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Fast Multipole Boundary Element Analysis of Corrosion Problems

S.Aoki1 K.Amaya2 M.Urago3 and A.Nakayama4

Abstract: The Fast Multipole Boundary Element
Method(FMBEM) which is suitable for a large scale
computation is applied to corrosion analysis. Many tech-
niques of the FMBEM on the potential problems can be
usefully employed. Additionally, some procedures are
developed for corrosion analysis. To cope with the non-
linearity due to the polarization curve, the Bi-CGSTAB
iterative method which is commonly used in the FMBEM
is modified. To solve infinite domain problems, the M 0

0
which is obtained naturally in the multipole expansion is
conveniently used. A pipe element for the FMBEM is
developed. A couple of example problems are solved to
show the applicability of the FMBEM to corrosion prob-
lems.

keyword: Fast multipole boundary element method
(FMBEM), corrosion analysis, large scale computation,
infinite domain problem, non-linearity, pipe element.

1 Introduction

The boundary element method (BEM) has extensively
developed in recent years [e.g. Aimi, Diligenti, Lunar-
dini and Salvadori (2003), Han and Atluri (2003)], and
has become an essential tool in corrosion engineering
[Adey, Brebbia and Niku (1990), DeGiorgi, Thomas II,
Lucas and Kee (1996), Brichau and Deconinck (1994),
Orazem, Esteban, Kennelley and Degerstedt (1997)] as
well as in many other engineering fields. Although many
problems, such as prediction of galvanic corrosion rate
in structures and optimum location of electrodes in a ca-
thodic protection system, can be solved in principle with
BEM, there are still many cases where the structure or
the protection system is too complicated to be treated in
a reasonable CPU time. Various efforts are continued
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to overcome this difficulty [Aoki, Amaya and Miyasaka
(1999)].

It is in general known that the BEM needs calculations
of O(N3

0 ) (or O(N2+δ
0 ) (0 ≤ δ ≤ 1) for iterative method)

and memories of O(N2
0 ) for N0 unknowns[Fujino and

Chou (1996)]. On the other hand, the fast multi-
pole boundary element method (FMBEM)[Greengard
(1988),Rokhlin (1987),Greengard and Rokhlin (1987),
Hayami and Sauter (1997),Nishimura, Yoshida and
Kobayashi (1999),Takahashi, Nishimura and Kobayashi
(2001)Fukui and Hattori (1998)] can reduce calculations
to O(N1+δ

0 ) and memories to O(N0).

In this paper, the FMBEM is applied to corrosion analy-
sis. Although it is expected that many results in the above
researches on FMBEM can be usefully used , new ef-
forts to cope with the non-linearity due to the polariza-
tion curve, to treat the infinite domain problem, and to
create a pipe element for FMBEM are still necessary.

2 Basic equation in corrosion problem

The electrolyte domain Ω is assumed to be finite at first,
and later the infinite domain will be considered. It is as-
sumed that the surface of electrolyte domain Ω is sur-
rounded by Γ (=Γd+Γn+Γm), where Γm is the metal sur-
face, and the potential and current density are prescribed
on Γd and Γn, respectively. The potential φ in homoge-
neous electrolyte domain Ω satisfies the Laplace’s equa-
tion:

∇2φ = 0 in Ω (1)

The boundary conditions are given with

φ = φ0 on Γd (2)

i

(
≡ κ

∂φ
∂n

)
= i0 on Γn (3)

−φ = fm(i) on Γm (4)

where φ0 and i0 are the prescribed values of potential φ
and current density i , respectively, ∂/∂n is the outward
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normal derivative, and κ is the conductivity of the elec-
trolyte. The fm(i) is a non-linear function representing
the polarization curve to be determined experimentally.
In case where the structure consists of multiple metals,
the number of metals is the same as that of polarization
curves.

It is noted that the potential φ is defined with refering to
the metal and has the inverse sign of the potential E em-
ployed in the corrosion science in which the potential is
defined to a reference electrode such as SCE. The corro-
sion rate of metal is proportional to the current density i
on Γm, and it is obtained by solving Equation (1) under
the boundary conditions, Equations (2)-(4).

Application of the Green’s theorem to Equation (1) yields
the following integral equation[Brebbia (1978)].

