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A Meshless Method for the Laplace and Biharmonic Equations Subjected to Noisy
Boundary Data

B. Jin1, 2

Abstract: In this paper, we propose a new numerical
scheme for the solution of the Laplace and biharmonic
equations subjected to noisy boundary data. The equa-
tions are discretized by the method of fundamental solu-
tions. Since the resulting matrix equation is highly ill-
conditioned, a regularized solution is obtained using the
truncated singular value decomposition, with the regu-
larization parameter given by the L-curve method. Nu-
merical experiments show that the method is stable with
respect to the noise in the data, highly accurate and com-
putationally very efficient.

keyword: The method of fundamental solutions, trun-
cated singular value decomposition, L-curve method,
Laplace equation, biharmonic equation.

1 Introduction

The Laplace and biharmonic equations arise naturally in
many areas of science and engineering. For example, the
Laplace equation is widely used to model potential prob-
lems and steady state heat conduction. The biharmonic
equation, on the other hand, is frequently used to describe
the Stokes flow of fluid.

For the case that exact boundary conditions are specified
on the complete boundary, this has been extensively stud-
ied in the past. For example, Smyrlis and Karageorghis
(2003) proposed a fast scheme for biharmonic Dirich-
let problems on a disk, while Tsai, Young and Cheng
(2002) investigated the mshless BEM for the velocity-
vorticity formulation of Stokes flow. Unfortunately, in
many practical situations, the boundary data are mea-
sured, which are unavoidably contaminated by inherent
measurement errors, thus the stability of the numerical
method with respect to the noise in the data is of vital
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importance for obtaining physically meaningful results.
The only studies that investigate the stability problems
for the Laplace and biharmonic equations are due to Can-
non (1964), Cannon and Cecchi (1966), and Lesnic, El-
liott and Ingham (1998). The first two employed mathe-
matical programming techniques. However, their theory
did not address the issue of finding higher order deriva-
tives, and no numerical results were given to justify the
theory. In [Lesnic, Elliott and Ingham (1998)], the au-
thors proposed a direct method based on the boundary
element method (BEM), and it could yield stable and ac-
curate results for higher order derivative. Despite the
popularity of the BEM in recent years, however, there
are still problems hampering its efficient implementation.
Among these are difficulty of meshing a surface, espe-
cially in higher dimensions, the requirement of evalua-
tion of singular integrals, and slow convergence due to
the use of lower-order polynomial approximations.

The purpose of this study is to develop a fast and sta-
ble numerical scheme for the solution of the Laplace and
biharmonic equations subjected to noisy boundary data.
The new scheme employs the method of fundamental so-
lutions to discretize the differential equations, and uses
truncated singular value decomposition to solve the re-
sulting matrix equation.

2 The method of fundamental solutions

The method of fundamental solutions (MFS) is an in-
herently meshless, exponentially convergent, boundary-
type method for the solution of elliptic partial differential
equations. For details of the method, we refer to the com-
prehensive survey [Golberg and Chen (1998)] and refer-
ences therein. The basic idea of the method is to approxi-
mate the solution of the problem by a linear combination
of fundamental solutions of the governing differential op-
erator.

Let Ω be a simply-connected bounded domain in the two-
dimensional space, and ∂Ω its boundary. In this paper,
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we consider the Dirichlet problem for the Laplace equa-
tion

∆u(x) = 0, x ∈ Ω, (1)

u(x) = h(x), x ∈ ∂Ω, (2)

where ∆ is the Laplace operator, h(x) is a given function,
and the biharmonic equation

∆2u(x) = 0, x ∈ Ω, (3)

subjected to the following boundary conditions

u(x) = f (x), x ∈ ∂Ω, (4)

∂u(x)
∂n

= g(x), x ∈ ∂Ω, (5)

where n(x) is the unit outward normal on ∂Ω, and f (x)
and g(x) are known functions. Note that there is no
boundary condition on the vorticity φ(x) = ∆u(x) or
its derivative. The problem is to determine the normal
derivative of the potential ∂nu(x) for the Laplace equa-
tion, and the vorticity φ(x) and the normal derivative of
the vorticity ∂nφ(x) for the biharmonic equation.

