero value of F*cc, that is the forces on the shell atoms
due to the core. We use these forces in Eq. (17) to cal-
culate the displacement of the shell atoms. These same
forces also control the displacements of all the atoms in
the host region. In the next iteration, we fix the n C shell
atoms at the new positions calculated from Eq. (17) in
the previous step and repeat the MD for the core which,
at equilibrium, gives additional forces on the shell atoms.
We repeat the process until the solution converges. In the
cases where we have applied this method, the solution
converges to within 99% in a single iteration.

Once we get the forces Ft(l’), we can calculate the atomic
displacements everywhere in the crystal by using the
LSGF in Eq. (17). The calculation and properties of the
lattice statics Green’s function have been discussed in de-
tail in [Tewary (1973), Thomson et. al. (1992)]. The cal-
culation of the forces on atoms in the shell and the outer
core, as described above, are done using a purely dis-
crete atomistic model at the subnano scale. These forces
contain the full information about the atomistic nature
of the defect. The LSGF fully accounts for the discrete
atomistic structure of the lattice over the scale of several
atomic distances. For example, for a million atom model,
the edge length of the supercell is of the order of 100 lat-
tice constants.

One advantage of Eq. (17) is that it depends upon the per-
fect LSGF which can be conveniently expressed [Tewary
(1973), Maradudin et. al. (1971)] in terms of its Fourier
transform in the reciprocal space of the lattice. This
could not be done for the defect GF [Tewary (1973),
Maradudin et. al. (1971)]. The Fourier transform of
the perfect LSGF can be calculated by using the dynam-
ical matrix of the lattice defined in terms of the force
constants [Tewary (1973), Maradudin et. al. (1971)].
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Since the forces and the displacements are specified at
discrete lattice sites, they can also be expressed [Tewary
(1973)] in terms of their Fourier transforms in the same
space. This provides a computationally convenient tech-
nique for calculating the LSGF and the atomic displace-
ments.

Another advantage of using the perfect lattice GF in Eq.
(17) is that it can link the atomistic calculations seam-
lessly to the continuum model as has been done for a
vacancy in Cu [Tewary (2004)]. The atomic displace-
ments obtained from Eq. (17) using the lattice statics
GF are defined at discrete lattice points. In many ap-
plications, one needs elastic strains which are also mea-
sured experimentally. Strain is a continuum parameter
defined in terms of the derivatives of the displacement
field and can not be defined as such for discrete values of
the displacements. In our model, we achieve the corre-
spondence between the discrete atomistic displacements
and the continuum displacement field by using the prop-
erty [Tewary (1973), Tewary (2004)] that the LSGF re-
duces to the CGF asymptotically at large distances. We
simply use the CGF for the G(l,l’) in Eq. (17) treating (rl

– rl’) as a continuous variable while treating l’ as a dis-
crete variable corresponding to atoms in the shell and the
core cubes where the discrete forces are calculated. The
strains are then calculated by taking appropriate deriva-
tives with respect to rl. Efficient techniques for calculat-
ing the continuum Green’s functions for different sym-
metries are already available in the literature.

Finally, by using the CGF, we can incorporate the effect
of a free surface in the solid on the displacement and the
strain fields caused by the nanoisland in the core as has
been shown in [Tewary (2004)]. It is important to in-
clude the effect of at least one free surface because the
strains are usually measured at or near a free surface. To
account for a free surface, we use the Mindlin GF for
G(l,l’) in Eq. (17) as has been done for a vacancy in cop-
per [Tewary (2004)]. This retains the fully discrete atom-
istic nature of the core at the nano and sub-nano scales
and links it seamlessly to the measurable macroscopic
parameters of the continuum model like strains.

3 Gold Nanoisland in fcc Copper

For the purpose of illustration, we apply the GFMD
method given in the preceding section to a gold nanois-
land in an anisotropic semi-infinite crystal of fcc copper.
We calculate the equilibrium position of the atoms in-

side and around the island and the displacement field and
strains at the free surface. We assume that the free sur-
face is (0,0,1) with the Z-axis of the coordinates normal
to the free surface. We neglect the effect of other free
surfaces so our results are valid when the nanoisland is
much closer to the (0,0,1) surface as compared to other
surfaces.

We use the tight-binding potential for copper, which has
been given in the excellent paper by Cleri and Rosato
(1993). The CR (Cleri-Rosato) potential extends up to
fifth neighbor. It is a many-body potential that depends
upon the coordinates of all 79 atoms that are within fifth
neighbor distance of an atom. The potential correctly re-
produces many static and dynamic properties of the solid
including the cohesive energy, phonon dispersion, and
the elastic constants. The force constants and the lattice
statics GF for a million-atom perfect Cu lattice using the
CR potential is calculated by using the techniques given
in Tewary (1973), Maradudin et. al. (1971). The Mindlin
GF for the anisotropic semi-infinite Cu with a free (0,0,1)
surface is also given in Tewary (2004). The parameters
of the CR potential for Cu-Cu, and Au-Cu are given by
Cleri and Rosato (1993).

