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Indirect RBFN Method with Scattered Points for Numerical Solution of PDEs

Nam Mai-Duy1

Abstract: This paper is concerned with the use of the
indirect radial basis function network (RBFN) method in
solving partial differential equations (PDEs) with scat-
tered points. Indirect RBFNs (Mai-Duy and Tran-Cong,
2001a), which are based on an integration process, are
employed to approximate the solution of PDEs via point
collocation mechanism in the set of randomly distributed
points. The method is tested with the solution of Pois-
son’s equations and the Navier-Stokes equations (Boussi-
nesq material). Good results are obtained using relatively
low numbers of data points. For example, the natural
convection flow in a square cavity at Rayleigh number of
1.e6 is simulated successfully using only 1693 random
collocation points.

1 Introduction

The traditional methods (cf. finite difference method
(FDM), finite element method (FEM), boundary element
method (BEM) and finite volume method (FVM)) have
been well established and have acquired a great suc-
cess in solving engineering and science problems. In
those methods, each dependent variable in the governing
equations is approximated by a set of piecewise contin-
uous functions defined over grids, volumes or elements
(mesh). The generation of mesh can require a lot of ef-
fort especially for 3D problems or even for 2D problems
with large deformations or complex geometries. Mesh-
ing or re-meshing remains one of the biggest challenges
in the traditional methods.

The idea of developing numerical methods without using
a mesh for the solution of PDEs has recently received a
great deal of attention from researchers. As a result, the
number of reports on mesh-free numerical methods and
their applications has increased quickly. Comprehensive
reviews on meshless methods can be found in Jin, Li and
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Aluru (2001), Li and Liu (2002), Atluri and Shen (2002)
and Liu (2003). Based on the criterion of a mesh require-
ment, they can be classified into the so-called “meshless
methods” and “truly meshless methods” categories. In
the first category, some background mesh is still neces-
sary for the purpose of either interpolation of the solution
or integration of the weak form/inverse statement (e.g.
element-free Galerkin method (Belytschko, Lu and Gu,
1994)), while in the second category, no mesh is required
for any process involved in a method (e.g. RBFN-based
method (Kansa, 1990), meshless local Petrov-Galerkin
method (Atluri and Shen, 2002) and local radial point in-
terpolation method (Liu and Gu, 2001)). Solutions of a
variety of problems such as 3D elasticity (Li, Shen, Han
and Atluri, 2003), thin plate bending problems (Long and
Atluri, 2002; Sladek, Sladek and Mang, 2002), free and
forced vibrations of thick rectangular plates (Qian, Ba-
tra and Chen, 2003), beam problems (Raju and Phillips,
2003), elastodynamic problems in continuously nonho-
mogeneous solids (Sladek, Sladek and Zhang, 2003), 3D
Stokes flows (Tsai, Young and Cheng, 2002), viscous
fluid flows (Mai-Duy and Tran-Cong, 2003b; Shu, Ding
and Yeo, 2003) and others by using meshless methods
have been reported in the recent literature.

Neural networks, which are able to approximate any con-
tinuous function to any degree of accuracy (universal
approximation), have found application in many disci-
plines: neurosciences, mathematics, statistics, physics,
computer science and engineering (Haykin, 1999). The
application of neural networks for the solution of PDEs
was first introduced by Kansa (1990) in the case of radial
basis function networks (RBFNs) and by Dissanayake
and Phan-Thien (1994) in the case of multilayer per-
ceptron networks (MLPs). Since the training process of
the former is generally faster than that of the latter, the
RBFN-based methods have been used considerably more
than the MLP-based methods in solving PDEs. In a stan-
dard RBFN-based method (DRBFN), global RBFNs are
employed to represent the solution of PDEs via the pro-
cess of differentiation and point collocation mechanism.
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Recently, Mai-Duy and Tran-Cong (2001a) proposed an
alternative RBFN approach, namely the indirect RBFN
(IRBFN) method, based on an integration process and
point collocation to approximate the solution variables.
Unlike the case of FEM and BEM, where the integration
process is used to reduce the order of the continuity re-
quired for the variables, the integration process here is
employed only for the purpose of obtaining new basis
functions from RBFs. In the context of meshless meth-
ods, all relevant integrals in the IRBFN method can be
found analytically leading to a truly meshless method
in a straightforward manner, while the integration of the
weak form associated with FEM or the inverse statement
associated with BEM must be computed numerically and
hence they require some special treatments (e.g. using lo-
cal weak form/local inverse statement) in order to achieve
a mesh-free feature.

