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An Integrated Design of Generalized Single Step LMS Time Operators for
Nonlinear Structural Dynamics

R.Kanapady1 and K.K.Tamma2

Abstract: An integrated design of generalized single
step LMS methods for applications to nonlinear struc-
tural dynamics is described. The design of the mathe-
matical framework encompasses all the traditional and
new and recent optimal algorithms encompassing LMS
methods, and readily permits the different a-form, v-form
and d-form representations in a unique mathematical set-
ting. As such, the theoretical developments and imple-
mentation aspects are detailed for subsequent applica-
tions to nonlinear structural dynamics problems. The
developments naturally inherit a consistent treatment of
nonlinear internal forces under the present umbrella of
predictor multi-corrector generalized single step repre-
sentations with a wide variety of algorithmic choices as
options to the analyst. Within the scope of Dahlquist bar-
rier theorem for LMS methods, the results indicate that,
time integration operators with zero-order displacement
and zero-order velocity overshoot behavior [U0-V0] per-
form ideally for general non-zero initial displacement
and velocity conditions. Alternatively, for given initial
displacement conditions the [U1-V0] methods could be
used and for given initial velocity conditions the [U0-V1]
methods could be used, although the [U0-V0] methods
are ideal for general situations.

keyword: Linear Multi-step methods; Generalized In-
tegration Operators; Nonlinear Structural Dynamics;

1 Introduction

Of general interest in structural dynamics computations
are the class of: (i) inertial type problems, and (ii) wave
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propagation problems. For linear situations, long dura-
tion transient analysis and inertial type problems, tra-
ditional mode superposition type approaches and prac-
tices are attractive. However, thus far, they have ei-
ther been limited or have not been as popular for ap-
plicability to general non-linear dynamic situations (be-
cause of cited reasons in the literature which indicate the
need to frequently compute the associated eigen prob-
lems repeatedly to satisfy local mode superposition) and
for wave propagation type of problems (because of the
need to involve a large number of modes). On the other
hand, of the various transient algorithms available in the
literature for structural dynamics computations, the so-
called direct time integration techniques that are both
non-dissipative/dissipative as related to single step repre-
sentations amongst the class of linear multistep methods
(LMS) [Hughes (1987); Zienkiewicz, Wood, Hine, and
Taylor (1984); Tamma, Zhou, and Sha (2001)] continue
to be popular in commercial codes and for practical non-
linear structural dynamic situations. High-order of time
accuracy methods have not been as popular because of
the need for additional computational expense (although
for certain class of dynamic situations with higher-order
spatial discretization such practices may be warranted).
These so-called direct time integration techniques which
we have described previously [Tamma, Zhou, and Sha
(2001); Zhou and Tamma (2004)] for linear situations
under a unified framework encompassing LMS meth-
ods via the so-called generalized integration operators
[GInO] or equivalently, the generalized single step rep-
resentations, not only recover all of the existing and tra-
ditional dissipative/non-dissipative time integration oper-
ators that have been developed over the past five decades
to our knowledge, but also inherit new avenues and opti-
mal algorithms not available and/or explored to-date be-
cause of existing limitations in current practices of the
design of computational algorithms. Our previous de-
sign and development efforts have mostly focused on lin-
ear dynamic situations and the interest here is on the de-
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sign and developments for nonlinear situations within the
scope of LMS methods. A simple computational mod-
ule is all that is needed to significantly impact research
and commercial codes. Higher order methods ([Kana-
pady and Tamma (2003); Cho and Kim (2002); Chien
and Wu (2001)]) are not of focus here.

The first unconditionally stable dissipative algorithm
with controllable numerical damping appears to be the
Wilson-θ method [Wilson (1968)]. However, it suffers
from what we refer to as second-order displacement over-
shoot and first-order velocity overshoot [U2-V1] behav-
ior due to initial displacement. Subsequently, the Hilber-
Hughes-Taylor (HHT-α) method [Hilber, Hughes, and
Taylor (1977)], the Wood-Bossak-Zienkiewicz (WBZ)
method [Wood and Bossak (1980)], and the Generalized-
α method [Chung and Hulbert (1993)] that have been de-
veloped belong to the same family of algorithms which
inherit [U0-V1] overshoot characteristics due to initial
displacement. The later developments due to the Hoff-
Phal method [Hoff and Pahl (1988a)] belong to a differ-
ent family of algorithms which inherently inherits [U1-
V1] overshoot characteristics unlike its original claims.
Besides the overshoot properties, the HHT-α method,
WBZ method, and the Hoff-Pahl method have similar
algorithmic dissipation and dispersion properties for the
same norm value (magnitude) of the principal roots in the
high-frequency limit (ρ∞). Although the Generalized-α
method yields minimal dissipation and dispersion within
the currently available [U0-V1] algorithms for the same
ρ∞ and the same approximation for the weak form and
the state variables, the appropriate selection and choice
of which algorithm to employ is also based on given ini-
tial conditions as described subsequently and the present
design naturally provides such a selection based on opti-
mal considerations.

Note that the above overshoot characteristics of the time
integration operators pertain to linear situations. Also
note that for the W-B-Z [U0-V1] method, the overshoot
in the displacement at the end of the first time step is
zero and independent of the ρ∞ value. Thus, although this
method has a free parameter, ρ∞, for controllable numeri-
cal dissipation, the method asymptotically annihilates the
displacement response regardless of the value of ρ∞. This
is in contrast to the optimal [U0-V0] methods and the
optimal [U0-V1] methods where the displacements are
eliminated proportionally with respect to ρ∞.

Of particular interest and focus in this paper is the design

of computational algorithms with generalized features
within a unified framework encompassing LMS methods
for non-linear computational structural dynamics (CSD).
However, for the case of non-linear dynamic systems,
the task of understanding the characteristics of time inte-
grators (accuracy, stability and the like) has been further
complicated due to limitations of mathematical theories,
the current practices and nature of the approximations
introduced in the linearization methods, approaches for
evaluating the internal force computations, and methods
adopted for convergence assessment. An astounding va-
riety of physical manifestation has been observed in the
literature [Argyris (1991); Xie and Steven (1994)] by the
analysis of non-linear dynamic processes. For example,
with the application of the so-called direct time integra-
tion techniques to a single-degree-of-freedom non-linear
equation of motion, namely, the so-called the Duffing
equation, one can find that a deterministic system may
yield a stochastic response for a given deterministic ex-
citation. Thus, it has been not as clear thus far as in
linear dynamic systems to select and decide a particu-
lar time integration algorithm which is most suited for
the problem at hand in the case of non-linear dynamic
situations. In addition, although in the past there is no
evidence in the literature to suggest that one method is
suitable for all types of problems and for the given ini-
tial conditions, and/or the type of guidelines that would
be deemed beneficial, more recent developments which
we have described in [Tamma, Zhou, and Sha (2001);
Zhou and Tamma (2004); Kanapady and Tamma (2004)]
indeed provide significant advances in providing an im-
proved understanding and design guidelines for linear
dynamic situations.

Focusing attention instead towards practical nonlin-
ear dynamic situations, the objectives of the present
manuscript include: (i) a new unified design framework
of generalized single step representations encompassing
LMS methods, (ii) an easy to code design that inher-
its a Reduced Complexity in Programming Environment
[RECIPE] paradigm via an efficient computational pro-
cedure that allows a wide variety of new and unexplored
computational algorithms with optimal attributes that are
dissipative/non-dissipative including existing time inte-
gration operators as choices to the analyst to serve as a
viable computational analysis tool, (iii) implementation
aspects and analysis results of standard benchmark ex-
amples widely used for assessing new developments, and
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(iv) design/analysis guidelines.

