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Analysis of Particulate Composite Materials Using an Element Overlay Technique

H. Okada1, C. T. Liu2, T. Ninomiya1, Y. Fukui1 and N. Kumazawa1

Abstract: Formulations and applications of an ele-
ment overlay technique for the mesoscopic analyses of
composite structures are presented in this paper. As a
zooming technique, the element overlay technique has
been applied to various engineering problems. A finite
element mesh having finer mesh discretization is super-
posed at the region to zoom the spatial resolution of anal-
ysis. Such a numerical technique is known as the s-
version FEM (S-FEM). This paper aims at developing
an S-FEM technique that is suited for the mesoscopic
analysis of particulate composite materials. Local finite
element models that contain the second phase material
and its immediate vicinity are superposed on global fi-
nite element model. Each local finite element model con-
tains only one particle and is relative to simple to build.
The global finite element model does not model particles
at all. To distribute a number of particles in the anal-
ysis region, we place the local finite element model at
the location of particles, just by specifying their loca-
tions. The local and global finite element models are
built independently. Building and modifying an analy-
sis model is much simpler than the case of an ordinary
finite element method. Mathematical formulations, com-
putational strategies and some numerical examples are
presented for the problems of distributed holes/voids and
particles. The same analysis technique can be applied to
other types of composite structures.

keyword: Particulate composite material, s-version
FEM (S-FEM), Finite Element Method (FEM).

1 Introduction

In this paper, an element overlay technique is applied to
the analyses of particulate composite materials. For the
analyses of heterogeneous solid, such as particulate com-
posite materials, unit cell analyses have typically been
performed with assuming a very small number of rein-
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forcing particles in the analysis region [see, for exam-
ple, a review paper of computational micromechancis by
Needleman (1989)]. Such analyses inherently assume
that the particles are placed in a periodic manner. It
was concluded in Matsuda, Ohno, Tanaka and Shimizu
(2003) that the macroscopic behavior of the compos-
ite is not influenced by the randomness but the micro-
scopic stress distribution largely depend on the arrange-
ment of particles. According to literature [Lee, Moorthy
and Ghosh (1999), Zhong and Knauss (2000)], for the
analyses of progressive material damage, it is very im-
portant to account for the randomness in particle distri-
bution. In order to model the randomness explicitly, it
is obvious that many particles need to be included in the
material model. When a large number of particles are as-
sumed, the analysis models would become very large and
complex, especially in three-dimensional cases. Though
excellent numerical techniques based on the finite ele-
ment method such as Voronoi cell FEM [Lee, Moorthy
and Ghosh (1999), Raghavan and Ghosh (2004)] have
been proposed by researchers, but most of applications
are confined in two-dimensional ones. Recently, finite
element analyses that explicitly model distributed parti-
cles in a three-dimensional unit cell were presented by
Böhm, Eckschlager and Han (2002) and Böhm, Han and
Eckschlager (2004). They included about 15 particles in
the unit cell. It is however seem to be very troublesome
to build such models.

In order to carry out three-dimensional analysis for the
problems of particulate composite materials with a large
number of randomly distributed particles, present au-
thors have sought some alternating computational meth-
ods other than the conventional finite element method.
Okada, Fukui and Kumazawa (2004) presented a bound-
ary element based computational method, in which the
distributed particles were modeled by using the analyti-
cal solutions for ellipsoidal particles [see Mura (1982) for
the analytical solutions]. The modeling strategy was in
success as long as matrix material is elastic. The authors
extended the method to model the material nonlinear be-
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havior due to particle damages [see, Okada, Fukui and
Kumazawa (2003a) for particle fracture and the phase
transformation of the particles and Okada, Fukui and Ku-
mazawa (2003b) for the cavitation of rubber particles in
modified epoxy-resin].