In the MFS, ns source points {y j, j = 1,2, . . .,ns} are
distributed on a fictitious boundary outside of the solu-
tion domain Ω, and nb fixed points {xi, i = 1,2, . . .,nb}
are chosen along the boundary ∂Ω. The approximation
of the solution u(x) to the Laplace equation can be writ-
ten as

u(x) =
ns

∑
j=1

c jG j(x), x ∈ Ω, (6)

where G j(x) = u∗(x−y j), u∗(x) is the fundamental so-
lution to the Laplace operator, and {c j, j = 1,2, . . .,ns}
are coefficients to be determined. Following [Kara-
georghis and Fairweather (1987), Smyrlis and Kara-
georghis (2003)], the solution to the biharmonic equa-
tion can be approximated by a linear combination of fun-
damental solutions to both the Laplace and biharmonic
equations

u(x) =
ns

∑
j=1

c jG j(x)+
ns

∑
j=1

d jHj(x),x ∈ Ω (7)

where Hj(x)= u#(x−y j), u#(x) is the fundamental solu-
tion to the biharmonic equation, and {d j, j = 1,2, . . .,ns}
are coefficients to be determined.

The fundamental solutions u∗(x) and u#(x) to the
Laplace and biharmonic equations in R2 are given by

u∗(x) = ln(r), x ∈ R2, (8)

and

u#(x) = r2 ln(r), x ∈ R2, (9)

respectively, where r = ‖x‖2, ‖ ·‖2 is the Euclidean norm
on Rd.

The approximate solution u(x) satisfies the differential
equation, and the coefficients must be chosen such that
the boundary conditions are satisfied. By collocating the
boundary conditions into the approximate solution, we
arrive at the following system of linear equations

h(xi) =
ns

∑
j=1

a jG j(xi), i = 1,2, . . .,nb, (10)

for the Laplace equation, and for the biharmonic equation
we have

f (xi) =
ns

∑
j=1

c jG j(xi)+
ns

∑
j=1

d jHj(xi), i = 1,2, . . .,nb,

(11)

g(xi) =
ns

∑
j=1

c j∂nG j(xi)+
ns

∑
j=1

d j∂nHj(xi), i = 1,2, . . .,nb.

(12)

In brevity, we have the following matrix equation

Ac = b, (13)

where A = (Ai j) is an interpolation matrix, c is the co-
efficient vector to be determined, b is the known data
vector. For the Laplace equation, Ai j = G j(xi), and
b = (h(x1),h(x2), . . .,h(xnb))

T . Similar formulae can be
obtained for the biharmonic equation.

If nb is taken to be equal to ns, then we have a square in-
terpolation matrix A. Otherwise, nb is taken to be greater
than ns, then the matrix equation must be solved in a least
squares sense. The solution of the matrix equation will
be discussed in more details in the next section.

To implement the method, there remains one thing to
be determined, i.e. the distribution of the source points.
Source points can either be pre-assigned and kept fixed
through the solution process or be determined simulta-
neously with the coefficients during the solution process.
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For details of the latter, we refer to the comprehensive
survey by Fairweather and Karageorghis (1998). In fact,
the distribution of the source points are not of great im-
portance, provided that some minor conditions are satis-
fied [Mitic and Rashed (2004)].

3 Regularization techniques

One difficulty with the method of fundamental solutions
is that the condition number of the interpolation matrix
is extremely large, as observed by Kitagawa (1991) and
Golberg and Chen (1998). The cause for this is that the
method of fundamental solutions can be regarded as a
Fredholm integral equation of the first kind, which is no-
torious for its ill-posedness. For the solution of prob-
lems with exact data, this does not pose great challenges,
since no noise is present in the data. Standard methods
for solving matrix equations are able to produce accurate
results. However, for problems with noisy data, the large
condition number of the matrix can be disastrous, and
standard methods may fail to yield satisfactory results.
In order to obtain stable and accurate results, more ad-
vanced computational methods must be applied to solve
the resulting matrix equation. Regularization methods
are the most powerful and efficient methods for solving
ill-posed problems. In our computation we use the trun-
cated singular value decomposition [Hansen (1987)] to
solve the matrix equation. Other regularization methods,
such as the Tikhonov regularization method [Tikhonov
and Arsenin (1977)], may be considered, and similar re-
sults can be obtained, but these will not further pursued
in this paper.

