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Lie Group Symmetry Applied to the Computation of Convex Plasticity
Constitutive Equation

C.-S. Liu1, 2 and C.-W. Chang1

Abstract: This paper delivers several new types of
representations of the convex plasticity equation and re-
alizes them by numerical discretizations. In terms of
the Gaussian unit vector and the Weingarten map tech-
niques in differential geometry, we prove that the plas-
tic equation exhibits a Lie group symmetry. We con-
vert the nonlinear constitutive equations to a quasilinear
equations system Ẋ = AX, X ∈ M

n+1, A∈ so(n,1) in lo-
cal. In this way the inherent symmetry of the constitutive
model of convex plasticity is brought out. The underlying
structure is found to be a cone in the Minkowski space
M

n+1 on which the proper orthochronous Lorentz group
SOo(n,1) left acts. Based on the group properties some
numerical methods are developed, which together with
a post-projecting method can update the stress points on
the yield surface at every time increment.

keyword: Computational plasticity, convex plasticity,
Lorentz group, consistent scheme.

1 Introduction and model specification

The study of plastic behavior of solid materials under
complicated mechanical environment is a very important
topic for engineering science and industrial practice, and
computational plasticity is a mature subject. In this study
a substantial role has been played by the constitutive re-
lations of elastoplasticity, to which many theoretical and
experimental contributions and applications have been
made; see, e.g., Chen, Yuan and Wittmann (2002), and
Sainsot, Jacq and N’elias (2002).

The engineering problems encountered are usually in
three dimensions where various stress components inter-
act to cause yielding and plasticity of the material. A
yield function includes the effects of all stress compo-
nents acting in a system to predict the yielding of mate-
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rial. For a general three-dimensional case we have six
independent stress components.

The material is said to be in the elastic state if the yield
function f is less than 1,

f (Q) < 1, (1)

while plastic state if f is exactly equal to 1,

f (Q) = 1, (2)

in which Q denotes the stress vector,

Q :=
[

σ11 σ22 σ33 σ23 σ13 σ12
]T

. (3)

Throughout this paper a superscript T denotes the trans-
pose. In this paper we focus on the complex prob-
lem of convex plasticity and restrict ourselves to a small
strain plasticity and thus makes no distinction between
the Cauchy stress σ and the Kirchhoff stress τ as that
used in the finite strain plasticity by Atluri (1984, 1986),
Im and Atluri (1987) and Wang and Atluri (1994).

Many types of the yield functions exist for different ma-
terials. For metals, the Tresca, the von-Mises and the Hill
yield functions are widely used. For concrete or other ge-
omaterials, the Mohr-Coulomb and the Drucker-Prager
yield functions are widely used; see, e.g., Liu (2004a).

Upon combined the two stress states specified in Eqs. (1)
and (2), the stress admissible region is

f (Q) ≤ 1. (4)

Thus, f can never be greater than 1. We are concerned
only with the stress-strain relations of perfectly plastic
materials. For many practical applications, a material
may be idealized and assumed to have a neglible strain-
hardening effect. Thus, the above yield function is as-
sumed to be hardening independent; however, it may de-
pend on some material constants.
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Corresponding to the stress vector in Eq. (3) there is a
conjugate strain vector

q :=
[

ε11 ε22 ε33 ε23 ε13 ε12
]T

. (5)

We suppose that its rate can be further decomposed addi-
tively by

q̇ = q̇e + q̇p, (6)

where a superimposed dot denotes the time derivative,
and the superscript e surmounted on q indicates that qe

is the elastic part of strain deformation, while the plas-
tic strain deformation is denoted by qp. The physical
motivation of the decomposition (6) is the splitting of
the stress power Q · q̇ = Q · q̇e + Q · q̇p into a recover-
able part and a dissipative part. Throughout this paper a
dot between two vectors stands for their inner product.
The above equation is applicable in the range of small
strain which can be derived either from a multiplica-
tive decomposition [e.g., Lee and Liu (1967), and Lee
(1969)], or as a general postulate [e.g., Nemat-Nasser
(1979)]. The legitimacy of Eq. (6) has been discussed
by Lee (1981), Nemat-Nasser (1982) and Xiao, Bruhns
and Meyers (1999).

As long as the stress state is inside the elastic region, we
can use a linearly hypoelastic rule to predict the defor-
mation of the material,

Q̇ = keq̇e, (7)

where ke is an elastic modulus of the material. In the first
few sections we consider ke to be a scalar, and then in
Section 8 we extend the computational results to the con-
vex plasticity model endowing with an anisotropic elastic
law:

Q̇ = Kq̇e, (8)

where K is a Voigit matrix form of the fouth-order elastic
tensor, which is supposed to be symmetric and positive.