In the previous works, the indirect RBFN method was
verified successfully with a series of problems includ-
ing functional approximations (Mai-Duy and Tran-Cong,
2002,2003a), heat transfer problems (Mai-Duy and Tran-
Cong, 2001a,2003b) and Newtonian fluid flows (Mai-
Duy and Tran-Cong, 2001b,2003b). Numerical exam-
ples showed that the indirect RBFN method performs
better than the usual direct RBFN method (DRBFN) in
terms of solution accuracy and convergence rate. How-
ever, all those simulations have been carried out with
the use of uniformly distributed centres only. The case
of regular points allows the nodal constants arising from
the integration process to be captured in a direct manner
without making any difficulty. In addition, the influence
from each centre to its neighbours in the approximation
of the solution variables can be adjusted conveniently be-
cause of its uniform distribution.

In the present work, scattered points are employed to dis-
cretize the domain of analysis and special care needs be
paid to the treatment of integration constant values. An
advantage of the present procedure is that there is not any
connectivity requirement between the data points. The
IRBFN method with scattered points is verified through
the simulation of heat transfer and natural convection
flow problems. In solving the Navier-Stokes equations
for 2D problems, it is widely acknowledged that numeri-
cal methods usually employ the stream function-vorticity
formulation rather than the velocity-pressure formula-
tion. The advantages of the former over the latter are that
the number of variables is reduced to two (without pres-

sure) and the continuity equation is automatically satis-
fied. However, one concern is the need to derive a bound-
ary condition for the vorticity. The stream function-
vorticity formulation will be adopted in the present work,
where the Dirichlet boundary conditions for the vorticity
are generated in a precise manner based on the global
approximations. Accurate results are obtained for both
heat transfer and natural convection flow problems us-
ing relatively low numbers of data points. For example,
a Rayleigh number of 1.e6 is achieved using 1693 ran-
domly distributed data points. It is noted that the DRBFN
method and the FEM are also included in some cases
to provide the basis for the assessment of the present
IRBFN method.

The remainder of the paper is organized as follows. In
section 2, the governing equations for heat transfer and
natural convection flow problems are given. Section 3
gives a brief review of RBFNs. Section 4 presents the
indirect RBFN approach with scattered points. The di-
rect RBFN approach is also summarized here. In sec-
tion 5, the present method is tested with the solution
of Poisson’s equations and the Navier-Stokes equations
(Boussinesq material). Section 6 gives some concluding
remarks.

2 Governing equations

Heat transfer problems governed by Poisson equations
and natural convection flows in a square slot governed
by the Navier-Stokes equations (Boussinesq material) are
considered in the present work.

2.1 Heat transfer problem

The governing Poisson’s equation takes the form

∂2u

∂x2
1

+
∂2u

∂x2
2

= s(x), x ∈ Ω, (1)

where x = (x1,x2) is the position vector of a point in the
analysis domain Ω, u is the dependent variable and s is a
known function.

2.2 Natural convection flow in a square slot

The stream function-vorticity formulation governing the
temperature and velocity behaviour of natural convection
flows is adopted in the present work. The governing
equations are non-dimensionalized by using a scheme
similar to that of Leonard and Drummond (1995). The
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cavity dimensions xi are scaled by the characteristic
length L while the temperature T by the temperature dif-
ference between the two vertical walls ∆T . The velocities
are scaled by U = αgL2∆T/ν, where α is the coefficient
of volumetric expansion, ν is the kinematics viscosity
and g the strength of the gravitational field. The vortic-
ity ω and stream function φ are scaled with U/L and UL
respectively. Applying the standard Boussinesq approxi-
mation, i.e. the fluid is assumed to have constant proper-
ties except for the generation of buoyant force, yields the
following forms of the Poisson, vorticity transport and
energy equations

∂2φ
∂x2

1
+

∂2φ
∂x2

2
+ω = 0, x ∈ Ω, (2)

∂2ω
∂x2

1
+

∂2ω
∂x2

2
+

∂T
∂x1

= Gr

(
∂φ
∂x2

∂ω
∂x1

− ∂φ
∂x1

∂ω
∂x2

)
, x ∈ Ω, (3)

∂2T

∂x2
1

+
∂2T

∂x2
2

= PrGr

(
∂φ
∂x2

∂T
∂x1

− ∂φ
∂x1

∂T
∂x2

)
, x ∈ Ω. (4)

The dimensionless parameters appearing in the equations
(2)-(4) are respectively the Grashof number, the Prandtl
number and the Rayleigh number

Gr = UL/ν, Pr = ν/κ, Ra = GrPr,

where κ is the thermal diffusivity. The vorticity and
stream function are defined by

ω =
∂u2

∂x1
− ∂u1

∂x2
, (5)

∂φ
∂x2

= u1,
∂φ
∂x1

= −u2, (6)

where u1 and u2 are the components of the velocity vec-
tor.

The present scheme of non-dimensionalization results in
the dimesionless velocity that is related to the one pro-
duced by the scheme used in the benchmark solution (de
Vahl Davis, 1983) according to

Ra(upresent) = ubench.