In the singular value decomposition (SVD), the matrix A
is decomposed into

A = UΣVT , (14)

where U = [u1,u2, . . .,un] and V = [v1,v2, . . .,vm] are
column orthonormal matrices, with column vectors
called left and right singular vectors, respectively, T de-
notes matrix transposition, and Σ = diag(σ1,σ2, . . . ,σm)
is a diagonal matrix with nonnegative diagonal elements
in nonincreasing order, which are the singular values of
A.

A convenient measure of the conditioning of the matrix
A is the condition number Cond defined as

Cond =
σ1

σm
, (15)

i.e. the ratio between the largest singular value and the
smallest singular value. By means of the SVD, the solu-
tion a0 can be written as

a0 =
k

∑
i=1

uT
i b
σi

vi, (16)

where k is the rank of A. For an ill-conditioned matrix
equation, there are small singular values, therefore the
solution is dominated by contributions from small singu-
lar values when noise is present in the data. One simple
remedy to the difficulty is to leave out contributions from
small singular values, i.e. taking ap as an approximate
solution, where ap is defined as:

ap =
p

∑
i=1

uT
i b
σi

vi, (17)

where p ≤ k is the regularization parameter, which de-
termines when one starts to leave out small singular val-
ues. Note that if p = k, the approximate solution is ex-
actly the least squares solution. This method is known
as truncated singular value decomposition (TSVD) in the
inverse problem community.

The singular value decomposition has been applied to an-
alyze the matrix equation arising from the method of fun-
damental solutions previously [Ramachandran (2002)].
But it was not discussed in the context of regularization
methods, and the results presented there were limited to
exact data.

The performance of regularization methods depends to
a great deal on the suitable choice of the regularization
parameter. One extensively studied criterion is discrep-
ancy principle [Morozov (1984)], however, it requires a
reliable estimation of the amount of noise in the data,
which may be unavailable in practical problems. Heuris-
tic approaches are more preferable in case that no a priori
information about the noise is available. For TSVD, sev-
eral heuristic approaches have been proposed in the liter-
ature, including L-curve method [Hansen (1992); Hansen
and O’Leary (1993)] and generalized cross validation
[Golub, Heath and Wahba (1979)]. In this paper, we use
the L-curve method to provide appropriate regularization
parameters.

4 Numerical experiments and discussions

In this section, we present the results obtained by the
general numerical scheme, MFS+TSVD, described in the
previous two sections, to demonstrate its efficacy.
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4.1 Numerical examples

The solution domain under consideration is one simple
two-dimensional smooth geometry, i.e. a circular do-
main Ω =

{
x = (x1,x2)|x2

1 +x2
2 < 4

}
. To illustrate the

accuracy of the method, we consider following analyti-
cal solutions, which are taken from [Lesnic, Elliott and
Ingham (1998)].

The analytical potential u(x) is given by

u(x) = cosx1 coshx2 + sinx1 sinhx2, x ∈ Ω, (18)

and the biharmonic stream function u(x) and the vorticity
φ(x) are given by

u(x) =
x1 sinx1 coshx2 −x1 cosx1 sinhx2

2
, x ∈ Ω, (19)

and

φ(x) = cosx1 coshx2 + sinx1 sinhx2, x ∈ Ω, (20)

respectively.

The exact boundary data can be easily derived from the
analytical solution. In order to investigate the stability of
the method, we use simulated noisy data generated by

h̃(xi) = h(xi)+εζ, i = 1,2, . . .,nb, (21)

for h(x), where ζ is a normally distributed random vari-
able with zero mean and unit standard deviation, and ε
indicates the level of noise in the data, and is defined by

ε = max |h|× r
100

=
r

20
, (22)

where r is the percentage of additive noise included in
the data. For the biharmonic equation, we have similar
formulae for f (x) and g(x).

4.2 Effect of regularization method

In this subsection, we investigate how the regularization
method improves the accuracy of the numerical results.
For the results presented in this subsection, the number
of collocation points on ∂Ω =

{
x = (x1,x2)|x2

1 +x2
2 = 4

}
is 40, and the number of source points is 30. The source
points are distributed evenly on a circle centered at the
origin with radius 8.