When attempting to cover the deformation with finite
strain, Eq. (6) needs to be modified by an additive de-
composition of the rate of deformation into an elastic part
and a plastic part, while the stress rate in Eqs. (7) and (8)
is replaced by a proper corotational stress rate. Mandel
(1971) has supplemented the multiplicative decomposi-
tion of the deformation gradient into an elastic part and a
plastic part proposed by Lee and Liu (1967) with the no-
tion of directors attached to the material substructure in

the relaxed configuration. Then Mandel defined a proper
corotational rate as the one associated with the spin of
the triad of the directors. The extension of Mandel’s the-
ory to mixed hardening with internal time has been dis-
cussed by Atluri (1986) and Im and Atluri (1987). The
material models with different objective stress rates have
been studied by Atluri (1984) and some numerical results
about the simple shear behaviors were shown there and
further clarified by Liu (2004b) with the Lie group inte-
grating methods. Since our aim is to present a clear the-
ory about the convex plasticity, we focus on the convex-
ity of the yield function in the current stage and therefore
would pay no attention to the finite strain theory even it
is a very important issue in the development of plasticity
theory.

According to a plastic irreversibility argument made on
elastic-perfectly plastic material [e.g., Chen and Han
(1988)], the requirement of positive plastic work leads to
convexity of the yield surface and normality of the plastic
flow. Thus we assume3

q̇p = q̇0n, (9)

where

q̇0 ≥ 0 (10)

is a plastic multiplier, and

n :=
∇f (Q)

‖∇f (Q)‖ (11)

is a unit normal vector standing on the yield surface at a
point Q. Here, ∇f (Q) := ∂ f (Q)/∂Q, and according to
the convexity of yield function we assume that the Hes-
sian matrix associated with f is positive definite, i.e.,

H(Q) := ∇2 f (Q) > 0, (12)

such that the denominator in Eq. (11) is nowhere zero.

A point Q ∈ R
6 such that ∇ f (Q) �= 0 is called a regular

point of f ; see, e.g., Thorpe (1979). Here, we call f reg-
ular if ∇ f (Q) �= 0 for every Q in the considered domain.
In differential geometry, e.g. Thorpe (1979), the map de-
fined by Eq. (11) is called the Gauss map, and for this
reason we give n a particular name—the Gaussian unit
vector.

3 The foundation of associativity is a material stability postulate,
which could be either Drucker’s postulate in stress space, or
Ilushin’s postulate in strain space.
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The product of the two inequalities (4) and (10) leads to

f (Q)q̇0 = q̇0, (13)

which together with the just mentioned two inequali-
ties are usually called the complementary-trio. From the
above equation two results follow obviously: in the plas-
tic state, i.e. q̇0 > 0, f = 1, and in the elastic state, i.e.
f < 1, q̇0 = 0. The other situations require a further clar-
ification as to be carried out in Section 2.

For a perfectly plastic material, the stress-strain rela-
tion in the uniaxial case is rather simple. However, the
general behavior of the material under a complex stress
state is not so straightforward, because it involves six
stress components and six strain components. The ques-
tion therefore arises as to how integrating these nonlin-
ear differential equations to investigate the behavior of
the material under any combined stress state. The non-
linear problem of plasticity is usually treated by differ-
ent workers in computational plasticity with various nu-
merical schemes. For example, the tangent stiffness-
radial return method [e.g., Krieg and Krieg (1977), and
Schreyer, Kulak and Kramer (1979)], the radial re-
turn method [e.g., Krieg and Krieg (1977)], the elastic
predictor-radial corrector method [e.g., Schreyer, Kulak
and Kramer (1979)], the generalized midpoint rule [e.g.,
Ortiz and Popov (1985)], the closest-point-projection al-
gorithm [e.g., Simo and Taylor (1985)], and also the
plastic predictor-elastic corrector method [e.g., Nemat-
Nasser (1991)]. In order to enforce the consistency con-
dition at every time step the abovementioned algorithms
require some iterative calculations to force the stress
point at the end of each time step to converge to the
yield surface, which is a main source of numerical errors
and of consumption of computational time. On the other
hand, highly complex expressions defining the yield sur-
faces may render any conventional calculation method of
the second order derivative (needed for a full backward-
Euler integrator) almost intractable. Wang and Atluri
(1994) have shown that the explicit algorithm of Nemat-
Nasser (1991) is not satisfactory due to the convergence
problem when the direction of stress keeps changing,
as for the non-proportional loading cases, and then pro-
posed a newly modified algorithm which has no prob-
lems in convergence and can give a reasonable solution
even for large time steps.

The passage directly from the flow model to a numerical
scheme may alter or destroy the underlying structure of

the model, resulting in unstable, inefficient, and inaccu-
rate calculations. Previously, Hong and Liu (1997, 1998)
have exactly linearized the flow model of perfect elasto-
plasticity with von Mises yield criterion and obtained the
closed-form response formulae for the model subjected
to rectilinear strain paths. Then, a group theory of the
above perfectly elastoplastic model was also developed
by Hong and Liu (2000), and a numerical scheme de-
veloped fully utilizing the group properties was shown
rather promising. Extensions along this direction were
also made by several researchers. Auricchio and Beirão
da Veiga (2003), according to the work of Hong and Liu
(1999a, 2000), extended the integrating factor idea to a
linear hardening von Mises model. After some numerical
tests, Auricchio and Beirão da Veiga (2003) showed that
their new method has a quadratic error convergence while
the radial return method shows a linear error convergence
behavior. However, their new method does not guaran-
tee to preserve the consistency condition in the plastic
loading process as remarked by Liu (2004c). Mukherjee
and Liu (2003) and Liu (2004c) have developed consis-
tent numerical schemes without the need of iterations for
isotropic hardening and for mixed-hardening materials,
respectively. Liu (2004b) has developed the consistent
numerical schemes for some large deformation elasto-
plastic models by considering the quaternionic formula-
tions, which is a great extension of the work by Hong and
Liu (1999b) and Liu (2001).