Boundary conditions

The boundary conditions for this problem are as follows

φ = 0,
∂φ
∂x2

= 0,
∂T
∂x2

= 0 on the line x2 = 0, (7)

φ = 0,
∂φ
∂x1

= 0, T = 0 on the line x1 = 1, (8)

φ = 0,
∂φ
∂x2

= 0,
∂T
∂x2

= 0 on the line x2 = 1, (9)

φ = 0,
∂φ
∂x1

= 0, T = 1 on the line x1 = 0. (10)

3 Radial Basis Function Networks

A function y, to be approximated, can be represented by
an RBFN as follows (Haykin, 1999)

y(x)≈ f (x) =
m

∑
i=1

w(i)g(i)(x), (11)

where superscripts denote elements of a set of neurons
(RBFs), x is the input vector, m the number of RBFs,
{w(i)}m

i=1 the set of network weights to be found and
{g(i)(x)}m

i=1 the set of RBFs.

According to Micchelli’s theorem, there is a large class of
radial basis functions (e.g. multiquadrics, inverse multi-
quadrics and Gaussian functions) whose design matrices
(interpolation matrices) obtained from (11) are always in-
vertible provided that the data points are distinct. This is
all that is required for nonsingularity of the design ma-
trix, whatever the number of data points and the dimen-
sion of problem (Haykin, 1999).

Since multiquadrics (MQ) are ranked the best in terms of
accuracy among RBFs (Franke, 1982) and also have ex-
ponential convergence with the refinement of spatial dis-
cretization (Madych and Nelson, 1989,1990), the present
work will employ these basis functions whose form is

g(i)(x) =
√

(x−c(i))T (x−c(i))+a(i)2, (12)

where c(i) and a(i) are the centre and the width of the ith
MQ basis function respectively and superscript T denotes
the transpose of a matrix. To make the training process
simple, the centres and the widths of RBFs are chosen in
advance. For the latter, the following relation is used

a(i) = βd(i), (13)
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where β is a positive scalar and d(i) is the minimum of
distances from the ith center to its neighbours. The re-
lation (13) allows the RBF width a to be broader in the
area of lower data density and narrower in the area of
higher data density. Hence, with this relation, the widths
vary with the centres for the case of scattered points, but
remain unchanged for the case of uniformly distributed
data points.

4 Direct and Indirect approaches

4.1 Direct approach

In the direct RBFN approach, the RBF network (11) is
utilized to represent the original function y and subse-
quently its derivatives are computed by differentiating
(11) as follows

y(x) ≈ f (x) =
m

∑
i=1

w(i)g(i)(x), (14)

∂y(x)
∂x j

≈ ∂ f (x)
∂x j

=
∂
(
∑m

i=1 w(i)g(i)(x)
)

∂x j
=

m

∑
i=1

w(i)h(i)
[x j]

(x), (15)

∂2y(x)
∂x2

j

≈ ∂2 f (x)
∂x2

j

=
∂
(

∑m
i=1 w(i)h(i)

[x j]
(x)
)

∂x j
=

m

∑
i=1

w(i)h
(i)
[x j](x), (16)

where subscripts j denote scalar components of a vec-

tor; h(i)
[x j]

(x) = ∂g(i)(x)/∂x j and h
(i)
[x j](x)= ∂h(i)(x)/∂x j are

new derived basis functions in the approximation of the
first and second order derivatives of y respectively.

4.2 Indirect approach

In this approach, RBFNs are used to represent the highest
order derivatives of a function y under consideration, e.g.
∂2y/∂x2

1 and ∂2y/∂x2
2. Lower order derivatives and finally

the function itself are then obtained by integrating those
RBFNs as follows, e.g. for 2D problems,

∂2y(x)
∂x2

j

≈ ∂2 f (x)
∂x2

j

=
m

∑
i=1

w(i)
[x j ]

g(i)(x), (17)

∂y(x)
∂x j

≈ ∂ f (x)
∂x j

=
∫ ( m

∑
i=1

w(i)
[x j]

g(i)(x)

)
dx j +C[x j ](xk,k �= j)

=
m

∑
i=1

w(i)
[x j]

H(i)
[x j]

(x)+C[x j](xk,k �= j), (18)

y(x) ≈ f (x)

=
∫ ( m

∑
i=1

w(i)
[x j]

H(i)
[x j]

(x)

)
dx j

+x jC[x j](xk,k �= j)+D[x j](xk,k �= j)

=
m

∑
i=1

w(i)
[x j]

H
(i)
[x j](x)+x jC[x j ](xk,k �= j)+D[x j ](xk,k �= j), (19)

where subscripts [x j] denote the quantities associated

with the integration process in the x j direction; H(i)
[x j]

=∫
g(i)dx j and H(i)

[x j] =
∫

H(i)dx j are new derived basis
functions in the approximation of the first order deriva-
tive and the target function y respectively; C[x j] and D[x j]
are the integration constant functions of the variable
xk,k �= j.