2 Preliminaries

2.1 Equations of Motion

The general form of non-linear dynamic problems of in-
terest and focus here is the single-field, second-order,
simultaneous ordinary differential equation system after
the finite element discretization in space. This can be
described in matrix form (strong form) for non-linear sit-
uations as:

L(u)≡ M
..
u +p(

.
u,u) = f (1)

where u,
.
u and

..
u: t → ℜn is the displacement, veloc-

ity and acceleration vectors, M ∈ ℜn×n is the symmetric
positive-definite mass matrix, p :

.
u ×u × t → ℜn is the

vector of the non-linear internal forces, f : t → ℜn is the
vector of external applied loads and n is the number of
degrees-of-freedom. The initial value problem for Eq. 1
is to find a displacement u = u(t) (and consequently,

.
u

and
..
u) satisfying Eq. 1 and the given initial conditions

u(0) = u0;
.
u (0) =

.
u0 (2)

where the tangent matrices are given as

Kt =
∂p
∂u

; Ct =
∂p
∂

.
u

; (3)

The vectors p, f and the matrix M are given by

p(u) = ∪Ne
e=1L(e)T

∫
Ωe

B(u)TσσσdΩ (4)

f(t) = ∪Ne
e=1L(e)T

∫
Ωe

NTρb(t)dΩ+
∫

∂Ωe
NTtdS (5)

M = ∪Ne
e=1

∫
Ωe

ρNTNdΩ (6)

where N is the shape functions and B is the compatibil-
ity matrix that relates the strain to displacement and ac-
counts for the geometric non-linearities, L(e) is the ele-
ment connectivity matrix, ρ is the density, b is the body
forces, and t are the tractions boundary conditions.

In contrast to the linear dynamic case, traditionally the
non-linear dynamic problem has offered two different
possibilities of putting the parameters of the integrator
either inside or outside the non-linear operator p(u). It
should be pointed out that putting the parameters inside
the operator is very natural for the present design of a

generalized unified mathematical framework of time dis-
cretized operators as described in the sections to follow.
In addition, the present developments overcome most of
the disadvantages of the various existing methods and
customary practices which employ parameters outside
the nonlinear operator. Some of the cited disadvantages
of putting the parameters outside the nonlinear operators
are:

1. Firstly, no concise representation exists from the
context of a generalized unified framework of time
discretized operators, although a concise represen-
tation exists for the individual time integrators,

2. Unlike the present approach of a more accurate eval-
uation of p(u) at some interior point t̂ ∈ [tn, tn+1] us-
ing parameters inside the nonlinear operator (as in
a limited scope or framework of α-methods), on the
other hand employing other approaches with param-
eters outside the operator such as

• p(un+α) ≈ αp(un) + (1 − α)p(un+1) [Hoff,
Hughes, Hulbert, and Phal (1989); Kuhl and
Crisfield (1999)] for α−methods,

• p(un + θ1
.
un ∆t + 1

2 θ2an∆t2) ≈ p(un) +
(θ1

.
un ∆t + 1

2θ2an∆t2)ṗ(ûn) [Wood and Oduor
(1988); Wood (1990)] for SS22 methods,

and the like, yield representations that are only first-
order time accurate in O(∆u) compared to the pa-
rameters inside the operator p(u), and

3. Other approximations may lead to costly computa-
tions such as multiple evaluations of p(u) in con-
trast to only one evaluation of p(u), or additional
matrix-vector multiplications in contrast to none for
the present design framework of concise represen-
tations. This is in the context of the computation of
the dynamical out-of-balance forces for every non-
linear iteration at each time step, thereby, leading to
more memory requirements for large scale applica-
tions, and the like.

From this preliminary discussion, it is evident that a con-
sistent and systematic approach is deemed important in
which the parameters naturally remain inside the nonlin-
ear operator in the weak form of the overall design of the
time integrator.
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3 Mathematical Formulation and Framework

As we have pointed out previously [Kanapady, Tamma,
and Zhou (2003)], the overall design of the generalized
framework for the time integrator comprises of two as-
pects, namely,: (i) the aspect associated with the integra-
tor dealing with the solution phase associated with the
semi-discretized equations of motion, and (ii) the aspect
associated with the design of the updates that permit ad-
vancing the solution to the end of the time step.

3.1 Weakform of the Time Integrator and Updates

Following our previous proposition [Kanapady, Tamma,
and Zhou (2003)] and assuming an arbitrary virtual field
or weighted time fields for enacting the time discretiza-
tion process, the time weighted residual formulation in-
volves the weak form of representations given as:

(L(u)− f,w)I = 0 ∀w(t), (7)(
u′− .

u, ŵ
)

I
= 0 ∀ŵ(t), (8)( .

u′ −
..
u, w̃

)
I

= 0 ∀w̃(t), (9)

where t ∈ [tn, tn+1], u and
.
u ∈ C0[tn, tn+1], and

..
u are

independent approximations to the solution u,
.
u, and

..
u of L(u) − f = 0, u(tn) = u0,

.
u (tn) =

.
u0, and u′

and
.

u′ is the differentiation of u and
.
u with respect

to t and u,
.
u∈ C0[tn, tn+1] ⇒ u(tn) = d0,

.
u (tn) =

.
u0,

(., .)I is the L2[tn, tn+1] inner product is defined by
(x,y)=

∫
I x(t).y(t)dt, and I ∈ [tn, tn+1].

3.2 Design of Time Integrator and Updates

For the family of generalized integration operators
[GInO] encompassing LMS methods, we naturally have
scalar weighted time fields, w(t), ŵ(t) and w̃(t) (of inter-
est here are second-order accurate features) as:

w = w0 +w1τ+w2τ2 +w3τ3 (10)

ŵ = ŵ0 + ŵ1τ+ ŵ2τ2 + ŵ3τ3 (11)

w̃ = w̃0 + w̃1τ+ w̃2τ2 (12)

where τ ∈ [0,1] and w0, ŵ0 and w̃0 is normalized to 1.
This selection of the weighted time fields now dictates
consistently approximating the dependent field variables
u,

.
u and

..
u by employing an asymptotic series type ex-

pansion (including a truncated error term) as

u =

asymptotictype series︷ ︸︸ ︷
un +Λ1

.
un ∆tτ+Λ2

..
un ∆t2τ2+ Λ3∆

..
u ∆t2τ3︸ ︷︷ ︸

truncated errorterm

(13)

.
u =

.
un +Λ4

..
un ∆tτ+Λ5∆

..
u ∆tτ2 (14)

..
u =

..
un +Λ6∆

..
u τ (15)

f = fn+
.
fn ∆tτ = fn +∆fτ (16)

where Λi ∈ ℜ, i = 1, . . .,6 are free parameters, ∆
..
u=

..
un+1

− ..
un and the load is linearly interpolated. Due to the

presence of the non-linear term p(u) in Eq. 7, further
simplifications need to be made. Following [Kujawski
and Desai (1984)] let

p(u) = K(u)u (17)

where K is the total stiffness matrix. Evaluating the stiff-
ness matrix at ũn+1, we have

p(u) ≈ K(ũn+1)u (18)

where ũn+1 is the equivalent displacement resulting due
to the integration of the stress updates. Equivalently
we have p(u) ≈ K(σ̃σσn+1)u. Substituting the weighted
time fields, Eq. 10, and the state variable approximations,
Eqs. 13 - 16, into Eq. 7 leads to the design of the as-
pect associated with the integrator for the family of gen-
eralized integration operators [GInO] for the single-field
form of the non-linear dynamic equations of motion and
is represented as:

M
..
ûn+1 +C

.
ûn+1 +K(ũn+1)ûn+1 = F̂n+1 (19)

Accounting for issues related to consistently integrat-
ing the constitutive law and the equation of motion,
[Corigliano and Perego (1990)] requires that ũn+1 =
ûn+1, then according to the definitions Eq. 17, we have

K(ũn+1=ûn+1)ûn+1 = p(ûn+1) (20)

Then Eq. 19 becomes

M
..
ûn+1 +C

.
ûn+1 +p(ûn+1) = F̂n+1 (21)
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where

ûn+1 =un+Λ1W1
.
un ∆t+Λ2W2

..
un ∆t2 (22)

+ Λ3W3∆
..
u ∆t2 (23)

.
ûn+1 =

.
un +Λ4W1

..
un ∆t+Λ5W2∆

..
u ∆t (24)

..
ûn+1 =

..
un +Λ6W1∆

..
u (25)

F̂n+1 =(1−W1)fn+W1fn+1 (26)

with Wi are defined for convenience as

Wi =
W3,i

W3,0
; i = 1,2,3 (27)

and

Wp, j =
∫ 1

0
w(τ)τ jdτ =

p

∑
i=0

wi

1+ i+ j
(28)

Once
..
un+1 is solved for using the time integrator, Eq. 21,

the end conditions, namely, the displacement un+1, and
velocity

.
un+1 can be obtained from the following con-

sistently derived design for the updates as in the lin-
ear dynamic case. Substituting the weighted time fields,
Eqs. 11 – 12, and the state variable approximations,
Eqs. 13 - 15, into Eqs. 8 – 9, yields

un+1 = un +λ1
.

un ∆t +λ2
..
un ∆t2 +λ3∆

..
u ∆t2 (29)

.
un+1 =

.
un +λ4

..
un ∆t +λ5∆

..
u ∆t (30)

where λi i = 1,2, . . .,5 are given by

λ1 =
Λ1

.

Ŵ 3,1 +Ŵ3,0

ŵn+1
; λ2 =

Λ2

.

Ŵ 3,2 +Λ4Ŵ3,1

ŵn+1
;

λ3 =
Λ3

.

Ŵ 3,3 +Λ5Ŵ3,2

ŵn+1
;λ4 =

Λ4

.

W̃ 2,1 +W̃2,0

w̃n+1
;

λ5 =
Λ5

.

W̃ 2,2 +Λ6W̃2,1

w̃n+1

(31)

Ŵp̂, j =
∫ 1

0
ŵτ jdτ =

p̂=k+1

∑
i=0

ŵi

1+ i+ j

.

Ŵ p̂, j =
∫ 1

0

.
ŵ τ jdτ =

p̂=k+1

∑
i=1

iŵi

i+ j

W̃p̃, j =
∫ 1

0
w̃τ jdτ =

p̃=k

∑
i=0

w̃i

1+ i+ j

.

W̃ p̃, j =
∫ 1

0

.
w̃ τ jdτ =

p=k

∑
i=1

iw̃i

i+ j

(32)

Eqs. 21 – 30 encompass a unified family of [GInO] a-
form single step representations for non-linear structural
dynamics. As such, the associated Discrete Numeri-
cally Assigned [DNA] algorithmic markers (wi, Λi, λi

or ŵi , w̃i) which comprise of both the weighted time
fields and the conditions they impose on the dependent
field variable approximations involve unique relations
(see Ref. [Zhou and Tamma (2004)]) that lead to the
design and characterization of various new and exist-
ing time discretized operators via: (i) specially assigned
marker coefficients for the weighted time fields, and (ii)
the corresponding imposed conditions upon the depen-
dent field variable approximations in the strong form,
namely, Eq. 1, as long as this selection satisfies the
unique relations which serve as the algorithmic [DNA]
markers or the algorithmic signature. Thus the weak
form of the integrator, Eqs. 21 – 26, together with the
design updates, Eqs. 29 – 30, mimics the strong form in
Eq. 1. We define optimality of algorithmic parameters
leading to optimal algorithms as those algorithms whose
attributes are optimal in the sense of accuracy, stability,
numerical dissipation and dispersion, and overshooting
behavior. Under this umbrella and referring to [Zhou
and Tamma (2004)], we simply highlight here the ba-
sic attributes of a class of new [U0-V0], [U0-V1] and
[U1-V0] families of algorithms for linear situations. The
general framework encompasses all the existing methods
that are dissipative/non-dissipative that are subsets and/or
equivalent to particular selected cases. The [U0-V0] rep-
resentation of algorithms refers to zero-order displace-
ment and velocity overshoot behavior, the family of [U0-
V1] (the generalized-α method is a particular case [Zhou
and Tamma (2004)]) and [U1-V0] representations of al-
gorithms refers to the zero-order displacement and first-
order velocity, and first-order displacement and zero-
order velocities overshoot behavior, respectively. In the
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sections to follow, various computational solution pro-
cedures in predictor multi-corrector representations are
described in a unified framework. The unified family of
[GInO] a-form single step representations for non-linear
structural dynamics, Eq. 1, can be summarized as:

Time integrator Encompassing LMS Methods

Integrator:

M
..
ûn+1 +p(

.
ûn+1, ûn+1) = F̂n+1

where:

ûn+1 = un +Λ1W1
.
un ∆t +Λ2W2

..
un ∆t2 +

Λ3W3∆
..
u ∆t2

.
ûn+1=

.
un +Λ4W1

..
un ∆t +Λ5W2∆

..
u ∆t

..
ûn+1=

..
un +Λ6W1∆

..
u

F̂n+1 = (1−W1)fn +W1fn+1

Design updates:

un+1 = un +λ1
.

un ∆t +λ2
..
un ∆t2 +λ3∆

..
u ∆t2

.
un+1=

.
un +λ4

..
un ∆t +λ5∆

..
u ∆t

The above nonlinear system representation needs to be
appropriately transformed into a viable computational
implementation representation. In the section to follow,
the developments pertaining to a unified approach for
such representations are presented.

4 Computational Methodology for Non-linear Dy-
namic Systems

In this section, the predictor multi-corrector formulations
for the family of [GInO] single step representations for
non-linear dynamic systems in the incremental a-form is
first described. Subsequently, the various representations
for the v and d-forms are developed and their equivalence
is also established. This is an important and notewor-
thy feature of the present design framework, wherein,
all the representations yield the same numerical results
(although the number of nonlinear iterations to converge
vary for each representation).

4.1 Predictor multi-corrector incremental a-form rep-
resentations

The predictor multi-corrector incremental a-form [GInO]
representations (GInOALGO:A1) can be described as fol-
lows.