We create a nanoisland by replacing 63 Cu atoms by Au
atoms while keeping the full point group symmetry of
the fcc lattice. Thus nA=63. The atom at the center of the
nanoisland is assumed to be at the origin. All the lengths
are in units of a, where 2a =3.61 Å is the lattice constant
of copper. The edge length of the inner core cube is 2A=
4 which contains only Au atoms and gives a measure of
the size of the Au nanoisland. The edge length of the
outer core cube is 2B= 24 and the shell cube 2C= 32.
All the lattice sites in the shell and the outer core regions
are occupied by Cu atoms. The size of the outer core
is chosen so that it includes all the atoms that interact
directly with the atoms in the inner core and the shell
atoms do not interact directly with the atoms in the inner
core. Similarly the size of the shell cube is chosen so
that the host atoms outside the shell cube do not interact
directly between the atoms in the outer core. The number
of atoms in the outer core region is nB = 7750 and in the
shell region is nC= 10156. The total number of lattice
sites in the super cell is 106.

The equilibrium positions of the Au atoms inside the
nanoisland and the Cu atoms around the Au nanoisland
on the (0,0,1) plane are shown in Fig. 1 and on the (1,1,1)
plane in Fig. 2. The empty circles denote the original lat-
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Figure 1 : Equilibrium position of the atoms in and
around Au nanoisland in fcc Cu on the (0,0,1) plane. The
empty circles denote the original lattice sites. Size of the
circles is chosen arbitrarily for visualization. Au atoms
as marked, Cu atoms unmarked.

Figure 2 : Same as Fig. 1 on the (1,1,1) plane.

tice site in the reference lattice. The size of the circles has
been chosen only for ease of visualization and bears no
relation to the size of the atoms. We see from these fig-
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Figure 3 : Variation of uz, the z-component of the dis-
placement field on the (0,0,1) surface just above the Au
nanoisland as a function of d, the distance of the central
atom of the nanoisland from the free surface. All lengths
in units of a=1.805 Å, half the lattice constant of fcc cop-
per.

ures that, as expected, the atomic displacements are large
inside and close to the core and decrease away from the
core.

Figure 3 shows uz, the z-component of the displacement
field, on the free surface just above the Au nanoisland as
a function of d, the depth of the nanoisland. The depth
of the nanoisland is defined as the distance of the center
of the nanoisland from the free surface. Figure 4 shows
the strain components xx and zz for the same configura-
tion. By symmetry, xx and yy components of the strain
tensor are equal. The results are as expected that the dis-
placement field as well the strain components at the sur-
face decrease as the depth of the nanoisland decreases.
The strain is about 10−3, which can be measured using
modern techniques and can be used to characterize the
nanoisland.

Figure 5 shows the variation of uz and Fig. 6 shows the
variation of the diagonal components of the strain tensor
along the X-axis on the free surface for d = 21. Finally,
Fig. (7) shows the 3D variation of uz at the free surface
for d=21. These figures show an interesting fact that the
extrema at the surface of the displacement field as well
the strains are not just above the center of the nanoisland
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Figure 4 : The xx = yy and the zz-component of the
strain tensor e on the (0,0,1) surface just above the Au
nanoisland as a function of d.
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Figure 5 : Variation of uz on the X-axis on the (0,0,1)
surface due to the Au nanoisland at d = 21.

but are slightly displaced. This behavior is a consequence
of the elastic anisotropy and has also been found in a
purely continuum calculation Yang and Tewary (2003)
of InAs quantum dots in GaAs. Its consequences on the
self assembly of nanostructures have been discussed by
Yang and Tewary (2003).

The minimum value of d that we have assumed in our
calculations is 21. The use of the continuum Green’s
function in our model as such is not valid when d is
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Figure 6 : Variation of εzz (solid line), εxx (long dashes),
and εyy (short dashes)

Figure 7 : Variation of uz at the (0,0,1) surface due to the
Au nanoisland at d = 21.

so small that the surface atoms are with in the range of
the interaction potential of the atoms in the shell region.
At such small distances, the continuum parameters loose
their significance anyway and one has to account for ef-
fects such as reconstruction of the surface, which is out-
side the scope of this work.

4 Conclusions

We have described our GFMD technique for modeling
a nanostructure in a semi-infinite solid containing a free
surface. The technique combines the advantages of MD,
lattice GF, and the continuum GF and thus links the
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length scales from sub nano to macro. By linking MD
with the LSGF, we can include the nonlinear effects in
the core of the defect, and by using the LSGF model a
large crystallite (million-atoms or more) without exces-
sive CPU requirements. For example, calculation of the
LSGF for a million atom crystallite requires only a few
seconds on a standard 3 GHz desktop.

By using the asymptotic relationship between the LSGF
and the CGF, we can incorporate the effect of extended
defects such as a free surface, interfaces in the host lat-
tice, dislocations, etc. This relationship also enables us
to relate discrete atomic displacements with measurable
macroscopic elastic parameters such as strains or dis-
placement field at the free surface without any need for
an arbitrary averaging ansatz.

In the GFMD model we express the response of the solid
in terms of effective Kanzaki forces and the perfect LSGF
which is exactly equivalent to using the Dyson’s equation
for calculating the defect GF. By including the nonlinear
effects fully and exactly in the forces, our model is able
to relate the physical processes in the core to the response
of the lattice at the macro scales in the entire solid. Since
the LSGF can be calculated for a large crystallite without
excessive CPU requirements, our calculated values of the
atomic displacements in the bulk of the solid would not
suffer from spurious size effects which can often affect
the conventional MD calculations.

We have applied the GFMD method to calculate the
atomistic configuration of a Au nanoisland in fcc cop-
per containing a free (0,0,1) surface. The resulting dis-
placement and the strain fields are calculated at the free
surface, which are measurable parameters at the macro-
scopic scale. This shows the multiscale nature of our
model that seamlessly links the interatomic length scales
in the core of the nanoisland to measurable macroscopic
scales.
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