It can be seen that collocation points with the same xk,k �= j

coordinate have the same values of C[x j] and D[x j]. As a
result, in the case of regularly distributed data points, the
number of nodal function values for C[x j] or D[x j] is rela-
tively small and therefore they can be employed directly
in the network design matrices. In the case of scattered
data points, it is clear that the number of nodal function
values for C[x j] or D[x j ] arising from the integration pro-
cess is relatively large. The direct use of these nodal val-
ues results in very large design matrices. For example,
consider a 2D domain and let n be the number of collo-
cation points. The size of the network design matrices
obtained can be up to [n,m + 2n]. To overcome this dif-
ficulty, IRBF networks in 1D need be utilized to inter-
polate the integration constant functions. The univariate
functionsC[x j] and D[x j ] can be represented by 1D indirect
RBF networks as follows, e.g. for C[x j],

C[x j ](xk,k �= j)

=
p

∑
i=1

ŵ(i)
[x j]

H
(i)
[x j](xk,k �= j)+xk,k �= jĈ[x j] + D̂[x j ], (20)

where Ĉ[x j ] and D̂[x j] are new integration constants
(scalars) and p is the number of new centres. In the
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present work, p is chosen according to the relation

p = f t nxk , (21)

where f t is a small integer and nxk is the number of dis-
tinct xk coordinates from the special case of regularly dis-
tributed data points. For convenience, the unknown con-
stants (ŵ(i)

[x j]
and Ĉ[x j], D̂[x j]) and their associated known

basis functions (RBFs and polynomial) are also denoted

by the notations w(i) and H(i)
[x j]

(x) (H
(i)
[x j ](x)) respectively

but with i > m and hence equations (17)-(19) can be
rewritten in the simple forms

∂2 f (x)
∂x2

j

=
m

∑
i=1

w(i)
[x j ]

g(i)(x), (22)

∂ f (x)
∂x j

=
m+p+2

∑
i=1

w(i)
[x j ]

H(i)
[x j]

(x), (23)

f (x) =
m+2(p+2)

∑
i=1

w(i)
[x j ]

H
(i)
[x j ](x). (24)

The evaluation of (22)-(24) at a set of collocation points
{x(i)}n

i=1 yields the system of equations of the form

f,jj(x) = G(x)w[x j], (25)

f,j(x) = H[x j ](x)w[x j], (26)

f(x) = H[x j](x)w[x j], (27)

where G, H and H are the network design matrices as-
sociated with the approximation of the second deriva-
tive, first derivative and function respectively; w[x j] the

set of network weights to be found; f = { f (x(i))}n
i=1;

f,j = { ∂ f (x(i))
∂x j

}n
i=1 and f,jj = { ∂2 f (x(i))

∂x2
j

}n
i=1. For the purpose

of computation, the matrices G and H are augmented
using zero-submatrices so that they have the same size
as the matrix H. Let N be the problem dimensional-
ity. Since there are N vectors of network weights to be
found, the size of the system of equations in the indi-
rect approach is about N times as big as that in the direct
approach. To overcome this disadvantage, prior conver-
sions of the multiple spaces of network weights into the
single space of function values f are employed. The pro-
cess is as follows. By solving (27) using the general lin-
ear least squares, the set of network weights is expressed
in terms of nodal function values as

w[x j] = H
−1
[x j ]f. (28)

Substitution of (28) into the system (25)-(27) yields

f,jj = GH−1
[x j]f, (29)

f,j = H[x j]H
−1
[x j]f, (30)

f = If, (31)

where I is the unit matrix.

It can be seen from (29)-(31) that the function and its
derivatives are all expressed in terms of the nodal func-
tion values rather than in terms of the network weights.
As a result, the system of equations obtained is normally
square with the size being approximately equal to that of
the DRBFN method, irrespective of the problem dimen-
sionality. The transformation operation completely elim-
inates the problem of the large matrix size in the IRBFN
method.

4.3 Numerical solution of PDEs using RBFNs

Each variable and its derivatives in the governing equa-
tions can be represented by neural networks using ei-
ther (14)-(16) in the direct approach or (29)-(31) in the
indirect approach. The closed-form representations ob-
tained are substituted into the governing equations and/or
boundary conditions and the system is then discretized
via point collocation mechanism. In the present work, the
set of collocation points is chosen to be the same as the
set of centres, i.e. {x(i)}n

i=1 = {c(i)}m
i=1 with n = m. The

RBFN solution satisfies the governing equations point-
wise rather than in an average sense. In order to form the
square system of equations, the governing equations are
applied to the interior points only.