At the start of time step
Predict the state vectors employing (Predictors)
..
û

j

n+1=
..
un

.
û

j

n+1=
.
un +Λ4W1

..
un ∆t

û j
n+1 = un +Λ1W1

.
un ∆t +Λ2W2

..
un ∆t2

Satisfy equilibrium over multi-corrector iterations

Solve M∆
..
u j+1

n+1= F
where M=

[
Λ6W1M+Λ5W2∆tC+Λ3W3∆t2Kt

]
F= F̂n+1−M

..
û

j

n+1 −C
.
û

j

n+1 −p(û j
n+1)

Update (Correctors)

û j+1
n+1 = û j

n+1 +Λ3W3∆
..
u j+1

n+1 ∆t2

.
û

j+1

n+1=
.
û

j

n+1 +Λ5W2∆
..
u j+1

n+1 ∆t
..
û

j+1
n+1=

..
û

j

n+1 +Λ6W1∆
..
u j+1

n+1

recompute : Kt(û j
n+1) if necessary

Till ||∆ ..
u ||2/||

..
ûn+1 ||2 ≤ ε

and ||Fn+1||2/||fn+1||2 ≤ ε
Design updates at end of time step
..
un+1=

..
un +(

..
û

j+1

n+1 −
..
un)/Λ6W1

.
un+1=

.
un +λ4

..
un ∆t +λ5(

..
un+1 − ..

un)∆t
un+1 = un +λ1

.
un ∆t +λ2

..
un ∆t2

+λ3(
..
un+1 − ..

un)∆t2

Go to next time step

To provide a wide range of representations for their re-
spective use in practical nonlinear/linear applications, the
incremental v-form and d-form representations follow
next. The predictor multi-corrector incremental v-form
representations are first described and then the incremen-
tal d-form representations are described.

4.2 Predictor multi-corrector incremental v-form rep-
resentations

In this section, the predictor multi-corrector incremen-
tal v-form [GInO] representations are described. There
are two possible ways one could provide a systematic
approach of deriving the incremental v-form representa-
tions from the incremental a-form representations. The
first approach is to use a condition outside the weak
form, namely, the design updates, and the second ap-
proach is to use a condition within the weak form it-
self. We refer to the former approach as the true incre-
mental v-form ([GInO]ALGO:V 1) since the multi-corrector
non-linear iterations converge on the true incremental ve-
locity ∆

.
u, and the latter is referred to as the pseudo-

incremental v-form since the multi-corrector non-linear
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iterations converge on the pseudo incremental velocity
∆

.
û ([GInO]ALGO:V 2).

4.2.1 True incremental v-form – [GInO]ALGO:V 1:

Rewriting the design of the updates, Eq. 30, in terms of
the incremental velocity as

.
un+1=

.
un +∆

.
u, we have

∆
.
u= λ4

..
un ∆t +λ5∆

..
un ∆t (33)

from which we can write the incremental acceleration ∆
..
u

as

∆
..
u=

∆
.
u

λ5∆t
− λ4

λ5

..
un (34)

Substituting the Eq. 34 into the updates and the correc-
tors, described in GInOALGO:A1, and after a few math-
ematical manipulations, the predictor multi-corrector
[GInO] representations for the true incremental v-form
are summarized below.

At the start of time step
Predict the state vectors employing (Predictors)
û j

n+1 = un +Λ1W1
.
un ∆t +(Λ2W2− Λ3λ4W3

λ5
)

..
un ∆t2

.
û

j

n+1=
.
un +(Λ4W1− Λ5W2λ4

λ5
)

..
un ∆t

..
û

j

n+1=
(

1− Λ6λ4W1
λ5

)
..
un

Satisfy equilibrium over multi-corrector iterations

Solve C∆
.
u j+1

n+1= F

where C =
[

Λ6W1
λ5∆t M+ Λ5W2

λ5
C+ Λ3W3∆t

λ5
Kt

]
F = F̂n+1−M

..
û

j

n+1 −C
.
û

j

n+1 −p(û j
n+1)

Update (Correctors)

û j+1
n+1 = û j

n+1 + Λ3W3
λ5

∆
.
u j+1

n+1 ∆t
.
û

j+1

n+1=
.
û

j

n+1 +Λ5W2
λ5

∆
.
u j+1

n+1
..
û

j+1
n+1=

..
û

j

n+1 +Λ6W1
λ5∆t ∆

.
u j+1

n+1

recompute : Kt(û j
n+1) if necessary

Till ||∆ .
u ||2/||

.
ûn+1 ||2 ≤ ε

and ||Fn+1||2/||fn+1||2 ≤ ε
Design updates at end of time step
..
un+1=

..
un +(

..
û

j+1

n+1 −
..
un)/Λ6W1

.
un+1=

.
un +λ4

..
un ∆t +λ5(

..
un+1 − ..

un)∆t
un+1 = un +λ1

.
un ∆t +λ2

..
un ∆t2

+λ3(
..
un+1 − ..

un)∆t2

Go to next time step

Note that the design updates at the end of the multi-
corrector non-linear iterations are the same design up-

dates employed for the predictor multi-corrector incre-
mental a-form [GInO] representations. However, a con-
sistent derivation of the design updates will lead to hav-
ing the true velocity

.
un+1 updates in each multi-corrector

non-linear iteration as
.
u j+1

n+1=
.
u j

n+1 +∆
.
u (35)

and, at the end of the multi-corrector non-linear itera-
tions, the design updates are

.
un+1 =

.
u j+1

n+1 (36)

..
un+1 =

(
.
un+1 − .

un)
λ5∆t

+(1− λ4

λ5
)

..
un (37)

un+1 = un +(λ1
.
un +

λ3

λ5
(

.
un+1− .

un))∆t + (38)

(λ2−λ3λ4

λ5
)

..
un ∆t2 (39)

It can be readily shown from an illustration of a single-
degree-freedom system that both the design updates em-
ployed in predictor multi-corrector incremental a-form
and true v-form [GInO] representations and Eqs. 36 – 39
are equivalent (matrix identity). Clearly, the latter in-
volves an additional vector update operation, Eq. 35, for
each multi-corrector non-linear iteration in comparison
to the former which has only one vector operation, at the
end of the multi-corrector non-linear iteration. Also, one
can show that the former design updates have better over-
all convergence properties for multi-degree-of-freedom
nonlinear dynamic systems. That is, the former design
updates will have a lower total number of non-linear iter-
ations at the end of the multi-degree-of-freedom system
analysis.

4.2.2 Pseudo incremental v-form – [GInO]ALGO:V 2

Alternatively, rewriting Eq. 24 in terms of the incremen-
tal velocity as

.
ûn+1=

.
un +∆

.
û, we have

∆
.
û= Λ4W1

..
un ∆t +Λ5W2∆

..
un ∆t (40)

from which one can write the incremental acceleration
∆

..
u as

∆
..
u=

∆
.
û

Λ5W2∆t
− Λ4W1

Λ5W2

..
un (41)

Substituting Eq. 41 into the updates and the correc-
tors described in GInOALGO:A1 and after a few math-
ematical manipulations, the predictor multi-corrector
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[GInO] representations for the pseudo-incremental v-
form are obtained as summarized below. Note that this
system is equivalent (matrix identity) to the predictor
multi-corrector incremental a-form [GInO] representa-
tions since Eq. 41 is derived within the weak form itself.