A better understanding of the internal symmetries of the
underlying models is not only important in its own right,
but will also be beneficial to computation, and often sim-
plifies the solution considerably; see Liu (2003). The
most important invariance of perfectly plastic model is
that the stress states should stay on the yield surface,
which remain unchanged during the plastic deformation.
Once one finds internal symmetry in a model of plastic-
ity, one finds among others the key to satisfying the con-
sistency condition. In this paper we propose to approach
the symmetry issue and its application on the computa-
tion. We analyze the constitutive model of convex plas-
ticity and attempt to achieve a deeper understanding of
its underlying structure; more precisely speaking, we ex-
plore the structure of Minkowski space M

n+1 and the
proper orthochronous Lorentz group SOo(n,1) inherent
in the model in the plastic phase. Here, depending on
the number of nonzero stress components in Eq. (3) (and
correspondingly nonzero strain components in Eq. (5))
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which we consider for a physical problem, for exam-
ple, the axial tension-compression problem, the biaxial
tension-compression-torsion problem, etc., the dimen-
sion n may be an integer with 1 ≤ n ≤ 6, and no matter
which case is we use n to denote the physical problem
dimension.

We also investigate the dynamics of plasticity equation
from several new aspects. First we deliver a geometrical
setting of this equation by viewing it as an affine nonlin-
ear dynamical system on the yield manifold in Section 3.
In Section 4 we devote to develop a Minkowskian type
representation of the convex plasticity equation, which
is required later for the development of yield constraint
preserving scheme in Section 5. In order to retain the
yield constraint we also derive a modified group preserv-
ing numerical method in Section 6 by viewing the plas-
ticity equations as a nonlinear differential equations sys-
tem in the augmented state space. In Section 7 some
numerical examples are presented to compare the de-
veoped integrating schemes. In Section 8 we extend the
numerical solutions to convex plasticity by considering
the anisotropic elastic law (8), and some conclusions are
made in Section 9.

2 Switch for the mechanism of plasticity

In the study of rate-independent plasticity we are always
concerned with paths. By a path we mean a continuous
curve whose velocity vectors are piecewise continuous.
From Eqs. (9) and (10), it is not difficult to prove that

q̇0 = ‖q̇p‖, (14)

which indicates that q0 is the arc length of a path in the
plastic strain space.

We are going to derive the on-off switching criteria for
the mechanism of plasticity. Substituting Eqs. (6) and
(9) into Eq. (7) gives

Q̇ +keq̇0n = keq̇. (15)

Taking the inner product of Eq. (15) with ∇f gives

∇f · Q̇+keq̇0‖∇f‖ = ke∇f · q̇, (16)

which asserts that

f = 1 =⇒ keq̇0‖∇f‖ = ke∇f · q̇. (17)

Because of ke > 0, we have

f = 1 =⇒ {∇f · q̇ > 0 ⇐⇒ q̇0 > 0}. (18)

Thus we deduce the sufficient condition of the following
statement:

{ f = 1 and ∇f · q̇ > 0} ⇐⇒ q̇0 > 0. (19)

On the other hand, if q̇0 > 0, Eq. (13) assures f = 1,
which together with Eq. (18) assert the necessary con-
dition of the above statement. In other words, the yield
condition f = 1 and the straining condition ∇f · q̇ > 0 are
sufficient and necessary for plastic irreversibility q̇0 > 0.
Considering Eq. (19) together with Eqs. (4), (10), (14)
and (17), we obtain the following on-off switching crite-
ria for the mechanism of plasticity:

q̇0 = n · q̇ > 0 if f = 1 and ∇f · q̇ > 0, (20)

q̇0 = 0 if f < 1 or ∇f · q̇ ≤ 0. (21)

Based on the criteria and the complementary-trio (4),
(10) and (13), there are just two phases: the on phase in
which q̇0 > 0 and f = 1 and the off phase in which q̇0 = 0
and f ≤ 1. In the on phase the mechanism of plasticity is
on and the model exhibits elastoplastic behavior, which
is irreversible, while in the off phase the mechanism of
plasticity is off and the model responds elastically and
reversibly.

3 Plastic equation on the yield manifold

Eqs. (15), (20) and (21) together yield a two-phase affine
nonlinear system:4

Q̇ = keq̇−ken · q̇n if f = 1 and ∇f · q̇ > 0, (22)

Q̇ = keq̇ if f < 1 or ∇f · q̇ ≤ 0, (23)

of which the latter is linear and represents an instanta-
neous response, and the former is a system of highly non-
linear differential equations in the n-dimensional space of
Q = (Q1,Q2, · · · ,Qn).

Because Eq. (23) is simple, in the remainder of this paper
we concentrate to study the plastic equation (22).