In the indirect RBFN approach, the unknown vector
contains the nodal variable values, e.g. for u in Pois-
son’s equation and for {φ,ω,T} in the Navier-Stokes
equations, resulting in ease of dealing with the essen-
tial boundary conditions; while in the direct RBFN ap-
proach, the unknowns are the network weights (coeffi-
cients), leading to a further employment of collocation
points along the boundaries to enforce the boundary con-
ditions. However, for both approaches, the determination
of the unknowns can be seen to be based on the process
of minimizing the following sum squared errors SSE

SSE = SSE1 +SSE2, (32)

where SSE1 and SSE2 are the sums of squared errors,
which are employed to ensure that neural networks sat-
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isfy the governing equations and boundary conditions re-
spectively. The form of SSE2 depends on the problem
to be solved while the term SSE1 can be written in the
general form provided that the governing equations are
given. For example, the SSE1 in the IRBFN formulation
takes the form

SSE1 =
nip

∑
i=1

[
m

∑
j=1

(
GH

−1
[x1]

)
[i, j]

u( j)

+(
m

∑
j=1

(
GH

−1
[x2]

)
[i, j]

u( j)− s(x(i))

]2

(33)

for Poisson’s equation (1) and

SSE1

=
nip

∑
i=1

{
m

∑
j=1

(
GH

−1
[x1]

)
[i, j]

φ( j)

+
m

∑
j=1

(
GH

−1
[x2]

)
[i, j]

φ( j) +ω(i)]}2

+
nip

∑
i=1

{
m

∑
j=1

(
GH

−1
[x1]

)
[i, j]

ω( j) +
m

∑
j=1

(
GH

−1
[x2]

)
[i, j]

ω( j)

+
m

∑
j=1

(
H[x1]H

−1
[x1]

)
[i, j]

T ( j)

−Gr[
m

∑
j=1

(
H[x2]H

−1
[x2]

)
[i, j]

φ( j)
(

H[x1]H
−1
[x1]

)
[i, j]

ω( j)

−
m

∑
j=1

(
H[x1]H

−1
[x1]

)
[i, j]

φ( j)
(

H[x2]H
−1
[x2]

)
[i, j]

ω( j)]}2

+
nip

∑
i=1

{
m

∑
j=1

(
GH

−1
[x1]

)
[i, j]

T ( j) +
m

∑
j=1

(
GH

−1
[x2]

)
[i, j]

T ( j)

−PrGr[
m

∑
j=1

(
H[x2]H

−1
[x2]

)
[i, j]

φ( j)
(

H[x1]H
−1
[x1]

)
[i, j]

T ( j)

−
m

∑
j=1

(
H[x1]H

−1
[x1]

)
[i, j]

φ( j)
(

H[x2]H
−1
[x2]

)
[i, j]

T ( j)]}2 (34)

for the Navier-Stokes equations (2)-(4), where nip is the
number of interior points and [i, j] denotes the element
located at the row i and column j of a matrix. The present
method thus appears to be close to the FDM in the sense
that the variables in both methods are all expressed in
terms of nodal variable values and the governing equa-
tions are discretized via point collocation mechanism, i.e.
they are approximated directly in the strong form. How-

ever, the IRBFN method is based on high order approx-
imation schemes with global properties (mesh-free uni-
versal approximator RBFNs), while the FDM uses low
order approximation schemes with local properties, usu-
ally truncated Taylor series expansions or polynomial ap-
proximations.

5 Numerical examples

In the following simulations, the variable quantities β,
f t and nx j are simply chosen to be 1, 3 and

√
nip (nip:

number of interior points) respectively, i.e. a(i) = d(i) and
p ≈ 3

√
nip. The reason for choosing f t = 3 will be ex-

plained later on. The relation a(i) = d(i) indicates that it is
reasonable to assign a larger width where the centres are
widely separated and a smaller width where the centres
are closer. Results obtained are compared with the exact
or benchmark solutions. The FEM and DRBFN method
are considered in some cases to provide the basis for the
assessment of the present IRBFN method.

5.1 Heat transfer problems

Since exact solutions for all problems under considera-
tion here are available, the accuracy of the solution ob-
tained is measured via the norm of relative errors of the
solution as follows

Ne =

√
∑n

i=1

[
ue(x(i))−u(x(i))

]2
∑n

i=1 ue(x(i))2
, (35)

where u and ue are the calculated and exact solutions re-
spectively.

5.1.1 Poisson’s equation on a square domain

The problem here is to determine a function u(x1,x2) sat-
isfying the following PDE

∂2u

∂x2
1

+
∂2u

∂x2
2

= sin(πx1) sin(πx2) (36)

defined on the rectangle 0≤ x1 ≤ 1, 0≤ x2 ≤ 1, subject
to the Dirichlet condition u = 0 along the whole boundary
of the domain. The exact solution is given by

ue(x1,x2) = − 1
2π2 sin(πx1) sin(πx2). (37)

Four data sets of 32, 52, 89 and 145 randomly distributed
interior points are employed to study “mesh” conver-
gence (Figure 1). In the IRBFN approach, it is straight-
forward to impose a Dirichlet boundary condition since
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a) 32 interior points b) 52 interior points

c) 89 interior points d) 145 interior points

Figure 1 : Poisson’s equation on a square domain: discretizations by the present IRBFN method. The problem
domain is simply represented by a set of scattered points.