At the start of time step
Predict the state vectors employing (Predictors)
û j

n+1 = un +Λ1W1
.
un ∆t

+(Λ2W2 − Λ3Λ4W1W3
Λ5W2

)
..
un ∆t2

.̂
u

j

n+1 =
.
un

.̂.
u

j

n+1 =
(

1− Λ4Λ6W 2
1

Λ5W2

)
..
un

Satisfy equilibrium over multi-corrector iterations

Solve C∆
.
û

j+1

n+1= F

where C =
[

Λ6W1
Λ5W2∆t M+C+ Λ3W3∆t

Λ5W2
Kt

]
F = F̂n+1−M

..
û

j

n+1 −C
.
û

j

n+1 −p(û j
n+1)

Update (Correctors)

û j+1
n+1 = û j

n+1 + Λ3W3
Λ5W2

∆
.
û

j+1
n+1 ∆t

.
û

j+1
n+1=

.
û

j

n+1 +∆
.
û

j+1
n+1

..
û

j+1

n+1=
..
û

j

n+1 + Λ6W1
Λ5W2∆t ∆

.
û

j+1

n+1

recompute : Kt(û j
n+1) if necessary

Till ||∆
.
û ||2/||

.
ûn+1 ||2 ≤ ε

and ||Fn+1||2/||fn+1||2 ≤ ε
Design updates at end of time step
..
un+1=

..
un +(

..
û

j+1

n+1 −
..
un)/Λ6W1

.
un+1=

.
un +λ4

..
un ∆t +λ5(

..
un+1 − ..

un)∆t
un+1 = un +λ1

.
un ∆t +λ2

..
un ∆t2

+λ3(
..
un+1 − ..

un)∆t2

Go to next time step

In the above predictor multi-corrector [GInO] represen-
tations, the multi-corrector non-linear iterations converge
on ∆

.
û, and consequently

.
ûn+1. Hence, it should be noted

that one could employ systematically Eq. 24 to compute
..
un+1 at the end of the multi-corrector non-linear itera-
tions as

..
un+1=

..
un +(

.
û

j+1

n+1 −
.
un −Λ4W1

..
un ∆t)/Λ5W2∆t (42)

Clearly, the described updates in the GInOALGO:V 2 are
computationally more efficient than the Eq. 42 since it
involves only a few vector operations. Hence it is em-
ployed to compute

..
un+1 at the end of the multi-corrector

non-linear iterations.

4.3 Predictor multi-corrector incremental d-form rep-
resentations

In this section, the predictor multi-corrector incremen-
tal d-form [GInO] representations are described. Again,
as in the case of the incremental v-form, the two
representations, namely, the true incremental d-form
(ALGO:D1) representations and the pseudo-incremental
d-form (ALGO:D2) representations are derived from the
incremental a-form representation. The ALGO:D1 is de-
signed to converge on the true incremental displacement
∆u and the ALGO:D2 is designed to converge on the
pseudo incremental displacement ∆û.

4.3.1 True incremental d-form – [GInO]ALGO:D1

Again, for the incremental d-form, rewriting Eq. 29 in
terms of the incremental displacement as un+1 = un +∆u,
we have

∆u = λ1
.
un ∆t +λ2

..
un ∆t2 +λ3∆

..
u ∆t2 (43)

from which we can write the incremental acceleration ∆
..
u

as

∆
..
u=

∆u
λ3∆t2 −

λ1

λ3∆t
.
un −λ2

λ3

..
un (44)

Substituting Eq. 44 into the updates of GInOALGO:A1 and
the correctors and after a few mathematical manipula-
tions, the predictor multi-corrector [GInO] representa-
tions for the true incremental d-form are obtained as sum-
marized below.

Again, note that the design updates at the end of the
multi-corrector non-linear iterations are the same design
updates employed for the predictor multi-corrector in-
cremental a-form [GInO] representations. However, a
consistent derivation of the design updates will lead to
having the true displacement updates un+1 in each multi-
corrector non-linear iteration as

u j+1
n+1 = u j

n+1 +∆
.
u (45)

and at the end of the multi-corrector non-linear iterations
the design updates are given by

un+1 = u j+1
n+1 (46)

.
un+1 =

λ5

λ3∆t
(un+1−un)+(1−λ1λ5

λ3
)

.
un + (47)

(λ4−λ2λ5

λ3
)

..
un ∆t (48)

..
un+1 =

1
λ3∆t2 (un+1−un)− λ3

λ3∆t
.
un +(1− λ2

λ3
)

..
un (49)
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At the start of time step
Predict the state vectors employing (Predictors)
û j

n+1 = un +(Λ1W1 − Λ3λ1W3
λ3

)
.
un ∆t+

(Λ2W2− Λ3W3λ2
λ3

)
..
un ∆t2

.
û

j

n+1=
(

1− Λ5λ1W2
λ3

)
.
un +

(
Λ4W1− Λ5λ2W2

λ3

)
..
un ∆t

..
û

j

n+1= −Λ6λ1W1
λ3∆t

.
un +

(
1− Λ6λ2W1

λ3

)
..
un

Satisfy equilibrium over multi-corrector iterations
Solve K∆u j+1

n+1 = F

where K =
[

Λ6W1
λ3∆t2 M+ Λ5W2

λ3∆t C+ Λ3W3
λ3

Kt

]
F = F̂n+1−M

..
û

j

n+1 −C
.
û

j

n+1 −p(û j
n+1)

Update (Correctors)
û j+1

n+1 = û j
n+1 + Λ3W3

λ3
∆u j+1

n+1
.
û

j+1
n+1=

.
û

j

n+1 +Λ5W2
λ3∆t ∆u j+1

n+1
..
û

j+1

n+1=
..
û

j

n+1 +Λ6W1
λ3∆t2 ∆u j+1

n+1

recompute : Kt(û j
n+1) if necessary

Till ||∆u||2/||ûn+1||2 ≤ ε
and ||Fn+1||2/||fn+1||2 ≤ ε
Design updates at end of time step
..
un+1=

..
un +(

..
û

j+1
n+1 −

..
un)/Λ6W1

.
un+1=

.
un +λ4

..
un ∆t +λ5(

..
un+1 − ..

un)∆t
un+1 = un +λ1

.
un ∆t +λ2

..
un ∆t2

+λ3(
..
un+1 − ..

un)∆t2

Go to next time step

It can be readily shown from an illustration of a single-
degree-freedom system that both the above design up-
dates are equivalent (matrix identity). Clearly the latter
involves an additional vector update operation, Eq. 45,
for each multi-corrector non-linear iteration in compari-
son to the former which has only one vector operation,
Eq. 46, at the end of the multi-corrector non-linear it-
erations. Also, one can show that the former design
updates have better overall convergence properties for
multi-degree-of-freedom nonlinear dynamic systems.

4.3.2 Pseudo incremental d-form – [GInO]ALGO:D2:

Alternatively, for the incremental d-form, rewriting
Eq. 23 in terms of the incremental displacement as
ûn+1 = un +∆û, we have

∆û = Λ1W1
.
un ∆t +Λ2W2

..
un ∆t2 +Λ3W3∆

..
u ∆t2 (50)

from which we can write the incremental acceleration ∆
..
u

as

∆
..
u=

∆û
Λ3W3∆t2 −

Λ1W1

Λ3W3∆t
.
un −Λ2W2

Λ3W3

..
un (51)

Substituting Eq. 51 into updates and the correctors of
GInOALGO:A1 and after a few mathematical manipula-
tions, the predictor multi-corrector [GInO] representa-
tions for the incremental d-form are obtained as summa-
rized below. Note that this system is equivalent (matrix
identity) to the predictor multi-corrector incremental a-
form [GInO] representations as Eq. 44 is derived within
the weak form itself.