Let S be an n−1-dimensional surface in R
n, for example

the yield surface. A vector field x along a parametrized
curve α : I 	→ S is tangent to S along α if x(t) ∈ Sα(t)
for all t ∈ I. Generally the derivative ẋ is not tangent to
S. However, we can obtain a vector field tangent to S by

4 In control theory a system is said to be an affine nonlinear system
if it is linear in the inputs but nonlinear in the state variables.
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projecting ẋ orthogonally onto Sα(t) for each t ∈ I. In the
terminology of differential geometry, e.g. Thorpe (1979),
the process of differentiating and then projecting onto the
tangent space to S defines a linear operation, which is
called covariant differentiation:

x′ = ẋ− [ẋ ·n(α(t))]n(α(t)), (24)

where n(α(t)) is an orientation at the point α(t) in S. By
utilizing this concept we can prove the following result.

Theorem 1. The plastic equation (22) in terms of the
covariant derivative of q on the yield manifold M can be
represented by a more neater form:

Q′ = keq′, (25)

similar to the elastic equation (23) in the Euclidean
space R

n.

Proof. Let M := {Q| f (Q) = 1} be a smooth convex
yield manifold and let Q(t) be a parametrized curve in
M. The covariant derivative of vector q(t) is the vector
field q′ tangent to M along the curve defined by

q′ = q̇− q̇ ·nn, (26)

which is schematically shown in Fig. 1. On the other
hand we have Q′ = Q̇ since Q̇ is a tangent vector on the
yield manifold. Through Eq. (22) and the above equa-
tions we get the result in Eq. (25), which indicates an
“elastic type” constitutive equation on the yield manifold
M.

The dissipative term in Eq. (22) has a number of interest-
ing properties. It is not induced by any Rayleigh dissipa-
tion function, but is equal to the negative gradient of the
yield function multiplied by a plastic dissipation power.
Take a vector q̇ in R

n and orthogonally decompose it in
the standard metric on R

n into vector component tangent
to the yield manifold and vector orthogonal to the mani-
fold as shown in Fig. 1 with the following result:

q̇ = [q̇− q̇ ·nn]+ q̇ ·nn. (27)

The tangent component of q̇ can be obtained by applying
the projection operator on it:

q̇− q̇ ·nn = [In−n⊗n]q̇, (28)

where In is the n-dimensional identity matrix and ⊗ is the
dyadic (tensor) product of vectors. The projection oper-
ator has the property: [In −n⊗n]2 = In −n⊗n, which

corresponding to the standard metric In on R
n is called

the dissipative metric on the yield manifold; refer Liu
(2000).

4 Formulation in the Minkowski space

From the above discussion it is clear that the Gaussian
unit vector n plays a pivotal role for describing plastic
evolution on the yield manifold, and is a dual variable
of q̇ contributing on the dissipation rate q̇0 as shown in
Eq. (20). Let us consider again the unit n-dimensional
orientation vector as that defined by Eq. (11).5 See Fig. 2
for such a formulation. Because ∇f is a monotonic oper-
ator of Q by the assumption (12), there exists a homeo-
morphism F between Q and ∇f = ‖∇f‖n, such that

Q = F(∇f ) = F(‖∇f‖n). (29)

In the following a methodology will be developed to
embed the pair (n,‖∇f‖) into the Minkowski space, and
derive a differential equations system about (n,‖∇f‖).
This technique was first developed by Liu (2002) to
transform the generalized Hamiltonian system to the
nonlinear Lorentzian equations system. The main result
is given as follows.

Theorem 2. For the plastic equation (22) with its f a
regular and strictly convex function of Q, we can obtain
a nonlinear Lorentzian system representation as follows:

Ẋ = AX, (30)

where A ∈ so(n,1) is a matrix function of X, and X
satisfies the cone condition XTgX = 0.

Proof. Upon letting6

W :=
H

‖∇f‖ , (31)

and taking the differential of Eq. (11) we obtain

ṅ = W Q̇−n · (W Q̇)n. (32)

Inserting Eq. (22) for Q̇ into the above equation one has

ṅ = ke[W −n⊗ (W n)][In−n⊗n]q̇. (33)

5 For a nonzero vector it is rather natural to express it as a unit
vector multiplied by the vector length. However, without more
information about the pair (n,‖∇f ‖) it can do nothing.

6 In differential geometry, e.g. Thorpe (1979), the operator W :=
H/‖∇ f ‖ defined by Eq. (31) is called the Weingarten map.
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Figure 1 : (a) Elastic phase stress rate-strain rate relation in R
n. (b) Plastic phase stress rate-strain rate relation in

TM.

Then, upon defing

As
0 := ke[W − (W n)⊗n]q̇, (34)

from Eq. (33) we have

ṅ = As
0 −As

0 ·nn. (35)

Upon considering the integrating factor

X0(t) := ‖∇f (Q(ti))‖exp

[∫ t

ti
(As

0 ·n)dξ
]
, (36)

where ti is an initial time, Eq. (35) and the time differen-

tial of Eq. (36) become, respectively,

d
dt

(X0n) = X0As
0, (37)

d
dt

X0 = X0As
0 ·n. (38)

In the homogeneous coordinates

X =
[

Xs

X0

]
=

⎡
⎢⎢⎢⎣

X1

...
Xn

X0

⎤
⎥⎥⎥⎦ := X0

[
n
1

]
, (39)
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Figure 2 : The gradient of yield function can be expressed as the Gaussian unit vector multiplied by the length of
the gradient vector.