the variable and its derivatives are expressed in terms of
nodal variable values. In the DRBFN approach, colloca-
tion points along the boundaries are used to enforce the
given boundary conditions. For both approaches, the sys-
tems obtained are square. Results are displayed in Figure
2, indicating that the IRBFN approach is superior to the
DRBFN in terms of both accuracy and convergence rate.
Highly accurate results and high rates of convergence
with the refinement of spatial discretization are obtained
with the present method. The solution converges ap-
parently as O(nip−1.4574) for IRBFN and O(nip−0.5081)
for DRBFN, where nip is the number of interior points.
At the finest density of 145 points, the error norms are

2.6437e−4 and 2.4272e−2 for IRBFN and DRBFN re-
spectively.

Results, that are just presented, are valid with f t = 3.
The effect of f t on the accuracy of the solution is studied
in detail here. A wide range of f t varying from 1 to 7
with an increment of 1 is employed. As shown in Figure
3, the solution accuracy is improved with an increase in
the value of f t. However, when f t is greater than 3, the
error norm appears to stay constant. Hence, at f t = 3,
the number of neurons (RBFs) used in the approxima-
tion of integration constant functions appears to be large
enough to capture well these functions. Greater values of
f t can not improve the solution, but cause larger sizes for
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Figure 2 : Poisson’s equation on a square domain: Comparison of the performance between the IRBFN and DRBFN
methods. The former yields more accurate results and higher rate of convergence than the latter. The IRBFN solution
converges apparently as O(nip−1.4574) while the DRBFN solution apparently as O(nip−0.5081).

the network design matrices. The value f t = 3 is recom-
mended for practical use in the case of scattered points.

5.1.2 Poisson’s equation on a unit disk

The problem formulation is given by

∂2u

∂x2
1

+
∂2u

∂x2
2

= −1, x ∈ Ω, (38)

where Ω is the unit disk, subject to the boundary con-
dition u = 0 on the boundary ∂Ω. The exact solution is
given by

ue(x1,x2) =
1−x2

1 −x2
2

4
.

In order to evaluate the performance of the present
IRBFN method, the FEM is also employed to solve the
problem. Three discretization schemes are shown in Fig-
ure 4, for each of which the sets of interior points are
exactly the same for both methods. Note that the FEM
results are obtained using the PDE tool in MATLAB. The
IRBFN method achieves greater accuracy and also higher
convergence rate than the FEM as shown in Figure 5. The
IRBFN method converges apparently as O(nip−1.2664)

while the FEM as O(nip−1.0529), where nip is the number
of interior points. At the finest density of 480 points, the
error norms are 2.0144e−5 and 1.1750e−3 for IRBFN
and FEM respectively.

5.2 Natural convection flow in a square cavity

Natural convection flow in an enclosed square cavity pro-
vides a means to test and validate numerical methods.
The problem, which is in itself of considerable practical
interest, is schematically shown in Figure 6. The domain
of interest is a square cavity of a unit size, containing
a Boussinesq fluid of Prandtl number of 0.71. Non-slip
boundary conditions are applied along all the walls. The
left and right vertical walls are kept at temperatures T = 1
and T = 0 respectively, while the horizontal walls are in-
sulated as described in (7)-(10). Only the IRBFN method
is employed here and its results are compared with the
benchmark solution of de Vahl Davis (1983). Special at-
tention is given to the treatment for the Dirichlet bound-
ary condition ω and the Neumann condition ∂T/∂n.



Indirect RBFN Method 217

1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

f t

N
e

Figure 3 : Poisson’s equation on a square domain: Effect of f t on the solution accuracy. Increasing the value of f t
can improve the solution accuracy. However, when f t is greater than 3, the error norm Ne appears to stay constant.
Apparently, at f t = 3, the number of neurons (RBFs) used in the approximation of integration constant functions
is large enough to capture well the solution. With this value of f t, the “most accurate” solution is achieved, while
keeping the network design matrices small.