However, when matrix material undergoes any nonlin-
ear deformation, the efficiency of the BEM approach di-
minishes. Thus, present authors sought a methodology
that allows an analyst to build analysis model as quickly
as the boundary element approach of Okada, Fukui and
Kumazawa (2004) and S-version finite element method
(S-FEM; an element overlay technique) was found to
have very attractive features. In S-FEM analyses, a finite
element model is superposed on another finite element
model and they are generated independently. Therefore,
it is very tractable to build an analysis model. The S-
FEM was first presented by Fish (1992) and was applied
to various problems [Fish, Markolefas, Guttal and Nayak
(1994)] as a zooming technique that enhances the spa-
tial resolution of discretization locally. Then the method
was applied to the problems of composite plate in Fish
and Guttal (1996). Takano, Zako and Ishizono (2000)
applied the S-FEM technique to compute the stress dis-
tributions of heterogeneous material by enhancing the
spatial resolution locally using an overlaid finite element
model. Nakasumi, Suzuki, Fujii and Ohtsubo (2003)
solved the problems of shell and plate structure by su-
perposing solid elements on shell/plate elements. Lee,
Song, Yoon, Zi and Belytschko (2004) combined the S-
FEM approach with extended finite element method [X-
FEM, Moës, Dolbow and Belytschko (1999)]. Okada,
Endoh and Kikuchi (2004) solved linear fracture me-
chanics problems and a simple criterion to guarantee the
accuracy of evaluated crack tip parameters. It should be
noted that other attractive ways to attack the problems of
particulate composite materials would be in the adaptive
mesh-refinement in finite element analysis [Chung, Choi
and Kim (2003)] and in the adaptive node-refinement
in meshless local Petrov-Galarkin (MLPG) method [see
Atluri and Shen (2002) and Atluri (2004) for the com-
prehensive descriptions of MLPG]. MLPG with an adap-
tive node-refinement was presented by Kim and Atluri
(2000).

So far, the element overlay technique had mainly been
used as a method to locally enhance the spatial resolu-
tion of discretization. In present investigation, the ele-
ment overlay technique is applied to the problems of par-

Figure 1 : Particulate composite material with randomly
distributed filled particles

ticulate composite materials. Analysis model has a num-
ber of particles as shown in Figure 1 and each particle
and its vicinity is modeled by a finite element mesh. We
call it as “local finite element model” or “local model”.
To distribute many particles as depicted in Figure 1, we
simply place the local models in the analysis region by
specifying their locations. A unit cell or a structure as
whole made of the composite is discretized by a coarse
finite element model. We call this model as “global finite
element model” or “global model” in this paper. We then
allow the local models to overlap each other. Therefore
the distribution of the particles can arbitrarily be spec-
ified. If the material within the particle is specified to
be very soft compared with the matrix material, we can
model a porous material.

In this paper, we present formulations and some numer-
ical results for two- and three-dimensional elastic prob-
lems. It is noted that the method is to be extended to deal
with elastic-plastic as well as elastic-viscoplastic mate-
rials. The extensions will be presented in the authors’
forthcoming papers.

2 Mathematical Formulations

It is assumed that particles or voids distribute in the do-
main of analysis as shown in Figure 1. Though Figure
1 implies that the particles or voids are spherical in their
shapes, there is no such restrictions in the mathematical
formulation. The second phase material or voids can be
fibrous or any others in their shapes. Though the previ-
ous formulations of S-FEM (see Fish (1992) for exam-
ple) assumes only one overlaid model to be superposed
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on the global model, we allow any numbers of finite ele-
ment models to be superposed on the global one. Then,
the overlaid models are allowed to overlap each other, as
depicted in Figure 2. When the shapes of the embedded
second phase materials are the same or similar to each
other, the same local finite element model can be used
repeatedly. Therefore, generating a model for the partic-
ulate composite material would be a simple task.

In the following discussions, the regions of the global and
the p-th (p=1,2,3, · · ·, n) local finite element models are
designated to be ΩG and ΩLp, as depicted in Figure 3.
We assume that there are a total of n local model regions.
The displacement are defined based on the shape func-
tions of elements in the global and local models, indepen-
dently [see references such as Bathe (1996) and Hughes
(1987) for the shape functions of finite elements]. We
write them, as uG

i = uG
i (x) in ΩG and uLp

i = uLp
i (x) in

ΩLp, where x denotes the position of a material point. At
a point which is outside all the local model regions, the
displacements ui are the same as the displacement func-
tions uG

i of ΩG.

ui = uG
i (x) (1)

At a point where some local finite element models over-
lap, the displacement functions ui are given by the sum
of displacement functions of the overlapped models. For
example, at a point where the local models ΩLp and ΩLq

(1 ≤ p,q ≤ n, p �= q) overlap on the global model ΩG,
the displacements ui are represented by the sum of their
displacement functions, as:

ui = uG
i (x)+uLp

i (x)+uLq
i (x) (2)

To ensure the continuities of displacements, those based
on a local finite element model are set to be zero at its
outer boundary. We let:

uLp
i = 0 at ∂ΩLp (3)

where ∂ΩLp designates the outer boundary of local finite
element region ΩLp.