At the start of time step
Predict the state vectors employing (Predictors)
û j

n+1 = un
.̂
u

j

n+1 =
(

1− Λ1Λ5W1W2
Λ3W3

)
.
un

+
(

Λ4W1− Λ2Λ5W 2
2

Λ3W3

)
..
un ∆t

.̂.
u

j

n+1 = −Λ1Λ6W 2
1

Λ3W3∆t

.
un +

(
1− Λ2Λ6W1W2

Λ3W3

)
..
un

Satisfy equilibrium over multi-corrector iterations
Solve K∆û j+1

n+1 = F

where K =
[

Λ6W1
Λ3W3∆t2 M+ Λ5W2

Λ3W3∆t C+Kt

]
F = F̂n+1 −M

..
û

j

n+1 −C
.
û

j

n+1 −p(û j
n+1)

Update (Correctors)
û j+1

n+1 = û j
n+1 +∆û j+1

n+1
.
û

j+1

n+1=
.
û

j

n+1 + Λ5W2
Λ3W3∆t ∆û j+1

n+1
..
û

j+1

n+1=
..
û

j

n+1 + Λ6W1
Λ3W3∆t2 ∆û j+1

n+1

recompute : Kt(û j
n+1) if necessary

Till ||∆û||2/||ûn+1||2 ≤ ε
and ||Fn+1||2/||fn+1||2 ≤ ε
Design updates at end of time step
..
un+1=

..
un +(

..
û

j+1

n+1 −
..
un /)Λ6W1

.
un+1=

.
un +λ4

..
un ∆t +λ5(

..
un+1 − ..

un)∆t
un+1 = un +λ1

.
un ∆t +λ2

..
un ∆t2

+λ3(
..
un+1 − ..

un)∆t2

Go to next time step

In the above predictor multi-corrector [GInO] represen-
tations, the multi-corrector non-linear iterations converge
on ∆û, and consequently ûn+1. Hence, it should be noted
that one could employ systematically Eq. 23 to compute
..
un+1 at the end of the multi-corrector non-linear itera-
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tions as

..
un+1

=
..
un +(û j+1

n+1−un−Λ1W1
.
un ∆t−Λ2W2

..
un ∆t2)/Λ3W3∆t2 (52)

Clearly the updates of GInOALGO:D2 are computationally
more efficient than Eq. 52, as it involves few vector oper-
ations. Hence, it is employed to compute

..
un+1 at the end

of the multi-corrector non-linear iterations.

5 Implementation Aspects

A unified and concise framework and representation of
the a-form, true and pseudo v- and d-forms of predictor
multi-corrector [GInO] representations can now be read-
ily implemented. As described previously, the various
forms of single step representations involve: i) a predic-
tor phase, (ii) a solution phase, and (iii) a corrector phase
for the aspect associated with the integrator; and for the
aspect associated with the updates it involves the design
of the updates to advance to the end of the time step.
A concise representation is now readily available for the
various forms via the common use of predictor multi-
corrector coefficients for the incremental [GInO] single
step representations in a single analysis code with a wide
variety of choices to the analyst.

In this section, single-degree-of-freedom representative
examples are first introduced to evaluate the predictor
multi-corrector incremental [GInO] single step represen-
tations. The model problems presented here fundamen-
tally inherit the characteristics of complex multi-degree-
of-freedom systems that arise in non-linear structural dy-
namics.

6 Nonlinear Dynamic Single-degree-of-freedom
Systems

6.1 Hardening spring

This example is often used to investigate the accuracy of
the time integration operators. In particular, it is also em-
ployed here to show the equivalence of various predictor
multi-corrector [GInO] single step representations. The
hardening spring problem is described in Fig. 1. The un-
damped free vibration problem with an initial displace-
ment and velocity is described by the equations:

m
..
u (t)+ p(u(t)) = 0; u(tn) = u0, and

.
u (tn) =

.
u0, (53)

l
SS

EA

m

l

m = 500kg

S=500N

EA = 10E 7 N

l=10m

uo=0.2m

u
EA

Figure 1 : Hardening spring problem description.

where the internal force p(u(t)) (see Fig. 2a) and the cor-
responding tangent stiffness Kt are described by

p(u) = 2

[
S

u√
l2 +u2

+EA

(
u
l
− u√

l2 +u2

)]
(54)

Kt(u) = 2

[
S

l2

(l2 +u2)3/2
+EA

(
1
l
− l2

(l2 +u2)3/2

)]
(55)

The period for the solution of the above equation has to
be measured from the converged solution for large am-
plitude.

6.2 Bilinear softening spring: Discontinuous tangent
stiffness

There exist a large class of mechanical systems in which
discontinuities in stiffness may occur due to various dis-
crete events. Examples include rotor-dynamics with rub-
bing as in electrical motors, rotor-dynamics with impacts
as in compressors or fan rotors hitting the casings, loose
structures and component dynamics, impact oscillators,
dynamics of gear mechanisms with backlash, etc. One
such situation is an approximation to the bilinear soft-
ening spring problem described in Eqs. 56 – 58. This
example is mainly used to investigate the stability of the
algorithms using energy bounds. It is chosen here to in-
vestigate the stability of algorithms when stiffness jumps
occur and causes the accumulation of strain energy due
to the time integration process. The free vibration with
initial conditions is described by

m
..
u (t)+ p(u(t))= 0; u(tn) = u0, and

.
u (tn) =

.
u0 (56)
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u
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Figure 2 : Internal force characteristics of the (a) Hardening spring problem (b) bilinear softening spring problem
with discontinuous tangent stiffness.

The nodal internal force p(u, t) and the tangent stiffness
are described by

p(u) =
{

S1u, |u| ≤ uc.
S2 sgn(u), |u|> uc.

(57)

Kt(u) =
{

S1, |u| ≤ uc.

0 |u|> uc.
(58)

Employing the parameter S1 = 100, S2 = 200 and uc = 2,
the internal force characteristic is depicted in Fig. 2b. To
test the stability through energy bounds, discrete energy
quantities are defined as follows:

En+1 = Tn+1 +Wn+1 (59)

kinetic energy Tn+1 = Tn +∆T (60)

∆T = 1
2

.
uT

n+1 M
.
un+1 −1

2

.
uT

n M
.
un (61)

strain energy Wn+1 = Wn +∆W (62)

∆W = 1
2 ∆uT (pn+1 +pn +rn+1 +rn)+∆S (63)

where ∆S is the accumulation of the error in the strain
energy. The kinetic energy and potential energy at time
levels can be stated as:

Tn+1 =
1
2

m
.
u2

n+1 (64)

Wn+1 =
{ 1

2S1u2
n+1 |u| ≤ uc

1
2S1u2

c +S2(un+1−uc) |u|> uc
(65)

7 Equivalence of Various Non-linear [GInO] Repre-
sentations

In this section, purposely restricting the attention
to various existing methods in the literature, we
wish to first simply demonstrate that all the pre-
dictor multi-corrector representations ([GInO]ALGO:A1,
[GInO]ALGO:V 1, [GInO]ALGO:V 2, [GInO]ALGO:D1 and
[GInO]ALGO:D2) are equivalent in terms of the order of
accuracy in time, and stability characteristics. In ad-
dition, we wish to show that with the present predic-
tor multi-corrector [GInO] representations for nonlin-
ear dynamic systems, the stability and accuracy of the
various existing methods in the literature contained in
[GInO] is not hampered. This is accomplished by solv-
ing the following two problems: 1) The bilinear soft-
ening spring problem with discontinuous tangent stiff-
ness (Eq. 56) for stability with the initial conditions
u0 = 0 and

.
u0= 25, and 2) The hardening spring prob-

lem (Eq. 53) with initial conditions u0 = 0.2 and
.
u0= 0

for order of accuracy. First, some of the existing non-
dissipative methods in the literature such as GInONewmark

(γ = 1/2,β = 1/4) method, the GInOmid point rule a-
form, and the GInOSS22 (θ1 = 1/2,θ2 = 1/2) method,
and various existing dissipative methods such as the
GINOθ1−method, the GINOHHT−α method, the GInOW BZ

method and the GInOGenr−α method, which are subsets
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Figure 3 : Stability plots of the ratio of energy over time to initial energy for dissipative and non-dissipative time
integration operators via the predictor multi-corrector incremental a-form, v-form and d-form [GInO] representations
employing bilinear softening spring.

of the [GInO] representations are chosen for illustration.
The free parameters for the dissipative schemes are cho-
sen for a given ρ∞=0.9466. For ρ∞=0.9466 the respective
free parameters for the θ1-method, the H-H-T-α method,
the W-B-Z method, and the Generalized-α method are
θ1=0.98665, α=-0.0275, αm=-0.0275 and ρ∞=0.9466, re-
spectively. The analysis of optimal algorithms follow
subsequently.