5.2.1 Dirichlet condition for the vorticity

The direct employment of the Neumann condition ∂φ/∂n
over all boundaries via point collocation is not appro-
priate here due to the singular nature of the system of
equations, although the system obtained can be square
(Pozrikidis, 1997). Instead, it is used in generating com-
putational boundary conditions for the vorticity ω. The
process is as follows. In the first step, the vorticity in (2)
can be simplified to be

ω = −∂2φ
∂x2

1
− ∂2φ

∂x2
2

= −∂2φ
∂x2

1
at the side walls, (39)

ω = −∂2φ
∂x2

1

− ∂2φ
∂x2

2

= −∂2φ
∂x2

2
at the top and bottom walls, (40)

using the given boundary conditions for the stream func-
tion. In the second step, they are written in terms of the
first order derivatives of φ

ω(i) = −∂2φ(i)

∂x2
1

=
m

∑
j=1

(
GH−1

[x1]

)
[i, j]

∂φ
∂x1

( j)

at the side walls, (41)

ω(i) = −∂2φ(i)

∂x2
2

=
m

∑
j=1

(
GH−1

[x2]

)
[i, j]

∂φ
∂x2

( j)

at the top and bottom walls,

(42)

and the resulting expressions (41) and (42) are then sim-
plified by taking into consideration the Neumann condi-
tions for φ (∂φ/∂n). In the third step, the remainders of
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a) 17 interior points
FEM IRBFN

b) 71 interior points

c) 480 interior points

Figure 4 : Poisson’s equation on a unit disk: discretizations by the FEM and the IRBFN method using the same sets
of interior points. The problem domain in the latter is simply represented by a set of scattered points.
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Figure 5 : Poisson’s equation on a unit disk: Comparison of the performance between the IRBFN method and FEM.
The former yields more accurate results and higher rate of convergence than the latter. Solutions converge apparently
as O(nip−1.2664) and O(nip−1.0529) for the IRBFN method and the FEM respectively.
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Figure 6 : Natural convection flow in a square cavity: geometry definition, boundary conditions and discretization.
Legends +: boundary point and .: interior point. The problem domain is simply represented by a set of scattered
points.
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a) Discretization (690 interior points) b) Contour plot of stream function

c) Contour plot of vorticity d) Contour plot of temperature

Figure 7 : Natural convection flow, 690 interior points, Ra = 1.e3: discretization and some contour plots.

the nodal first derivatives of φ on the right-hand sides of
(41) and (42) are expressed in terms of the nodal stream
function values, for example at the boundary point x(i),

∂φ
∂x1

(i)

=
m

∑
j=1

(
H[x1]H

−1
[x1]

)
[i, j]

φ( j), (43)

∂φ
∂x2

(i)

=
m

∑
j=1

(
H[x2]H

−1
[x2]

)
[i, j]

φ( j). (44)

Hence, the computational Dirichlet boundary conditions
for ω are generated and written in terms of the nodal val-
ues of φ. It is noted that in this process, the natural bound-
ary conditions for the stream function are implemented in
“a precise manner” using the global approximations.

5.2.2 Neumann condition for the temperature

The present method implements this type of boundary
condition as follows. Along the bottom (x2 = 0) and top
(x2 = 1) sides of the domain, normal derivatives ∂T/∂n
are given and hence the task now is to express the bound-
ary values of T there in terms of the interior variable val-
ues. This can be achieved by solving the following sub-
system of equations

∂T (x(i))
∂x2

=
m

∑
j=1

(
H[x2]H

−1
[x2]

)
[i, j]

T ( j), (45)

where x(i) = {(x1,x2 = 0), (x1,x2 = 1)}. The results ob-
tained from (45) together with the Dirichlet boundary
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a) Discretization (999 interior points) b) Contour plot of stream function

c) Contour plot of vorticity d) Contour plot of temperature

Figure 8 : Natural convection flow, 999 interior points, Ra = 1.e4: discretization and some contour plots.

conditions for T in (8) and (10) will be substituted into
the final system of equations from which the unknown
vector for the temperature T contains only the interior
variable values. Once the final system of equations is
solved, the numerical solution T along two horizontal
sides may be found from (45).

5.2.3 Flow chart

In the present work, the Poisson’s equation (2), the vor-
ticity transport equation (3) and the energy equation (4)
are solved simultaneously for the whole set of primary
variables. The procedural flow chart involves the follow-
ing steps

1. Input data such as geometries, boundary conditions,

a Rayleigh number and data points. Here, a set of
collocation points is chosen to be the same as a set
of centres,

2. Apply the IRBFN approach for the approximation
of each variable and its derivatives present in the rel-
evant PDEs, which results in design matrices in the
network weight spaces. It is noted that these matri-
ces depend only on the geometry of the problem and
hence they are the same for all variables,

3. Convert the multiple spaces of network weights into
the single space of the primary variable values. This
step involves some matrix inversions. However,
their computational costs are modest because those
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a) Discretization (1168 interior points) b) Contour plot of stream function

c) Contour plot of vorticity d) Contour plot of temperature

Figure 9 : Natural convection flow, 1168 interior points, Ra = 1.e5: discretization and some contour plots.

matrices are relatively small with their size being
approximately equal to n×n in which n is the num-
ber of collocation points,

4. Generate the computational Dirichlet boundary con-
ditions for ω and T using the given Neumann
boundary conditions for φ and T respectively,

5. Form the final system matrix, which involves only
linear terms in the governing equations (2)-(4), and
then impose the Dirichlet conditions for φ , ω and
T . This matrix stays the same during the iteration
process,

6. Initialize the stream function, vorticity and temper-
ature fields,

7. Compute the nonlinear terms, in which relevant
derivative functions are calculated in a straightfor-
ward manner using the network design matrices ob-
tained at step 3,

8. Formulate the trust region subproblem and then
solve it for the search direction (More and Sorensen,
1983; Branch, Coleman and Li, 1999),

9. Update the solution,

10. Check for convergence. If not yet converged, repeat
from step 7,

11. Output the results.
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a) Discretization (1693 interior points) b) Contour plot of stream function

c) Contour plot of vorticity d) Contour plot of temperature

Figure 10 : Natural convection flow, 1693 interior points, Ra = 1.e6: discretization and some contour plots.