Eqs. (37) and (38) together lead to Eq. (30), where

A :=
[

0n As
0

(As
0)

T 0

]
. (40)

It is easy to check that A satisfies

ATg+gA = 0, (41)

where the Minkowski metric is

g :=
[

In 0n×1

01×n −1

]
. (42)

However, since A is not only the function of the control
input q̇ but also of X0 and n, it is a local Lie algebra of the
proper orthochronous Lorentz group SOo(n,1), denoted
correspondingly by so(n,1), where n and 1 are used to
stress that there are n’s +1 and one -1 in the metric ten-
sor g and also signifies the dimensions n + 1 of the Lie
algebra.

Taking the time differential of ‖∇f‖, which with the aid
of Eqs. (11) and (12), leads to

d
dt
‖∇f‖ = n · (HQ̇). (43)

In view of Eq. (22) it becomes

d
dt
‖∇f‖ = ken · (Hq̇)−ken · q̇n · (Hn). (44)

Substituting Eq. (34) into Eq. (38) it follows that

Ẋ0

X0 = ken · (W q̇)−ken · q̇n · (W n). (45)

Dividing Eq. (44) by ‖∇f‖ and comparing it with the
above equation by noting Eq. (31) we obtain

Ẋ0

X0 =
d
dt‖∇f‖
‖∇f‖ . (46)

Integrating it and using the initial condition X0(ti) =
‖∇f (Q(ti))‖ identified from Eq. (36), give us a mean-
ingful formula,

X0 = ‖∇f‖. (47)

From the above equation together with Eqs. (11) and (39)
the following identity is verified:

Xs = ∇f . (48)

Thus, we have system (30) with

X =
[

Xs

X0

]
=

[
∇f

‖∇f‖
]
, (49)

and the following As
0:

As
0 = keW q̇− ke

‖∇f‖2 ∇f · q̇W ∇f , (50)
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which is obtained from Eq. (34) by replacing n by
∇f/‖∇f‖; however, W should be viewed as function of
∇f through the homeomorphism (29) between Q and ∇f .

From the definition (39) it is very natural to endow a cone
in the Minkowski space,

XTgX = 0. (51)

Furthermore, in terms of (∇f ,‖∇f‖) through the identi-
fication (49), it holds the following condition:

∇f ·∇f −‖∇f‖2 = ‖∇f‖2 −‖∇f‖2 = 0, (52)

which is the most natural condition that we can put in the
flow model. In Fig. 3 the cone is plotted. The above ends
the proof.

�

�

�

∇f

‖∇f‖

Figure 3 : The construction of cone in the space
(∇f ,‖∇f‖) rendering a Minkowskian type representation
of convex plasticity possible.

5 Yield constraint preserving scheme–MGPS in
space (∇f ,‖∇f‖)

The evolutions of elastic equations are rather simple, and
we below turn our attention to the numerical solutions
of plastic equations. The numerical scheme would pro-
vide a medium to calculate the value of X at time t = t�+1

when already knowing X at time t = t�. The evolution of
X is governed by the dynamical law (30) with matrix A
given by Eq. (40). Due to the piecewise linearity of con-
trolled strain, q̇ is constant in each time increment equal

to ∆t. Unluckily, due to the presence of X in Eq. (50), this
is not true for matrix A. Therefore we approximate the
solution of the dynamical law (30) considering X con-
stant in each single time step. Under such an additional
hypothesis, the matrix A is constant, and so the evolution
of Eq. (30) is known to be

X(�+1) = G(�)X(�), (53)

where

G(�) := exp[∆tA(�)]

=

⎡
⎣ In + z1(�)−1

‖As
0(�)‖2 As

0(�)(As
0)

T(�) z2(�)
‖As

0(�)‖As
0(�)

z2(�)
‖As

0(�)‖(As
0)

T(�) z1(�)

⎤
⎦ , (54)

in which

z1(�) := cosh(∆t‖As
0(�)‖), z2(�) := sinh(∆t‖As

0(�)‖).
(55)

A numerical algorithm is called a group preserving
scheme (GPS) if for every time increment the map from
X(�) to X(�+ 1) preserves the following group proper-
ties:

GTgG = g, (56)

detG = 1, (57)

G0
0 ≥ 1, (58)

where G0
0 is the 00-th component of G located at the

right-lower corner of the matrix as that z1 is in Eq. (54).

In order to match the consistency condition exactly, we
impose the yield condition f (Q) = 1 on the numerical
solutions of X(�+ 1), which by Eqs. (29) and (47) leads
to

f (F(X0(�+1)n(�+1)))−1 = 0. (59)

Here n(�+1)= Xs(�+1)/X0(�+1) is still calculated by
scheme (53), and then substituting it into the above equa-
tion we obtain a nonlinear algebraic equation to solve
a new X0(� + 1). This technique is one of the post-
projecting methods usually employed to solve differen-
tial algebraic equations.