κc(x)φ(x) =
∫

Γ
(φ∗(x,y)i(y)− i∗(x,y)φ(y))dΓ(y) (5)

where

Γ = Γd +Γn +Γm (6)

φ∗(x,y) =
1

4π|x−y| (7)

i∗(x,y) = κ
∂φ∗

∂n
(8)

The x and y are the vectors representing points, and c(x)
is a known constant related to the geometry of the sur-
face[Brebbia (1978)]. Equation (7) is called the funda-
mental solution of the Laplace’s Equation (1).

Approximation of the values on Γ in Equation (5) by
using N constant elements leads to the following dis-
cretized equation.

κc(x)φ(x) =
N

∑
j=1

A j(x)i j −
N

∑
j=1

B j(x)φ j (9)

where the subscript j represents the quantity related to
the j-th element. The coefficients A j(x) and B j(x) are
given with the following equations.

A j(x) =
∫

Γ j

φ∗(x,y)dΓ(y) (10)

B j(x) =
∫

Γ j

i∗(x,y)dΓ(y) (11)

The above discussion is for a finite domain Ω. For the
case where the domain Ω is infinite, i.e., Ω is surrounded

with Γ (See Equation (6)) and the infinite boundary Γ∞ ,
Equation (5) is modified as follows,

κc(x)φ(x) =
∫

Γ
(φ∗(x,y)i(y)− i∗(x,y)φ(y))dΓ(y)

+κφ∞ (12)

where φ∞ is the potential on Γ∞. For the case where no
current flows through Γ∞, the φ∞ is obtained indirectly by
adding following equation to Equation (12).∫

Γ
idΓ = 0 (13)

Equations (12) and (13) are discretized into

κc(x)φ(x) =
N

∑
j=1

A j(x)i j −
N

∑
j=1

B j(x)φ j +κφ∞ (14)

N

∑
j=1

i jS j = 0 (15)

where S j denotes the area of the j-th element.

The boundary conditions, Equations (2)-(4) are dis-
cretized similarly. By substituting the discretized bound-
ary conditions into Equation (9) (or (14) and (15) for
infinite Ω), and taking x at the center of each element
xi(i = 1, · · · ,N), non-linear algebraic equations, the num-
ber of which N is equal to that of the unknowns, are ob-
tained. Because N becomes very large for a complicated
structure, the multipole expansion is performed for the
coefficients A j(x) and B j(x), and an iterative method is
applied to solve the equations.

3 Multipole expansion of fundamental solution

Before the multipole expansion of coefficients A j(x) and
B j(x) is performed, the fundamental solution, Equation
(7), will be expanded at first. A brief description of the
expansion will be given here. Details are referred to the
reference[Greengard (1988)].

In general, the multipole expansion of a harmonic func-
tion u(x) around the origin O is expressed as

u(x) =
∞

∑
n=0

n

∑
m=−n

Mm
n

Y m
n (θ,ϕ)
rn+1 +u∞ (16)

where (r,θ,ϕ) is the polar coordinates of the point x
viewed from the origin O, and Y m

n (θ,ϕ) is given in the
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following form using the associated Legendre function
Pm

n (x).

Y m
n (θ,ϕ) =

√
(n−|m|)!
(n+ |m|)!

P
|m|
n (cosθ)eimϕ (17)

Pm
n (x) =

1
2n n!

(1−x2)
m
2

dn+m

dxn+m (x2 −1)n (18)

The multipole moment MmF
n of the fundamental solution,

Equation (7) is given by

MmF
n =

1
4π

RnY−m
n (θ′,ϕ′) (19)

where (R,θ′,ϕ′) is the polar coordinates of the point y
viewed from the origin O, and it is assumed that |−→Oy| <
|−→Ox|.

4 Multipole moments of coefficients A j(x) and B j(x)

Let the multipole moments of the coefficients A j(x) and
B j(x) be MmA

n j and MmB
n j , respectively. The MmA

n j and MmB
n j

for max(y∈Γ j) |
−→
Oy| < |−→Ox| are obtained by substituting

Equations (8),(16) and (19) into (10) and (11) as

MmA
n j =

1
4π

∫
Γ j

{
Y−m

n (θ′,ϕ′)Rn}dΓ (20)

MmB
n j =

κ
4π

∫
Γ j

[
∇

{
Y−m

n (θ′,ϕ′)Rn
} ·n]

dΓ (21)

For the case where K elements are included in a reaf cell
C, which will be defined later, the multipole moment for
the cell Mm

nC is defined as

Mm
nC =

K

∑
j=1

Mm
n j (22)

where

Mm
n j = i jM

mA
n j −φ jM

mB
n j (23)