5.2.4 Numerical results

Four data sets of 778, 999, 1168 and 1693 ran-
domly distributed points are employed to study this
problem for a wide range of the Rayleigh number
{1.0e3,1.0e4,1.0e5,1.0e6}. General results for this
problem in the form of contour plots of the stream func-
tion, vorticity and temperature are displayed in Figures
7-10 respectively, where finer discretizations are used for
higher Ra values. There is a close agreement with the
results available in the literature. The temperature and
stream function fields are skew-symmetric with regard
to the geometric centre of the cavity (centro-symmetric).
Furthermore, the temperature boundary layers at the ver-
tical walls appear to be thinner and the isotherms are

nearly horizontal in the core flow as the Rayleigh number
increases. Thin boundary layers are also observed for the
flow close to the walls.

Another important results associated with this type of
flow are

• the Nusselt number defined by

Nu(x1) =
∫ 1

0
(u1T −T,1)dx2, (46)

• maximum horizontal velocity on the vertical mid-
plane and its location,

• maximum vertical velocity on the horizontal mid-
plane and its location,
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Table 1 : Natural convection flow in a square slot: Comparison of the IRBFN results with the benchmark solution
(de Vahl Davis, 1983).

Solution Ra u1max (x2) u2max (x1) Nu(x1 = 0)
Benchmark 1.0e3 3.649 (0.813) 3.697 (0.178) 1.117
Computed 1.0e3 3.659 (0.814) 3.711 (0.178) 1.132

(690 interior points)
Benchmark 1.0e4 16.178 (0.823) 19.617 (0.119) 2.238
Computed 1.0e4 16.190 (0.823) 19.643 (0.118) 2.278

(999 interior points)
Benchmark 1.0e5 34.73 (0.855) 68.59 (0.066) 4.509
Computed 1.0e5 34.47 (0.851) 69.05 (0.063) 4.515

(1168 interior points)
Benchmark 1.0e6 64.63 (0.850) 219.36 (0.0379) 8.817
Computed 1.0e6 64.39 (0.847) 226.26 (0.0380) 8.660

(1693 interior points)

which are also studied here. Integral (46) is computed us-
ing Simpson rule. Results obtained for four data densities
are displayed in Table 1, which are in good agreement
with the benchmark solution of de Vahl Davis (1983).

5.2.5 Comparison with other meshless RBFN-based
methods

Recently, Shu, Ding and Yeo (2003) reported the local
RBF-based differential quadrature method (RBF-DQM)
for numerical solution of the Navier-Stokes equations.
In that method, the PDEs are approximated directly in
the strong form and the derivative expressions are ob-
tained by the differential quadrature method using radial
basis functions. In solving natural convection flows in
a square slot, three data sets of 2570, 5338 and 10305
randomly distributed points were employed to simulate
flows for the Rayleigh number of 1.0e4, 1.0e5 and 1.0e6
respectively. Hence, the numbers of scattered points used
in the present simulations (999, 1276 and 1693 colloca-
tion points) are much less than those employed in the
RBF-DQM. Furthermore, in generating Dirichlet bound-
ary conditions for the vorticity, the present method does
not require any special discretization in the boundary re-
gion, while three layers of orthogonal grid near and in-
cluding the boundary are required in the method of Shu,
Ding and Yeo (2003).

6 Concluding remarks

In this paper, the indirect RBFN method with scattered
points for numerical solution of PDEs is reported. The
method is truly meshless since there is not any connec-
tivity required between the data points. The sets of nodal
constants arising from an integration process are repre-
sented by indirect RBFNs using relatively small numbers
of centres, thereby keeping the size of the network design
matrices small. Like the case of FDM and the differ-
ential quadrature method (DQM), a collocation mecha-
nism is employed to discretize the governing equations
and boundary conditions. The variables and their deriva-
tives are all expressed in terms of nodal variable values.
However, it is different from the FDM and DQM that
in the present method, meshless global indirect RBFNs
are utilized to represent the solution and can be extended
to handle the problems with complex geometries in a
straightforward manner. The method produces good re-
sults using relatively low collocation densities and re-
quires only a minimal amount of effort to implement.
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