For exact data, the large condition number does not pose
great challenges, and standard methods, such as the least
square method or Gaussian elimination are able to yield

accurate results. This is clearly shown by numerous nu-
merical examples presented in the literature. Due to the
exponential convergence property of the MFS [Bolgo-
molny (1985); Golberg and Chen (1998)], the numer-
ical solution for exact data is extremely accurate. For
example, the maximum error is less than 1.5×10−7 for
the reconstructed normal of potential ∂nu(x) by the least
squares method. Thus a few collocation points are suf-
ficient to yield very accurate results, and the size of re-
sulting matrix equation is quite small. The computational
effort for the singular value decomposition is negligible.
Therefore the method is computationally very efficient.
To achieve the same accuracy by the BEM or FEM, the
corresponding mesh must be very fine, which undoubt-
edly would increase the computation time considerably.

For noisy data, the least squares method cannot yield sta-
ble results. The results for the normal derivative of the
potential ∂nu, the boundary vorticity φ(x) and its nor-
mal derivative ∂nφ(x) for noisy data of level 1% (r = 1)
are shown in Fig. 1. In the figure, the boundary ∂Ω is
parameterized using plane polar coordinates (r,θ). The
numerical solution for ∂nu(x) is graphically reasonable,
however, for φ(x) and ∂nφ(x), it is highly oscillatory and
cannot be used as an approximate solution.

The cause for the large oscillations in the results by the
least squares method is that there are many very small
singular values for the interpolation matrix A, as we can
see from Equation (16). The distribution of the sin-
gular values for the interpolation matrices arising from
the Laplace and biharmonic equations is given in Fig.
2. From the figure, the singular values of the interpola-
tion matrix decay gradually to zero without any obvious
gap and eventually cluster at zero, which is typically the
case for matrix equations derived from Fredholm integral
equations of the first kind. The condition number of the
interpolation matrix is 4.74×1010 and 4.44×1014 for the
Laplace and biharmonic equations, respectively, which
is enormous compared with the size of the matrix equa-
tion. The L-curve for the corresponding matrix equation
is shown in Fig. 3, which is a log-log plot of the solution
norm ‖c‖2 against the residual norm ‖Ac−b‖2, for vari-
ous regularization parameters. The regularization param-
eter corresponding to the corner of the L-curve is taken
as a final regularization parameter, since at the corner a
good tradeoff between the residual and solution norm is
achieved, and we can expect reasonable results when tak-
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Figure 1 : The reconstructed ∂nu(x), φ(x) and ∂nφ(x)
by the least squares method, with 1% noise in the data,
where the solid and dashed curves represent the analyt-
ical and numerical solutions, respectively.

ing it as the final regularization parameter. The corners
of the L-curves for the Laplace and biharmonic equations
correspond to p = 15 and p = 28, respectively.

The numerical results by TSVD are shown in Fig. 4,
where the regularization parameters used are indicated
as above. Comparing Fig. 4 with Fig. 1, it is easy to see
that the results by the regularization method are far more
accurate than that by the least squares method. The error
in the numerical results is maintained at a level compa-
rable with the error in the data. Thus the regularization

method is indispensable to obtain stable and accurate re-
sults. TSVD restores the stability of the method by fil-
tering out the noise in the data effectively. The results
also show that the L-curve method provides an appropri-
ate regularization parameter for TSVD. The accuracy of
the numerical results presented here is comparable with
that in [Lesnic, Elliott and Ingham (1998)]. However, the
method of fundamental solutions is far more accurate for
exact data, mathematically much simpler, and thus much
easier to implement than the BEM. Thus the proposed
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Figure 2 : The distribution of the singular values for
the interpolation matrix A for the Laplace and biharm-
nic equations.

numerical scheme is advantageous over methods based
on the BEM.

4.3 Effect of source location

In this subsection, we investigate the effect of the source
location on the accuracy of the numerical results. The
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Figure 3 : The L-curve for the Laplace and biharmonic
equations with 1% noise in the data.

number of collocation points on the boundary is fixed as
40, and the number of source points is taken to be 30.
The source points are distributed evenly on a circle of
various radii to examine the effect of source location. To
measure the accuracy of the numerical solution u, we use
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Figure 4 : The reconstructed ∂nu(x), φ(x) and ∂nφ(x)
by TSVD, with 1% noise in the data, where the solid
and dashed curves represent the analytical and numeri-
cal solutions, respectively.

relative error relu defined as

relu =

√
∑N

j=1(u j −u j)2

√
∑N

j=1 u2
j

, (23)

where u j and u j are the analytical and numerical results,
respectively, and N is the number of points on the bound-
ary on which the solution is evaluated. In this paper, N
is taken to be 100, and the points are distributed evenly
along the boundary.