In order to solve Eq. (59) we however need a numeri-
cal method, e.g. the half-interval method, to finish this
work, and after that we update the old Xs(�+1) to a new
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one by Xs(�+1) = X0(�+1)n(�+1) with X0(�+1) just
solved. In the later we will show that the consistency er-
ror through the above modification becomes very small
within a given error tolerance. We call the latter a mod-
ified group preserving scheme (MGPS), which preserves
the internal symmetry PSOo(n,1) for the unit vector n,
and also the yield constraint by enforcing the consistency
condition. Its drawback is needing to search the homeo-
morphism function F.

6 Yield constraint preserving scheme–MGPS in
space (Q,‖Q‖)

In this section we develop another scheme to preserve the
yield constraint. Let us consider Eq. (22) again, which
together with the differential equation for the magnitude
of Q can be rearranged to

d
dt

Q = keq̇−ken · q̇n, (60)

d
dt
‖Q‖ =

1
‖Q‖ [keQ · q̇−ken · q̇Q ·n]. (61)

The above technique was first developed by Liu (2001)
for general dynamical systems to embed them into an
augmented Minkowski space and then derived the group-
preserving scheme.

In terms of augmented state variables

X =
[

Xs

X0

]
:=

[
Q

‖Q‖
]
, (62)

Eqs. (60) and (61) can be combined together to

Ẋ = AX, (63)

where

A :=
[

0n As
0

(As
0)

T 0

]

=
ke

‖Q‖
[

0n q̇−n · q̇n
q̇T −n · q̇nT 0

]
. (64)

Applying the group-preserving scheme (GPS) on
Eq. (63) as that done in Section 5, we also obtain the
numerical scheme as shown in Eqs. (53)-(55). However,
in order to retain the constraint exactly we proceed as
follows. From Eqs. (53) and (54) it follows a numerical

scheme for m := Q/‖Q‖:7

m(�+1)

:= ‖As
0(�)‖2m(�)+[(z1(�)−1)As

0(�)·m(�)+z2(�)‖As
0(�)‖]As

0(�)
z2(�)‖As

0(�)‖As
0(�)·m(�)+z1(�)‖As

0(�)‖2 . (65)

It is easy to check that

‖m(�)‖= 1 =⇒ ‖m(�+1)‖= 1, (66)

which means that scheme (65) preserves the unit length
of m. Corresponding to the symmetry G ∈ SOo(n,1),
the symmetry preserved by scheme (65) is denoted by
PSOo(n,1), a projection of SOo(n,1).

In order to match the yield constraint exactly, we impose
the yield condition on the numerical solutions, which by
m = Q/‖Q‖ = Q/X0 leads to

f (X0(�+1)m(�+1)) = 1, (67)

where m(� + 1) is already calculated by scheme (65).
The above technique is one of the post-projecting meth-
ods usually employed to solve differential algebraic
equations. However, we extend it to the augmented dy-
namical system. Due to the convexity of f , Eq. (67) has
one and only one solution of X0. Substituting m(�+ 1)
into the above equation and solving it by the half-interval
method we may obtain a new X0(�+ 1). With the new
X0(� + 1) we update Xs(� + 1) = Q(� + 1) to a new
Xs(� + 1) = Q(� + 1) = X0(� + 1)m(� + 1), such that
As

0 defined in Eq. (64) can be calculated, and then use
scheme (65) to calculate the next m and Eq. (67) the
next X0. Here we call such a scheme the modified
group-preserving scheme (MGPS), which preserves the
symmetry PSOo(n,1) for m as well as retains the yield
constraint. Fig. 4 shows the numerical processes by a
closed-loop diagram. The schemes in this section are
more effective and direct than that in Section 5, because
the former ones are directly applied to the unit vector
m = Q/‖Q‖, and the latter ones are applied to the unit
vector n = ∇f/‖∇f‖.

7 Numerical examples

In this section we employ two numerical examples, one
with quadratic yield function and the other with cubic
yield function, to demonstrate the performance of the
above numerical schemes.

7 Corresponding to the Gaussian unit vector n defined by Eq. (11),
m := Q/‖Q‖ is a stress unit vector.
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Xs(�)

X0(�)
� G(�) �

Xs

X0
� m = Xs

X0
�

Xs(� + 1)=

X0(� + 1)m

�

f(X0m)=1

�

X0(� + 1)

�

X0(� + 1)

�

Xs(� + 1)

Figure 4 : Instead of the open-loop GPS to calcu-
late (Xs(� + 1),X0(� + 1)) from (Xs(�),X0(�)) by left-
multiplying them by G(�), in the MGPS we use a closed-
loop post-projecting method to enhance the preservation
of yield constraint.