Stresses at a point are written in terms of strains through
Hooke’s law [see Sokolnikoff (1956), for example].

σi j = Ei jk�εk� (4)

The elastic constants may vary within the solid and are
the functions of location of a material point.

Ei jk� = Ei jk� (x) (5)

Figure 2 : Two-dimensional illustration for how a com-
posite material is modeled by proposed element overlay
technique

Figure 3 : The domains and boundaries of global model
and local models

The statement of principle of virtual work is written to
be:

∫
ΩG

∂δui

∂x j
Ei jk�

∂uk

∂x�
dΩG

=
∫

ΩG
δuibidΩG +

∫
∂ΩG

t

δuitid
(
∂ΩG

t

)
(6)

where δui are the variations of displacements, bi are the
body force per unit volume, t i are the prescribed trac-
tion vector on the traction prescribed boundary ∂Ω G

t . The
variations of displacements δui are assumed in the same
manner as the displacements ui, by the superposition at
material points where they overlap. Thus, δui are writ-
ten to be δui = δuG

i (x) where no local models overlap on
the global model and δui = δuG

i (x)+δuLp
i (x)+δuLq

i (x)
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where local models ΩLp and ΩLq (1 ≤ p,q ≤ n, p �= q)
overlap on the global model. δup

i (1 ≤ p ≤ n) are set
to be zero at the boundary ∂ΩLp of ΩLp.

Thus, the displacements and their variations are substi-
tuted in the statement of virtual work principle. After
some algebraic manipulations, we arrive at:

∫
ΩG

∂δuG
i

∂x j
Ei jk�

∂uG
k

∂x�
dΩG +

n

∑
p=1

∫
ΩLp

∂δuG
i

∂x j
Ei jk�

∂uLp
k

∂x�
dΩLp

=
∫

ΩG
δuG

i bidΩG +
∫

∂ΩG
t

δuitid
(
∂ΩG

t

)
(7)

∫
ΩLp

∂δuLp
i

∂x j
Ei jk�

∂uG
k

∂x�
dΩLp +

∫
ΩLp

∂δuLp
i

∂x j
Ei jk�

∂uLp
k

∂x�
dΩLp

+
n

∑
q=1
q�=p

∫
ΩLp−Lq

∂δuLp
i

∂x j
Ei jk�

∂uLq
k

∂x�
dΩLp−Lq

=
∫

ΩLp
δuLp

i bidΩLp

(p = 1,2,3, · · · ,n) (8)

From the right hand sides of equations (7) and (8), vari-
ous stiffness matrices are obtained. Thus, an equation in
a matrix form can be written, as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

KG KG−L1 KG−L2 KG−L3 · · · KG−Ln

KL1−G KL1 KL1−L2 KL1−L3 · · · KL1−Ln

KL2−G KL2−L1 KL2 KL2−L3 · · · KL2−Ln

KL3−G KL3−L1 KL3−L2 KL3 · · · KL3−Ln

...
...

...
...

. . .
...

KLn−G KLn−L1 KLn−L2 KLn−L3 · · · KLn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uG

uL1

uL2

uL3

...
uLn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bG

bL1

bL2

bL3

...
bLn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fG

0
0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(9)

KG is the ordinary stiffness matrix for the global fi-
nite element model which arises from the first of
equation (7) and KLp (p = 1,2,3, · · · ,n) are those
for the local finite element models arising from the
second of equation (8). KG−Lp (p = 1,2,3, · · · ,n)

and KLp−G (p = 1,2,3, · · · ,n) are the coupling stiff-
ness matrices between the global and local finite
element models, arising from the second of equa-
tion (7) and the first of equation (8), respectively.
KLp−Lq (p,q = 1,2,3, · · · ,n; p �= q) are the coupling
stiffness matrices between the local finite element mod-
els arising from the third of equation (8). bG and
bLp (p = 1,2,3, · · · ,n) are the resulting nodal forces of
the body force terms. fG is the nodal force vector of ex-
ternal forces. It is noted that the matrices have the sym-
metric properties of KLp−G =

(
KG−Lp

)T
and KLp−Lq =(

KLq−Lp
)T

. Therefore, the coefficient matrix of the left
hand side of equation (9) is symmetric.