The accuracy of the numerical results for the Laplace
equation with the source points located on a circle with
various radii is shown in Tab. 1. In the table, R is the ra-
dius of the source circle, Cond is the condition number of
the interpolation matrix, p is the regularization parameter
determined by the L-curve method, and rel is the relative
error. The number in the parenthesis indicates a decimal
exponent.

From the table, the conditioning of the interpolation ma-
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Table 1 : Results for the Laplace equation with 1% noise
in the data.

R Cond p rel∂nu(x)
4 6.63(5) 17 0.021
6 5.45(8) 15 0.023
8 4.74(10) 15 0.023
10 1.49(12) 15 0.023

Table 2 : Results for the biharmonic equation with 1%
noise in the data.

R Cond p relφ(x) rel∂nφ(x)
4 9.20(8) 30 0.048 0.115
6 1.76(12) 29 0.037 0.065
8 4.44(14) 29 0.042 0.087
10 3.28(16) 29 0.045 0.101

trix deteriorates steadily with the increase of the radius of
the source circle. However, the regularization parameter
given by the L-curve method is almost the same for all
radii concerned. The accuracy of the numerical results
is relatively independent of the location of the source
points. For problems with exact data, this has been previ-
ously established by Ramachandran (2002). Similar con-
clusions can be drawn for the biharmonic equation, the
results for which are presented in Tab. 2.

For non-smooth geometry, the method works equally
well, as long as the solution to the problem is smooth,
which is usually sufficient to guarantee exponential con-
vergence of MFS [Golberg and Chen (1998)]. From the
numerical verification demonstrated above, it can be ob-
served that the proposed method is computationally ef-
ficient, stable with respect to the noise in the data. The
method is also feasible in handling informal boundary
conditions such as the oblique boundary conditions. Fur-
thermore, the approximation of higher order derivatives
of the solution is readily available by simple and direct
function evaluation. In comparison with existing meth-
ods for this problem, the method could be a competitive
alternative.

There are several extensions of the proposed method,
which further highlights its advantages. Firstly, al-
though this paper considers only problems in the two-
dimensional space, the method is readily extended to
higher dimensional problems. Secondly, the general

scheme, MFS + TSVD, applies also to other elliptic
partial differential equations subjected to noisy bound-
ary data, as long as the fundamental solution to the
corresponding differential operator is known. Thirdly,
combined with the matured numerical technique – the
dual reciprocity method [Nardini and Brebbia (1982)],
the numerical scheme can easily accommodate non-
homogeneous equations with simple and minor modifi-
cations.

Last of all, for large-scale problems, or problems on more
complex domains or for multiply connected regions, a
large number of collocation points may be needed, and
the size of resulting matrix equation may be large. This
time, the numerical scheme, MFS+TSVD, is of limited
use, since the computation of singular value decomposi-
tion of large matrix is prohibitive to use. One promis-
ing alternative for TSVD is to use the iterative regular-
ization methods, such as conjugate gradient type meth-
ods [Hanke and Hansen (1993)], where the computation-
intensive step in each iteration, i.e. the matrix-vector
multiplication, can be greatly accelerated using the fast
multipole method [Saavedra and Power (2003)].

5 Conclusions

In this paper, we have developed a new numerical tech-
nique for the solution of the Laplace and biharmonic
equations subjected to noisy boundary data. It has been
established that standard methods for solving the result-
ing matrix equation produce unstable results. However,
stable results can be obtained using truncated singular
value decomposition to solve the resulting matrix equa-
tion, with the regularization parameter given by the L-
curve method. It’s also shown that the accuracy of the nu-
merical results is relatively independent of the locations
of the source points. The numerical results show that the
method is accurate, stable with respect to the noise in the
data, and computationally efficient. Several possible ex-
tensions of the scheme are also briefly discussed.
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