The values of MmA
n j and MmB

n j for a triangle constant el-
ement and a pipe element are obtained as follows; (The
subscripts j will be omitted for simplicity)

4.1 Triangle constant element

By employing a coordinate system shown in Figure 1,
Equations (20) and (21) are expressed as

MmA
n =

1
4π

∫ 1

−1

∫ 1

−1

{
Y−m

n (θ′,ϕ′)Rn} 1+ξ
4

Sdξdη (24)

MmB
n =

κ
4π

∫ 1

−1

∫ 1

−1

[
∇

{
Y−m

n (θ′,ϕ′)Rn} ·n]
×1+ξ

4
Sdξdη (25)

where S is the area of the triangle, and the integrand in
Equation (25) is easily calculated by expressing ∇ in the
following form;

∇ = eR
∂

∂R
+eθ′

1
R

∂
∂θ′ +eϕ′

1
Rsinθ′

∂
∂ϕ′ (26)

The integrals are evaluated with the Gaussian quadra-
tures.

0y
1y

2y

η

ξ
-1

1
-1

1
y

O

R

Figure 1 : Triangle element

4.2 Pipe element

By employing a coordinate system shown in Figure 2, y
and dΓ are expressed as

y =
y2 −y1

2
ξ+

y1 +y2

2
+a(α) (27)

dΓ =
aL
2

dξdα (28)

Because the representative point of the pipe element can
be taken as the center of the center line for the case of



126 Copyright c© 2004 Tech Science Press CMES, vol.6, no.2, pp.123-131, 2004

ξ=−1 ξ=1ξ=0

y
y1

x0 y2

R

yd a

l

d

n

α

a

d

aP1

P2

P3

P2

P3

O O

Figure 2 : Pipe element

|a|/l � 1 (a: radius, l: length), the following equation
holds.

MmA
n =

1
4π

∫ 2π

0

∫ 1

−1

{
Y−m

n (θ′,ϕ′)Rn} aL
2

dξdα (29)

MmB
n =

κ
4π

∫ 2π

0

∫ 1

−1

[
∇

{
Y−m

n (θ′,ϕ′)Rn} ·n] aL
2

dξdα (30)

To evaluate the integrals, the Gaussian quadratures are
used after expressing ∇ with Equation (26), as stated for
the triangle element.

5 Transformation

In order to perform the fast multipole expansion it be-
comes necessary to shift the origin of multipole expan-
sion, to use local expansion, and to shift the origin of lo-
cal expansion. Useful formulas[Greengard (1988)] will
be briefly reviewed.

5.1 Shift of the origin of multipole expansion

If the origin is shifted from O to O′ in the multipole ex-
pansion, the corresponding moments are transformed as

M̃m′
n′ =

n′

∑
n=0

n

∑
m=−n

JM2M
m′−m
m Am

n Am′−m
n′−n ρnY−m

n (α,β)

Am′
n′

×Mm′−m
n′−n (31)

JM2M
m′
m =

{
(−1)min(|m′|,|m|), i f m ·m′ < 0
1, otherwise

(32)

where

Am
n =

(−1)n√
(n−m)!(n+m)!

(33)

The (ρ,α,β) stand for the polar coordinates of the old
origin O viewed from the new origin O′.

5.2 Transform from multipole expansion to local ex-
pansion

The local expansion of the harmonic function u(x) is in
general expressed as

u(x) =
∞

∑
n=0

n

∑
m=−n

Lm
n ·Y m

n (θ,ϕ) · rn (34)

where (r,θ,ϕ ) are the polar coodinates of the point x
viewed from the origin of local expansion Q. Let (ρ,α,β)
denote the polar coodinates of the origin of the multipole
expansion O viewed from the origin of the local expan-
sion Q. The following relationship holds between the co-
efficient of local expansion Lm

n and the multipole moment
Mm

n .

Lm′
n′ =

∞

∑
n=0

n

∑
m=−n

JM2L
m′
n,mAm

n Am′
n′ Y

m−m′
n′+n (α,β)

Am−m′
n′+n ρn′+n+1

Mm
n (35)

JM2L
m′
n,m =

{
(−1)n(−1)min(|m|,|m′|), i f m ·m′ > 0
(−1)n, otherwise

(36)

where Am
n is given with Equation(33), and the inequality

|−→Qx| < |−→OQ| has been assumed.