3 Computational Procedures for Heterogeneous
Materials

3.1 Material Constants

As done in an ordinary finite element analysis, mate-
rial constants such as Young’s modulus are specified
based on finite elements. In present case, the local finite
element models represent the material heterogeneities.
Thus, the material properties are specified such that, the
global finite element model has the material properties of
matrix material only and the materials other than matrix
material are specified in the local finite element model.
Therefore, there are regions where two or more different
materials are specified by the global and local finite ele-
ment models. A typical scenario is presented in Figure
4 for a two-dimensional illustrative example. There are
two local finite element models. Each local finite element
model has a region corresponding to a particle where the
material constants are different from those of matrix ma-
terial. In the figure, they are designated as “matrix mate-
rial”, “particle type 1” and “particle type 2”. We assign
priority orders to the materials. Their priorities are in
the order of “particle type 2”, “particle type 1” and “ma-
trix material”. Thus, at a point where all of three overlap
“particle type 2” is chosen as it has the highest priority
order among the three. At a point where “particle type 2”
and “matrix material” overlap, “particle type 2” is used
as it has higher priority order than the other. The priority
orders are given to material models as input data.

3.2 Integration for Coupling Stiffness Matrices

In present approach, finite elements overlap each other.
There are three kinds of ways that elements overlap each



Analysis of Particulate Composite Materials 337

Figure 4 : A schematic illustration for how material models are specified and how an appropriate one is chosen in
the element overlay technique

other. There are three cases; i) an element is completely
inside the other, ii) two elements partially overlap and iii)
an element completely include the other, as shown in Fig-
ure 5. In Figure 5, the s-th element of the p-th local finite
element model overlaps with the t-th element of the q-th
local finite element. They are designated as “EL(p,s)”
and “EL(q,t)”, respectively. The volumes (areas) of the
two elements are denoted to be Ω(p,s) and Ω(q,t). Cou-
pling stiffness matrix

[
k(p,s)−(q,t)] between the two ele-

ments can be written to be:[
k(p,s)−(q,t)

]

=
∫

Ω(p,s)−(q−t )

[
B(p,s)

]T
[E]

[
B(q,t)

]
dΩ(p,s)−(q,t) (10)

where Ω(p,s)−(q,t) is the volume (area) that is shared by
the two elements.

[
B(p,s)

]
and

[
B(q,t)

]
are the strain-

displacement matrices of EL(p,s) and EL(q,t), respec-
tively.

When EL(p,s) is completely inside of EL(q,t) [case (i)],
the integration is carried out based on Ω (p,s) and when
EL(q,t) is inside of EL(p,s) [case (iii)], quadrature rule is
applied to Ω(q,t). However, for the case (ii) that Ω(p,s) and
Ω(q,t) partially overlap each other, an ordinary quadrature
rule can not be applied to Ω(p,s)−(q,t), as its shape may be
very complex. In Figure 5 (b), a two dimensional case is
illustrated and the geometry of overlapping region looks
to be simple. However, the shape of overlapping region
in three-dimensional cases would be much more com-
plex than the two-dimensional case, as shown in Figure
6. There are many ways for these elements to overlap. In
this paper, a simple algorithm that works for both two-

and three-dimensional problems is developed to perform
the integration accurately.

We rewrite equation (10), as:
[
k(p,s)−(q,t)

]

=
∫

Ω(p,s)
Θ(p,s)−(q,t) (x)

[
B(p,s)

]T
[E]

[
B(q,t)

]
dΩ(p,s) or

=
∫

Ω(q,t )
Θ(p,s)−(q,t) (x)

[
B(p,s)

]T
[E]

[
B(q,t)

]
dΩ(q,t) (11)

Here, integration is performed for the region of EL(p,s) or
of EL(q,t). Θ(p,s)−(q,t) (x) is a function of x, whose value
is one inside the region of Ω (p,s)−(q,t). Otherwise, it takes
zero. Therefore, the integrands in equation (11) would
have sever discontinuities. An ordinary Gauss quadrature
that is usually adopted in finite element programs would
fail to serve accurate results. Fish (1992) proposed the
use of ordinary Gauss quadrature rule to carry out the in-
tegration of equation (11). It must be pointed out here
that in present applications, ways that elements overlap
each other are much more complex than what was as-
sumed in Fish (1992), as the local finite element models
are allowed to overlap. Therefore, the accuracy of the
integration has a more pronounced influence on the solu-
tions. Readers are referred to Okada, Endoh and Kikuchi
(2004) in which the influence of quadrature rule on the
accuracy of S-FEM analysis was discussed.