7.1 Example one: quadratic yield function

As a first illustrative example let us consider the follow-
ing quadratic yield function:

f =
1
2

Q · (HQ), (68)

where H is an n×n positive definite matrix of material
constants. For this case one has

∇f = HQ. (69)

Hence, by Eqs. (35), (34) and (44) we obtain

dn
dt

=
ke

‖HQ‖Hq̇− ken · q̇
‖HQ‖Hn

− ke

‖HQ‖n · (Hq̇)n

+
ke

‖HQ‖n · q̇n · (Hn)n, (70)

d
dt
‖HQ‖ = ken · (Hq̇)−ken · q̇n · (Hn). (71)

If ∇f is available, via Eq. (69) the responses are calcu-
lated by

Q = ‖HQ‖H−1n. (72)

For this example As
0 is

As
0 =

ke

‖HQ‖Hq̇− ke

‖HQ‖3 (HQ) · q̇H2Q, (73)

and thus the equations system reads as

d
dt

[
HQ

‖HQ‖
]

=
ke

‖HQ‖3⎡
⎣ 0n×n ‖HQ‖2Hq̇−(HQ)·q̇H2Q

‖HQ‖2q̇TH−(HQ)·q̇QTH2 0

⎤
⎦

[
HQ

‖HQ‖
]
. (74)

The cone condition obviously reduces to

XTgX = (HQ) · (HQ)−‖HQ‖2 = ‖HQ‖2−‖HQ‖2 = 0.

Substituting Eq. (73) into Eq. (54) the group preserving
scheme in Section 5 is available for this example.

For simplicity we consider a two-dimensional axial-
torsional problem Q = (Q1,Q2)T, for which the yield
function becomes

f =
1
2

Q · (HQ)

=
1
2

[
H11(Q1)2 +2H12Q1Q2 +H22(Q2)2] , (75)

where Q1 is the axial stress and Q2 the shear stress. The
modification (67) of X0 for this case can be derived ex-
actly and explicitly as follows:

X0(�+1) =√
2(H11H22−H2

12)
H22(n1(�+1))2−2H12n1(�+1)n2(�+1)+H11(n2(�+1))2 . (76)

The following parameters: H11 = 1 × 10−4 1/MPa2,
H12 = 1.5×10−4 1/MPa2, H22 = 5×10−4 1/MPa2, and
ke = 5×104 MPa are used on the material model. We first
consider a piecewise proportional loading case. Fig. 5
illustrates the responses to an input of a cyclic square
path in two dimensions strain space (q1,q2) as shown in
Fig. 5(a). Substituting Eq. (73) for As

0 into the numerical
schemes (53) and (54) in Section 5, the responses are cal-
culated. The results include the stress path in Fig. 5(b),
hysteresis loops in Figs. 5(c) and 5(d), as well as the
errors of consistency condition calculated by GPS and
MGPS in Fig. 5(e). It can be seen that the stress paths
are located on the yield locus (indicated by dashed line)
very well in the plastic phase. The response graph of the
stress path in Fig. 5(b) as can be seen is very different
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Figure 5: 

Figure 5 : The responses to a square strain path in (a), and (b) displaying its corresponding stress path, (c) the
cyclic axial stress-axial strain curve, (d) the cyclic shear stress-shear strain curve, and (e) errors in satisfying the
consistency condition for GPS and MGPS in Section 5.
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Figure 6 : The responses to a circular strain path in (a), and (b) displaying its corresponding stress path, (c) the
cyclic axial stress-axial strain curve, (d) the cyclic shear stress-shear strain curve, and (e) errors in satisfying the
consistency condition for GPS and MGPS in Section 5.
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from the input strain path in Fig. 5(a). One main fea-
ture is that the strain path is closed, but the correspond-
ing stress response has an open path. The other feature is
that the strain path is composed of straight lines, but the
corresponding stress response has straight-line paths in
the elastic phase but elliptical paths in the plastic phase
due to yield constraint. In terms of the consistency error
defined by | f −1|, it is clear that the error by MGPS is
far smaller than that by GPS. In all calculations, the time
step is fixed to ∆t = 0.005 s.

The model is then subjected to a circular strain path,

q1 = e0 cosωt, q2 = e0 sinωt, (77)

where e0 and ω = 2π/T are respectively the amplitude
and circular frequency of oscillation of the input with
T being the period. The input circular strain path was
shown in Fig. 6(a) with e0 = 0.01 and ω = 2π/100 rad/s.
The results include the stress path in Fig. 6(b), hysteresis
loops in Figs. 6(c) and 6(d), as well as the errors of con-
sistency condition calculated by the above two schemes
in Fig. 6(e). For the non-proportional loading case the
consistency errors by GPS increase gradually with time.
However, when applied MGPS to this case the consis-
tency errors are depressed largely to the order of 10−15.