5.3 Shift of the origin of local expansion

If the origin of local expansion is shifted from Q to Q′,
the coefficient of the local expansion also transforms ac-
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cording to

L̃m′
n′ =

p

∑
n=0

n

∑
m=−n

JL2L
m
n−n′,m−m′Am−m′

n−n′ Am′
n′ Y

m−m′
n−n′ (α,β)ρn−n′

Am
n

Lm
n

(37)

JL2L
m′
n,m =

⎧⎪⎪⎨⎪⎪⎩
(−1)n(−1)m, i f m ·m′ < 0
(−1)n(−1)m′−m, i f m ·m′ ≥ 0

and |m′| < |m|
(−1)n, otherwise

(38)

where Am
n is given with Equation (33), and (ρ,α,β) stand

for the polar coodinates of the old origin Q viewed from
the new origin Q′.

6 Algorithm for fast multipole expansion

The method by Greengard [Greengard (1988)] can be
employed with a little modification, as shown bellow.

6.1 Determination of the octtree of cells

Discretize the finite boundary Γ given by Equation (6)
into boundary elements in an ordinary manner. Take a
cube circumscribing the whole Γ and call it the root cell
or a cell of level 0. Then, Divide it into eight equal
sub cubes and call them children cells or cell of level 1.
Delete a sub cell which contains no centroid of element.
If a sub cell contains a larger number of elements than
a prescribed number, divide the sub cell into eight equal
sub sub cubes. Otherwise, stop the division. Repeat the
procedures until any division becomes impossible. Call
the cell without any child cell a leaf cell.

6.2 Computation of multipole moments

(Upward Computation) Compute the multipole moment
at the center of each leaf cell according to Equation (22).
Then, Compute the multipole moment at the center of
each parent cell by shifting the centers of children cells
to that of parent one and using Equation (31). Repeat the
computations until the root cell is reached.

If the whole structure to be analyzed is viewed from in-
finity and is assumed to be a point electric charge, it is
noted from Equation (16) that the multipole moment M 0

0
is proportional to its quantity of electricity. It follows
from this that an infinite domain problem can be treated

by taking M 0
0 to be 0, because Equation (13) is satisfied

if the quantity of electricity of a point electric charge is
equal to zero.

6.3 Computation of local expansion coefficients

(Downward computation) Compute a part of the local ex-
pansion coefficient at the center of a cell of level 2 by
adding the effects from the non-adjacent level 2 cells us-
ing Equation (35). Tranform this value to that at the cen-
ter of the cell of level 3 (which contains the point consid-
ered) by using Equation (37). Add to it the effects from
the non-adjacent level 3 cells by using Equation (35). Re-
peat the procedures to a leaf cell is reached, and obtain
the potential φ(x) by using Equation (34).

The effects of cells which are not evaluated yet, i.e., those
of the leaf cell which contains the point considered and
the adjacent leaf cells, are calculated in an ordinary man-
ner of the boundary element method, and are added to
the above calculation result. A useful formula for this
computation is available for a triangle element[Urago
(2000)].

-620 mV

-680 mV
Metal

Locationx [m]

Figure 3 : Box with metal side walls, filled with elec-
trolyte

7 Iterative procedures

The algebraic Equation (9) or (14) (Equation (15) is sat-
isfied by taking M 0

0 to be 0, as mentioned above) can be
solved by combining the fast multipole expansion and it-
erative procedures. However, the iterative procedures for
linear equations, e.g., the Bi-CGSTAB method[Van der
Vorst (1992)], have to be modified, because the polariza-
tion curve fm(i) in Equation (4) is generally non-linear.
The residuals rq+1 in Bi-CGSTAB method is evaluated
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based on linearity. In order to apply the method to non-
linear equations, modify the procedures to evaluate the
residuals as follows.

rq+1 = b(zq+1)−A(zq+1)zq+1 (39)

where z is an unknown vector, b is a known vector, A
is a non-linear matrix, the subscript (q+1) represents the
number of iterations. Two sets of upward and downward
calculations are necessary for one iteration in the original
Bi-CGSTAB used for linear equations, while three sets of
calculations become necessary for one iteration to solve
non-linear equations using the above Equation (39).

8 Numerical example

8.1 Box with non-linear polarization curve

In order to verify the modified Bi-CGSTAB method in
the last chapter, a box with metal side walls which is
filled with electrolyte (Figure 3) was analyzed. The so-
lution was compared with that by the ordinary boundary
element method in which the Newton-Raphson iterative
procedures were employed. The potential E on the right
and left side walls were prescribed E =-680mV and E =-
620mV, respectively. The polarization curve of the side
wall metal is shown in Figure 4, and the conductivity of
the electrolyte κ was κ=0.3Ω−1m−1.