The ratio of the energy over time to the initial energy
(En/E0) are plotted as shown in Figs. 3 for the incremen-
tal a-form, v-form and d-form representations, respec-
tively ([GInO]ALGO:A1, [GInO]ALGO:V 1, [GInO]ALGO:V 2,
[GInO]ALGO:D1 and [GInO]ALGO:D2) for bilinear soften-
ing spring problem (Eq. 56). From Figs. 3 it is clear
that the results of the present incremental a-form, v-form
and d-form representations are identical. The results are
reported with three multi-corrector non-linear iterations
within each time step to eliminate the effects of the dy-
namical out-of-balance forces (residuals) rn and rn+1 and
to have fair comparison for each of the methods [Hoff
and Pahl (1988b)]. The GInONewmark method consid-
erably over estimates the energy for ∆t/T ≥ 0.3. This
behavior is similar to the results reported in [Hughes
(1976)]. This is also true for the GInOW BZ method. The
GInOθ1−method and the GInOHHT−α method sightly over

estimate the energy for ∆t/T = 0.3 in the initial few
time steps, and there afterwords the methods consistently
dissipate the energy in the desired manner as reported
in [Hoff and Pahl (1988b)]. Thus the energy dissipa-
tion of the GInOθ1−method and the GInOHHT−α method
is maintained in the full frequency range. In compari-
son to all the above methods, the GInOGenr−α method,
the GInOmid point rule a-form and the GInOSS22 with θ1 =
1/2,θ2 = 1/2 have the least energy over estimation for
∆t/T = 0.3. This is because for ρ∞ = 0.9466 (≈ close to
1) for the GInOGenr−α, it closely tends to the GInOmid point

rule a-form and the GInOSS22 θ1 = 1/2,θ2 = 1/2 which
is also spectrally similar to GInOmid point rule. Hence, it
is not surprising that these three representations almost
conserve energy (En/E0 ≈ 1) over the time for this spe-
cific selection of parameters. Note that the results pre-
sented are for single-degree-of-freedom systems. How-
ever, it is anticipated that the effects of nonlinearities may
be smoothed out in multi-degree-of-freedom systems and
may therefore not be recognizable. Also, for most non-
linear practical large scale problems, the recommended
time step sizes are usually ∆t/T ≤ 0.01 [Hughes (1987)].
In this range, most of the methods exhibit stable results
as evident from the single-degree-of-freedom system re-
sults.
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Figure 4 : Relative error in displacement for different ∆t/T for dissipative and non-dissipative time integration
operators via the predictor multi-corrector incremental a-form for hardening spring problem.

Next, the hardening spring problem (Eq. 53) are solved
numerically with the initial conditions u0 = 0.2 and
.
u0= 0 and the predictor multi-corrector [GInO] rep-
resentations. The computations are restricted to one
and two multi-corrector non-linear iterations within each
time step. The relative error is plotted against ∆t/T
as shown in Figs. 4 for the incremental a-form, and
in Fig. 5 for v-form and d-form representations respec-
tively ([GInO]ALGO:A1, [GInO]ALGO:V 1, [GInO]ALGO:V 2,
[GInO]ALGO:D1 and [GInO]ALGO:D2). From Figs. 4 – 5
it is clear that for the presently employed time integra-
tion methods via the proposed predictor multi-corrector
[GInO] representations, the methods are at least second-
order accurate. From Figs. 4 – 5 it can be observed that
for the single-degree-of-freedom system, the incremen-
tal a-form has the minimum relative error followed by
the incremental v-form and the incremental d-form, re-
spectively. In addition, it can also be observed that with
increase in multi-corrector non-linear iterations, there is
a decrease in the relative error, with marginal decrease
of the relative error for the a-form, with moderate de-
crease in relative error for the v-form, and with relatively
large decrease of relative error for the d-form for each it-
eration. In addition, the relative error of the incremental
v-form and the incremental d-form will approach the rel-
ative error of the incremental a-form with increase in the
multi-correction non-linear iterations. It can be shown

that by employing the predictors of [GInO]ALGO:A1 for
[GInO]ALGO:V 2 and [GInO]ALGO:D2, the relative error of
the three representations [GInO]ALGO:A1, [GInO]ALGO:V 2

and [GInO]ALGO:D2 are the same for a given number of
multi-corrector non-linear iterations. Hence, it is evident
that the numerical results of the incremental a-form, the
incremental v-form, and the incremental d-form repre-
sentations are identical, and consequently all the repre-
sentations have matrix-identity to each other.

8 Analysis of Optimal Families of Dissipative Meth-
ods

In this section, for the first time, we next further explore
the developments pertaining to the overshoot behavior
analysis by energy characteristics in the high frequency
region of the new optimal families of controllable numer-
ically dissipative time integration algorithms present in
the [GInO] framework as applied to non-linear structural
dynamics. Such investigations have never been reported
to-date. More importantly, reference is made to and com-
parisons are particularly drawn with some of the existing
LMS methods available in the literature and contained
in the [GInO] single step representations. Of interest in
the performance aspects of the optimal families of con-
trollable dissipative algorithms are the [U0-V0], [U0-V1]
and [U1-V0] families of algorithms (the other dissipa-



202 Copyright c© 2004 Tech Science Press CMES, vol.6, no.2, pp.189-208, 2004

Dt/T

R
el

at
iv

e
E

rr
or

10-3 10-2 10-110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

GInONewmark

GInO 1-method

GInOHHT-

GInOBossak

GInOGen-

GInOmidpoint

GInOSS22

( γ=1/2, β=1/4 )

θ

(θ1= 0.5, θ2=0.5)

α ( ρ = 0.9466 )

( α = −0.0275)
α ( α = −0.0275 )

( θ = 0.98665 )

Dt/T

R
el

at
iv

e
E

rr
or

10-3 10-2 10-110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1
GInONewmark

GInO 1-method

GInOHHT-

GInOBossak

GInOGen-

GInOmidpoint

GInOSS22

θ
( γ=1/2, β=1/4 )

( θ = 0.98665 )

α ( α = −0.0275 )
( α = −0.0275)

α ( ρ = 0.9466 )

(θ1= 0.5, θ2=0.5)

Dt/T

R
el

at
iv

e
E

rr
or

10-2 10-1

10-6

10-5

10-4

10-3

10-2

10-1

100

GInONewmark

GInO 1-method

GInOHHT-

GInOBossak

GInOGen-

GInOmidpoint

GInOSS22

( γ=1/2, β=1/4 )
θ ( θ = 0.98665 )

α ( α = −0.0275 )
( α = −0.0275)

α ( ρ = 0.9466 )

(θ1= 0.5, θ2=0.5)

Dt/T

R
el

at
iv

e
E

rr
or

10-3 10-2 10-110-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

GInONewmark

GInO 1-method

GInOHHT-

GInOBossak

GInOGen-

GInOmidpoint

GInOSS22

( γ=1/2, β=1/4 )
θ ( θ = 0.98665 )

α ( α = −0.0275 )
( α = −0.0275)

α ( ρ = 0.9466 )

(θ1= 0.5, θ2=0.5)

Figure 5 : Relative error in displacement for different ∆t/T for dissipative and non-dissipative time integration
operators via the predictor multi-corrector incremental v-form and d-form [GInO] representations for hardening
spring problem, (a),(c) with one multi-corrector iteration, (b),(d) with two multi-corrector iterations.

tive algorithms such as the Hoff-Pahl θ1 method which is
[U1-V1], the Wilson-θ method [U2-V1], etc., are not of
interest here because of the significant overshoot behav-
ior they inherit with no pay off gained in terms of any of
the other additional algorithmic attributes).