In Figure 7, a two-dimensional example is presented.
EL(p,s) partially overlaps with EL(q,t) and the integral
is performed based on EL(p,s). First, EL(p,s) is divided
into four subdivisions. Each subdivision is checked if
any of edge line intersects with it. If an intersection is de-
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(a) case (i): EL(q,t) is completely included in EL(p,s)

(b) case (ii): EL(q,t) and EL(p,s) partially overlap 

(c) case (iii) EL(p,s) is completely included in EL(q,t)

Figure 5 : The s-th element of the p-th local model over-
laps with the t-th element of the q-th local model

tected, the subdivision is divided again. Then, each sub-
division of EL(p,s) is checked at its center if it is inside
of EL(q,t). Then, the volume of Ω(p,s)−(q,t) is computed.
This process is repeated until the change of computed
volume of Ω(p,s)−(q,t) becomes small enough compared
with the volume (area) of EL(p,s). In present analyses,
the subdivisions are carried out until the change of com-
puted volume of Ω(p,s)−(q,t) becomes less than 1% and
0.1% for two- and three-dimensional problems, respec-

Figure 6 : Many ways that two three-dimensional hexa-
hedron elements overlap each other

tively.

3.3 Solution Procedure for the Linear Simultaneous
Equation (9)

Equation (9) is solved for unknown displacements. The
coefficient matrix of the right hand side of equation (9)
does not have a band structure. Therefore, linear equa-
tion solvers for band matrix that are popular for finite el-
ement calculations would not be very efficient in terms of
computer memory usage. Thus, we adopted an iterative
solver (Pre-conditioned conjugate gradient method) that
requires only non-zero elements of coefficient matrix to
be stored in computer memory [see, for example, Oguni,
Murata, Miyoshi, Dongarra and Hasegawa (1991)].

4 Accuracy of S-FEM Analysis

In this chapter, we discuss about the accuracy of present
S-FEM analysis by taking some simple cases as our ex-
ample problems. Circular hole and spherical void prob-
lems are solved and their solutions are compared with
their analytical ones. As a governing factor for the ac-
curacy of analysis, the connection of displacement field
from the global to local finite element model may have a
large impact on the accuracy of results. Thus, the sizes
of stress concentration source (i.e., hole), local mesh re-
gion and elements in global model need to be set appro-
priately. We try to come up with simple guidelines to
perform present S-FEM analysis accurately.

Material in the hole/void is modeled as an elastic mate-
rial whose Young’s modulus is much smaller than that of
the surrounding. In this way, the same local finite ele-
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(a)                                             (b) 

      

            (c)                                            (d) 

Figure 7 : Element subdivision technique for integrat-
ing stiffness matrices [(a) First step: element EL(p, s) is
divided into four subdivisions, (b) Subdivisions that the
boundary of element EL(q,t) runs through are divided
further, (c) Further subdivisions, (d) Integration points
for each subdivision]

ment model can be used for the problems of stiffer par-
ticles just by changing the value for Young’s modulus.
Material constants that are used in present analyses are
summarized in Table 1.

Table 1 : Young’s moduli and Poisson’s ratio assumed
for the circular hole/spherical void problems

 Young’s 

modulus 

Poisson’s ratio 

Surrounding 

Material (Matrix) 

E 0.3 

In Circular 

Hole/Spherical

Void 

E / 100 0.3 

4.1 One Circular Hole Problem (Two-Dimensional
Problem)

Stress concentration associated with a circular hole in a
large panel is analyzed by proposed S-FEM approach. As
shown in Figure 8, a hole is placed in a very large panel.
Then, the panel is subject to tension. Stress distributions
along the edge of the circular hole are compared between
those computed by present S-FEM analyses and analyti-
cal solution [see, for example, Sokolnikoff (1956)].

Typical global and local finite element models are pre-
sented in Figure 9. The shape of local model region is
circular and its radius is denoted by R. The radius of hole
is denoted by r. The global finite element model is con-
sisting of square shaped finite elements. The length of
each edge of a global element is denoted by Lg. Both for
global and local finite element models, four node linear
elements are adopted.