7.2 Example two: cubic yield function

As a second example let us consider the following yield
condition:

(Q1)2

r2
1 +2d1Q1 −d2

1
+

(Q2)2

r2
2 +2d2Q2 −d2

2
= 1, (78)

where the four material functions r1, r2, d1 and d2 are
used to adjust the shape of yield surface. Since (Q1 −
d1)2 ≤ r2

1 and (Q2−d2)2 ≤ r2
2, the terms r2

1 +2d1Q1−d2
1

and r2
2 +2d2Q2−d2

2 in the above equation can be seen to
satisfy

r2
1 +2d1Q1 −d2

1 > 0, r2
2 +2d2Q2 −d2

2 > 0. (79)

The gradient of the yield function is

∇f =

⎡
⎢⎣

2[r2
1Q1+d1(Q1)2−d2

1Q1]
(r2

1+2d1Q1−d2
1)2

2[r2
2Q2+d2(Q2)2−d2

2Q2]
(r2

2+2d2Q2−d2
2)2

⎤
⎥⎦ . (80)

Substituting Eq. (80) for ∇f into Eq. (64), we obtain
As

0. Then using the numerical schemes (65) and (67)

in Section 6, the responses are calculated. The follow-
ing parameters: d1 = −80 MPa, d2 = −80 MPa and
r1 = r2 = 150 MPa are used. The results are shown in
Fig. 7 with the square strain path and Fig. 8 with the
circular strain path. The error tolerance used in solv-
ing Eq. (67) is 10−8. It can be seen that the stress paths
are located on the yield locus (indicated by dashed line)
very well in the plastic phase. In both loading cases the
consistency errors by GPS are increased gradually with
time. However, when applied MGPS to these loading
cases the consistency errors can be depressed to the or-
der in 10−12−10−6.

8 Extension to anisotropic elasticity

In this section we extend the numerical solutions of con-
vex plasticity by considering the anisotropic elastic law
(8). Substituting Eqs. (6) and (9) into Eq. (8) gives

Q̇+ q̇0Kn = Kq̇. (81)

Through some derivations we can obtain the following
on-off switching criteria for the mechanism of plasticity:

q̇0 =
∇f · (Kq̇)
∇f · (Kn)

> 0 if f = 1 and

∇f · (Kq̇) > 0, (82)

q̇0 = 0 if f < 1 or ∇f · (Kq̇) ≤ 0. (83)

The denominator ∇f · (Kn) = ∇f · (K∇f )/‖∇f‖ is pos-
itive according to the assumptions that ∇f �= 0 and K is
positive definite.

Eqs. (81), (82) and (83) together yield a two-phase affine
nonlinear system:

Q̇ = Kq̇− ∇f · (Kq̇)
∇f · (Kn)

Kn if f = 1 and

∇f · (Kq̇) > 0, (84)

Q̇ = Kq̇ if f < 1 or ∇f · (Kq̇) ≤ 0. (85)

Obviously, Eq. (85) is simple to integrate and we only
need to consider the numerical integration of Eq. (84),
from which the differential equation for the magnitude
of Q can be arranged to

d
dt
‖Q‖ =

1
‖Q‖

[
Q · (Kq̇)− ∇f · (Kq̇)

∇f · (Kn)
Q · (Kn)

]
. (86)
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Figure 7 : The responses to a square strain path: (a) stress path, (b) the cyclic axial stress-axial strain curve, (c) the
cyclic shear stress-shear strain curve, and (d) errors in satisfying the consistency condition for GPS and MGPS in
Section 6.
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Figure 8 : The responses to a circular strain path: (a) stress path, (b) the cyclic axial stress-axial strain curve, (c) the
cyclic shear stress-shear strain curve, and (d) errors in satisfying the consistency condition for GPS and MGPS in
Section 6.
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Figure 9 : The errors in satisfying the consistency condition for MGPS in Section 8: (a) example one under square
strain path, and (b) example two under square strain path.

The above technique was first developed by Liu (2001)
for the general dynamical systems to embed them into an
augmented Minkowski space and then derived the group-
preserving scheme. In terms of augmented state variables
defined by Eq. (62), Eqs. (84) and (86) can be combined
together to a quasilinear system (63), where A is still de-
fined by Eq. (64) but with

As
0(Q, t) =

1
‖Q‖

[
Kq̇− ∇f · (Kq̇)

∇f · (Kn)
Kn

]
. (87)

Therefore the modified group-preserving scheme
(MGPS) developed in Section 6 is still applicable for

this case but with a more complex As
0. With the above

numerical scheme we compute the two examples in
Section 7 again, keeping all parameters unchanged but
changing the elastic constants to K11 = 5 × 104 MPa,
K12 = 2×104 MPa and K22 = 1.4×104 MPa to take the
elastic anisotropy into account. The consistency errors
as shown in Fig. 9 are very small.

9 Conclusions

In this paper we have investigated the convex plasticity
equation from several theoretical aspects. By viewing
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the plasticity equations as an affine nonlinear dynami-
cal system on the yield manifold, we have proved that
there exists a dissipative metric, projecting by it the plas-
tic equation having an elastic type relation in terms of
the covariant derivatives of stress and strain. In terms of
the Gaussian unit vector and Weingarten map, we pre-
sented a quasilinear system of the plastic equation in the
space (∇f ,‖∇f‖). Then, we have investigated the inter-
nal symmetry group inherent in the plasticity equation,
of which the projective proper orthochronous Lorentz
group PSOo(n,1) was found to be an underlying symme-
try group. According to the two different representations
in spaces (∇f ,‖∇f‖) and (Q,‖Q‖), we have developed
yield contraint preserving schemes by taking the group
properties into account and also using a post-projection
method to enforce stress point locating on the yield sur-
face. The newly developed schemes through some nu-
merical examples tests are shown to be stable, efficient,
and accurate, and hence can be used in the computations
of engineering problems.
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