The boundary element mesh is shown in Figure 5. The
maximum number L of elements in a leaf cell was as-
sumed L =10. The terms in the multipole expansion were

E=-0.62[V]

E=-0.68[V]
Metal

Figure 5 : Boundary element mesh for box (1200 ele-
ments)

taken up to n = 5, i.e., Mm
nC in Equation (22) is assumed

to be zero for n ≥ 6.

Figure 5 compares both solutions on the potential distri-
bution along the center line of a side wall. The FMBEM
solution agrees well with the ordinary BEM solution.

Another calculation was carried out by assuming L = 50.
The result on the potential distribution was in good agree-
ment with that for L = 10 in Figure 6, while the conver-
gence was slower as shown in Figure 7. A calculation
with L = 500 was also performed. The solution which
agreed well with that in Figure 6 was obtained at 12,000
iterations, but the residuals did not decrease smoothly.

Because the more the number of elements is allowed in
a leaf, the less the cost of operation on Fast Multi-pole
Method is needed, the optimum element number in a leaf
may exist for corrosion problems. Further study is nec-
essary about this problem.

For comparison, another calculation was performed un-
der the assumption that the side walls were insulated.
The solid curve in Figure 7 represents the result. A
large difference in convergence between the insulated
side walls and the metal ones is observed.
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8.2 Two pipes in infinite solid

In order to verify the pipe element and the treatment of
an infinite domain developed in the preceding chapters,
two pipes buried in infinite soil as shown in Figure 8 were
analyzed, and the results were compared with those ob-
tained with constant triangle elements. The potential on
the two pipes was assumed 1V and 2V, respectively, and
no polarization was assumed. The conductivity of the
soil κ was taken κ = 0.3Ω−1m−1.

Figures 9(a) and 9(b) show the boundary element meshes
for pipe and triangle elements, respectively. The mesh
shown in Figure 9(a) where most part was discretized

1 [V] 2 [V]
20 [m]

0 x200 [m] 200 [m]

(Pipe radius: 0.3 m)

Figure 8 : Two pipes buried in infinite soil

32 Triangle elements

320 Pipe elements

(a)Mesh of pipe elements and triangle lids

2592 Triangle elements

(b)Mesh of triangle elements

Figure 9 : Boundary element mesh for pipe problem

with pipe elements will be referred to as pipe element
mesh, although a small number of triangle elements were
used for the edges of the two pipes. On the other hand,
the mesh shown in Figure 9(b) where every part was dis-
cretized with triangle elements will be called triangle el-
ement mesh. Figures 10 and 11 show the cell divisions
for pipe and triangle elements, respectively.

For both pipe element mesh and triangle element mesh,
the maximum number L of elements in a leaf cell and the
terms in multipole expansion were taken L = 10 and n ≤
5, respectively. The current density distributions on the
two pipes calculated with pipe and triangle elements are
shown in Figure 12. Both results are in good agreement
except for the edge parts of pipes.

As stated in the preceding chapter, the length l of a pipe
element must satisfy the inequality |a|/l � 1 (a: radius),
i.e., a short pipe element can not be used. The error
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Figure 10 : FMBEM cells for pipe elements

Figure 11 : FMBEM cells for triangle elements

near the edges of pipes where the current density changes
steeply is attributable to this limitation of a pipe element.

Figure 13 shows the convergence of the calculation. The
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Figure 12 : Current density on pipe surfaces
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convergence for pipe element mesh is observed more
rapid than that for the triangle element mesh. It is, there-
fore, recommended that pipe elements should be em-
ployed for a gentle part of the field, and triangle elements
should be used for a steep part.

9 Conclusions

1. Application of the fast multipole boundary element
method (FMBEM) to corrosion analysis of a compli-
cated structure was studied.
2. It was found that FMBEM can be efficiently employed
by making use of many previous research results on po-
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tential problems together with the following procedures.
(1) To treat an infinite domain problem, let the multipole
moment M 0

0 ,which is naturally obtained in FMBEM, be
zero.
(2) Modify the formula for calculating residuals in Bi-
CGSTAB method, to take into account the non-linearity
due to the polarization curve.
3. A pipe element suitable for the FMBEM was devel-
oped, and its characteristics were investigated.

Acknowledgement: The authors would like to express
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