Figure 8 : Circular hole problem to evaluate the accuracy
of proposed methodology

A number of analyses are carried out by using present
S-FEM program with changing the ratios R/Lg and R/r.
The radius r and size L of hole and of square block are
set to be 0.5 mm and 10 mm, respectively. Results for the
ratio r/Lg being 3.34, 2 and 1.25 are presented in Figure
10 (a), (b) and (c), respectively. It is seen from Figure
10 (a) that when the ratio R/Lg is less than one, the stress
concentration at the edge of crack is not appropriately re-
produced. In these cases, the ratio R/r varies from 1.5 to
3.0. In Figure 10 (b), except for the case R/Lg is set to
be 0.75, the solutions are similar. The ratios R/r in these
cases are from 1.5 to 3.0. Figure 10 (c) indicates that for
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Figure 9 : A typical global and local finite element model
for the circular hole problem

all the cases R/Lg equals 1.2 or greater, the solutions are
close to the analytical curve. In these cases, R/r varies
from 1.5 to 3.0. These results indicate that when the ratio
R/Lg equals or greater than 1.0, the solutions are accu-
rate, almost regardless of the ratio R/r. Thus, we inves-
tigated how the ratio R/r influences the accuracy of solu-
tion and the results are shown in Figure 11. In Figure
11, the ratio R/Lg equals 1.0 and R/r varies from 1.25 to
3.34. It is seen that, except for the case of R/r being 1.25,
data points fall on a curve, which is slightly off from the
analytical curve. The case that R/Lg and R/r equal 1.2
and 1.5, respectively, give accurate solutions, as seen in
Figure 10 (c). It can be concluded from these results that
the ratios R/Lg and R/r should be equal or greater than
1.0 and 1.5, respectively. That is the guideline to carry
out present S-FEM analysis accurately, provided that the
discretization for local model is fine enough.

4.2 Four Circular Hole Problem (Two-Dimensional
Problem)

In this section, the accuracy of solution when the local
models overlap each other is considered. The solution of
present S-FEM analysis is compared with that of an ordi-
nary finite element program. In Figure 12, the arrange-
ments of circular holes and local finite element models
are depicted. The local finite element models overlap
each other. Global and local finite element models that
are used in this analysis are given in Figure 13. In both
S-FEM and ordinary FEM analyses, material in the circu-
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Figure 10 : The variations of stress σ22 normalized by
applied stress σ computed by various size ratios between
Lg, R and r

lar holes is modeled as an elastic material whose Young’s
modulus is much smaller than that of the surrounding,
as summarized in Table 1. Four node linear elements
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Figure 11 : The variations of stress σ22 normalized by
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Figure 12 : Four circular hole problem.

(a) S-FEM model              (b) Ordinary FEM model 

Figure 13 : S-FEM and ordinary finite element models
for the four circular hole problem

are adopted for the analyses. The model for ordinary
finite element analysis has a total of 2576 and 2601 el-
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Figure 14 : Distribution of stress σ 22 normalized by the
applied stress, along the line A-A’

ements and nodes. The global finite element model for
S-FEM analysis has 144 elements and 169 nodes. The
local model has 980 elements and 1001 nodes.

In Figure 14, the distributionof stress in the tensile direc-
tion along the line A-A’ in Figure 12, is presented. The
solution of an ordinary finite element program is plotted
as a reference solution. The solutions of present S-FEM
and the ordinary finite element method are very close to
each other.

4.3 Spherical Void Problem (Three-Dimensional
Problem)

A spherical void is placed at the center of analysis re-
gion. The analysis region is large compared with the size
of spherical void. R, r and Lg represent the radii of lo-
cal mesh region and spherical void and the edge length
of each global element, respectively. As depicted in Fig-
ure 15, the radius r of spherical void and the size L of
cubical analysis region are set to be 0.5 mm and 10 mm,
respectively. A typical analysis model including global
and local finite element models is shown in Figure 16
for its cross section. Global finite element model is con-
sisting of cubical shaped finite elements. Local finite el-
ement model region has a spherical shape and its radius
R is varied. We then performed a number of analyses for
various combinations of ratios R/r and R/Lg. Material in
the void is modeled as an elastic material whose Young’s
modulus is much smaller than that of the surrounding, as
summarized in Table 1. Both for global and local finite
element models, eight node linear elements are adopted.
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Figure 15 : A cube containing a spherical void at its cen-
ter subject to tension

Figure 16 : The cross section of a typical S-FEM anal-
ysis model for the problem of one spherical void in a
cubical block