Considering the bilinear softening spring problem with a
discontinuous tangent stiffness, the ratio of energy over
time to the initial energy (En/E0) is computed for the

low frequency regime ∆t/T < 1. First, m = 1 and initial
conditions u0 = 0,

.
u0= 25.0 are considered. To obtain

converged solutions at each time step, the initial stiffness
method is employed as against the full Newton-Raphson
method. The latter is not suited for the bilinear soft-
ening spring with discontinuous tangent stiffness as the
tangent stiffness terms become zero at the yield point
(see. Fig. 2b). The ratios of energy over time to the
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.
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initial energy are plotted in Figs. 6a – 6c. These fig-
ures show that the Newmark method considerably over-
estimates the energy for ∆t/T ≥ 0.3. This behavior is
similar to the results reported in [Hughes (1976)]. In
Figs. 6 it is clear that all the optimal dissipative meth-
ods are stable in an energy sense and guarantee energy
decay for ∆t/T ∈ [0,1] and ρ∞ ∈ [0,1). However, they
exhibit total energy oscillations. For the problem with
initial non-homogeneous velocity conditions considered,

the optimal U1-V0 has the most total energy oscillations,
followed by the optimal U0-V0 and optimal U0-V1 hav-
ing the least total energy oscillations. In addition, the
optimal U0-V0 methods exhibit less energy decay when
compared to the optimal U0-V1 and U1-V0 methods for
∆t/T ∈ [0,1] indicating that [U0-V0] method has the
minimum dissipation in the low frequency regime.

The performance of the three optimal families of dissi-
pative methods in the high-frequency regime ∆t/T ≥ 1
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Figure 7 : The ratio of energy over time to the initial energy for varying ρ∞; (a) Opt U0-V0, (b) Opt U0-V1, and (c)
Opt U1-V0 with non-zero initial displacement u0 = 2.5.

are compared next by solving a bilinear softening prob-
lem with discontinuous tangent stiffness. The value of
m = 100 in considered in Eq. 56. Three different non-
zero initial conditions are considered such that initial to-
tal energy are same of the three initial conditions. The
three initial conditions are u0 = 2.5 and

.
u0= 0, u0 = 0

and
.
u0= 2.5, and u0 =

.
u0= 2.5/

√
2.

The ratio of energy over the time are also plotted for vari-
ous ρ∞ ∈ [0,1] with ∆t/T = 10 in Figs. 7 – 9. From these

figures it is clear that the optimal [U0-V0] methods are
stable in an energy sense for the entire range ρ∞ ∈ [0,1).
The optimal [U0-V1] method is stable in an energy sense
for only non-zero initial velocity conditions for the en-
tire range of ρ∞ ∈ [0,1) (see Fig. 8). The optimal [U1-
V0] method is stable in an energy sense for only non-
zero initial displacement conditions for the entire range
of ρ∞ ∈ [0,1) (see Fig. 9). However, there is deterio-
ration of the stability due to an increase in the energy



Generalized Single Step LMS Methods for nonlinear structural dynamics 205

Time (sec)

E
n/

E
o

0 1000 2000 3000 4000 5000 6000

0.3

0.6

0.9 1.0
0.8
0.6
0.4
0.2
0.0

∆ t/T=10

Time (sec)

E
n/

E
o

0 250 500 750 1000

0

0.25

0.5

0.75

1
1.0
0.8
0.6
0.4
0.2
0.0

∆ t/T=10

Time (sec)

E
n/

E
o

0 50 100 150 200
0

5

10

15

20

25 1.0
0.8
0.6
0.4
0.2
0.0

∆ t/T=10

Figure 8 : The ratio of energy over time to the initial energy for varying ρ∞; (a) Opt U0-V0, (b) Opt U0-V1, and (c)
Opt U1-V0 with non-zero initial velocity

.
u0= 2.5.

accumulation with decrease of ρ∞ → 0 (L-stable condi-
tion) for the optimal [U0-V1] method with non-zero ini-
tial displacement condition (see Fig. 7 and 9) and for the
optimal [U1-V0] method with non-zero initial velocity
condition (see Fig. 8 and 9). From the Figs. 7 – 9 it is
also evident that the mid-point rule (ρ∞ = 1) is more sta-
ble than the Newmark method (γ = 1/4,β = 1/2) in the
case of non-dissipative optimal methods.

9 Conclusions

The aforementioned observations lead to the following
conclusions:

• The proposed integrated design encompasses all
the traditional and new optimal dissipative/non-
dissipative time integration operators within the lim-
its of the Dahlquist barrier theorem for LMS meth-
ods for nonlinear structural dynamic applications.
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All that is needed in any structural dynamic soft-
ware is a single computational subroutine which can
be readily implemented that provides a variety of
optimal features.

• The formulations naturally inherit parameters inside
the non-linear operators.

• All the various a-, v- and d-form predictor multi-
corrector incremental [GInO] single step represen-

tations have matrix-identity to each other in the
sense of yielding identical numerical results see
Figs 3.

• For the benchmark single degree-of-freedom prob-
lems considered all the optimal families of dissi-
pative methods are stable in an energy sense and
guarantee energy decay in the low frequency regime
(∆t/T ∈ [0,1)) and for the entire range of ρ∞ ∈
[0,1).
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• In the high-frequency regime (∆t/T ≥ 1) the follow-
ing conclusions can be drawn. The optimal [U0-
V0] methods are stable in an energy sense for all
non-zero initial conditions for the entire range of
ρ∞ ∈ [0,1) (see Figs. 7 – 9). The optimal [U0-V1]
method is stable in an energy sense for only non-
zero initial velocity conditions for the entire range
of ρ∞ ∈ [0,1) (see Figs. 7 – 9). Whereas, there is de-
terioration of the stability due to an increase in the
energy accumulation with decrease of ρ∞ → 0 (L-
stable condition) for the optimal [U0-V1] method
with non-zero initial displacement condition (see
Fig. 7 and 9 and for the optimal [U1-V0] method
with non-zero initial velocity condition (see Fig. 8
– 9.

• In conclusion, in the class of second-order dissipa-
tive time integration operators within the scope of
LMS methods, the optimal [U0-V0] family of meth-
ods best present the above mentioned ideal desired
algorithmic attributes required for the accurate and
efficient analysis of non-linear structural dynamics
computations for the general class of applications
with non-zero displacement and velocity initial con-
ditions.
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