In Figure 17 (a), (b) and (c), the variations of computed
stress in the tensile direction along a horizontal line from
the edge of the void are compared with the analytical so-
lution [see, for example, Nishida (1973)], for the ratio
r/Lg being 3.34, 2 and 1.25, respectively. In Figure 17
(a), results are presented for the ratios R/Lg and R/r be-
ing 0.45∼0.9 and 1.5∼3.0, respectively. In all the cases
presented in Figure 17 (a), the values of stress are not
close to the analytical curve. In Figure 17 (b), the ratios
R/Lg and R/r are varied from 0.75 to 1.5 and from 1.5 to
3.0, respectively. The results when the ratio R/Lg is less
than 1.5, the results somewhat deviate from the curve of
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Figure 17 : The variations of stress σ33 normalized by
applied stress σ computed by various ratios between Lg,
R and r, for the problems of spherical void in a cube

analytical solution. The solutions for the ratio R/Lg be-
ing 1.2∼2.4 are plotted in Figure 17 (c). The solutions
are close to the analytical curve. But for R/Lg being 1.2,
the computed stresses are slightly smaller than the other.
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By combining the above findings, to obtain accurate so-
lutions, the ratio R/Lg needs to be roughly equal 1.5 or
greater. The influence of the ratio R/r to the accuracy of
the solution is investigated in Figure 18. The ratio R/Lg
is fixed to be 1.5. It is found that for all the cases that
R/r being 1.25∼3.0, the stress concentration at the sides
of the hole is reproduced. However, for R/r=1.25, a large
discrepancy from the analytical curve is seen at d/r =1.5.
This is because, this point is outside the local finite el-
ement model and the stress is only based on the global
model. There are some points like this for R/r=1.5 also.
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Figure 18 : The variations of stress σ33 normalized by
applied stress σ, for Lg / R = 1.5 with various ratios of R
/ r

Combining discussions above, R/Lg and R/r should be
equal or greater than 1.5 and 1.5, respectively, to carry
out the three-dimensional S-FEM analysis accurately.

4.4 Discussions on the Accuracy of S-FEM for Stress
Concentration Problems

From the results that are presented in this chapter, we can
draw some conclusions as guidelines to perform present
S-FEM analyses for stress concentration problems accu-
rately.

The solutions are very sensitive to how large the lo-
cal finite element model region is. For two- and three-
dimensional cases, the sizes (radii) of the local model
regions should be the same and 1.5 times larger than the
size of a global element, respectively. The size of lo-
cal mesh region relative to that of hole/void also influ-
ences the accuracy of solution. Furthermore, it has been
demonstrated that superposing two or more local mesh

regions together does not deteriorate the accuracy of the
solutions, as seen in the four hole problem.

5 The Problems of Distributed Holes/Voids and Stiff
Particles

In this chapter, some example problems are presented
and the capabilities of present S-FEM technique are
demonstrated. Holes/voids and particles are distributed
randomly by using Sobol’ sequence [Press, Teukolsky,
Vetterling and Flannery (1996)], which is a method to
evenly distribute points in a multi dimensional space. In
present analyses, we generate models for the specified
radii of holes/voids. When points are generated by us-
ing Sobol’ sequence, the particles may overlap each other
and some local finite element models may intersect with
the outer boundary of the global model region. In present
study, we simply omit such locations from placing the
holes/voids and particles, except for a few places in two-
dimensional example problem. Therefore, holes/voids
and particles do not overlap each other and all the lo-
cal finite element models are contained in the region of
global finite element model. Both for global and local fi-
nite element models, four and eight node linear elements
are adopted for two- and three-dimensional analyses, re-
spectively.

5.1 250 Hole/Particle Problems in Two-Dimensional
Tension Block

First, the results of two-dimensional problems are pre-
sented. 250 holes/stiff particles are distributed in a 10 x
10 (mm) square region, as depicted in Figure 19. The
radii of each holes/particles are 0.15 mm and their frac-
tion is 17.6%. A few holes/particles overlap each other.
Holes are modeled as extremely soft elastic material. The
Young’s moduli of hole and particle regions are set to be
1/100 and 10 times of that of matrix material. The square
shaped plate is subject to a uniform tension at its top, as
shown in Figure 19. In Figure 19, the global and lo-
cal finite element models are also presented. There are a
total of 372 and 385 elements and nodes for each local
finite element model and the global model has a total of
400 and 441 elements and nodes.

In Figure 20, the distributions of stress are presented
for the hole and particle problems. The distributions are
shown in gray-scale in which dark and light colors in-
dicate the location of high and low stress, respectively.
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(a) Arrangement of holes/particles. 

(b) Global finite element model  (c) Local finite element  

                                    model 

Figure 19 : The arrangement of holes/particles and
the global and local finite element models for 250
hole/particle problem

In Figure 20 (a), the result for the hole problem is pre-
sented and it is seen that stress concentrates at the sides
of holes. The magnitudes of stress concentration seem to
vary due to the distribution of holes. At the top and bot-
tom of each hole, stress is almost zero and stress is very
low between the holes when they align in vertical direc-
tion. In Figure 20 (b), the result of the particle problem
is presented. Stress inside the holes is high and the high
stress regions extend in vertical direction in matrix ma-
terial. When the particles align in vertical direction, the
high stress regions connect the particles. The magnitude
of stress rise seem to be influenced by the distribution of
particles.

5.2 35 Void/Particle Problems in Three-Dimensional
Tension Block

In Figure 21, a three-dimensional model containing 35
voids/particles in a 10 x 10 x 10 (mm) cubical block is
shown. The radii of voids/particles are 0.8 mm and their
volume fraction is 7.5%. The Young’s moduli of voids

(a) 250 holes 

(b) 250 particles 

Figure 20 : The distribution of stress σ 22 normalized by
applied tensile stress σ for 250 hole/particle problem

and particles are set to be 1/100 and 10 times of that of
matrix material. The global and local finite element mod-
els are also shown in Figure 21. There are a total of 928
and 1007 elements and nodes for each local finite ele-
ment model. The global model has 1000 elements and
1331 nodes. In Figure 22, stress distributions for the
void and particle problems in a section through the block
are shown.

The stress concentrations are seen at both the sides of
voids and at top and bottom of particles. In addition,
there are many particles/particles just behind and above
the plane of visualization. Thus, the stress distributions
in the section are very complicated. Stress concentrations
and decreases due to the unseen voids/particles appear in
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(a) 35 void/particle model (arrangement of voids/particles 

and 10x10x10 global finite element model) 

(b) Local finite element model (cut model and outside) 

Figure 21 : The arrangement of holes/particles and
the global and local finite element models for 35
void/particle problem

the stress distributions.

6 Discussions and Concluding Remarks

In this paper, an element overlay technique (S-FEM) for
problems containing many distributed voids and filled
particles is developed. Many local finite element models
are superposed on the global model and they are allowed
to overlap each other. Each local finite element model
represents a void or a particle. When the voids/particles
have the same geometry, the same local finite ele-
ment model can be used repeatedly. Therefore, build-
ing/changing a model containing many voids/particles is
a trivial task. Present approach can be used to investigate
the detailed deformation behavior of porous/composite
materials with complex internal structures.

A simple criterion to perform present S-FEM analysis ac-
curately is proposed. That is, the size of local finite ele-
ment region should be large enough compared with that
of an element in the global finite element model. For
two-dimensional cases, the representative size of local

(a) 35 hole problem 

(b) 35 particle problem 

Figure 22 : The distributions of stress σ 22 normalized by
applied tensile stress σ for 35 hole/particle problem

mesh region needs to be the same as or larger than that
of global element. For three-dimensional problems, the
size of local mesh region must be slightly larger than the
two-dimensional cases. The size must be about 1.5 times
larger than the size of an element in the global model.
A similar finding was presented by Okada, Endoh and
Kikuchi (2004) for two-dimensional fracture mechanics
problems. Furthermore, it was demonstrated in this pa-
per that even when several local finite element models
are overlapped each other, the results are accurate.

Combining the outcomes of present research, we can
perform mesoscopic analyses on particulate compos-
ite materials accurately with much less modeling ef-
forts compared with the case of ordinary finite element
method. We have demonstrated 250 hole/particle and
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35 void/particles problems in two- and three-dimensional
unit cell. We will then extend present work to perform
nonlinear/damage analyses in which the influence of ran-
domness in void/particle arrangement would be more
pronounced than linear elastic problems. We are now de-
veloping an S-FEM computer program that enables ma-
terial nonlinear (elastic-plastic and elasto-viscoplastic)
analysis. However, as discussed in this paper, the compu-
tation for coupling stiffness matrix still has some numer-
ical difficulties. Although the method that is described in
this paper works in terms of numerical accuracy, the de-
veloped numerical technique takes considerable amount
of computational time as the number of integration points
is so large. This issue needs to be attacked and will be re-
ported by the authors in near future.
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