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2.5D Green’sFunctionsin the Frequency Domain for Heat Conduction Problems
in Unbounded, Half-space, Slab and Layered Media

Antonio Tadeu?!, Julieta Anténio and Nuno Simdes

Abstract: This Analytical Green’s functions for theequation. It also includes an extensive survey of numer-
steady-state response of homogeneous three-dimensiaadlmethods, which can be grouped according to how
unbounded, half-space, slab and layered solid media sthite time-dependent terms are dealt with. The first is a
jected to a spatially sinusoidal harmonic heat line sourtiame marching” approach in which the solution is eval-
are presented. In the literature, this problem is frequentlgted step by step at successive time intervals after an ini-
referred to as the two-and-a-half dimensional fundamaially specified state has been defined. The second uses
tal solution or 2.5D Green'’s functions. the Laplace transform of the time in which the diffusion

The proposed equations are theoretically interestinggAuation becomes an elliptical one. After the solution
themselves and they are also useful as benchmark 1@s been obtained for a sequence of values of the trans-
sults for validating numerical applications. They arform parameter, a numerical transform inversion is used
also of great practical use in the formulation of thred0 compute the physical variables in the real space.
dimensional heat transfer problems in layered solid foldthough the Laplace transform has been widely used for
mations using integral transform methods and/or bourgblving diffusion problems, accuracy depends on an ef-
ary elements. ficient and precise inverse transform, since small trun-
The final expressions for heat conduction in an ufation errors can be magnified in the inversion process.
bounded medium are validated first, since time solutiof§veral inversion methods have been proposed over the
are known in analytical form. This requires the prior ap/€ars, such as the Stehfest algorithm (1970).

plication of an inverse Fourier transform to our frequendyhe present work provides Green’s functions for comput-
domain results, using complex frequencies to avoid tiveg the heat radiated by a spatially sinusoidal, harmonic
aliasing phenomena. The results provided by the piteeat line source placed in solid formations with varying
posed expressions for half-space and slab are then coomfigurations: unbounded, half-space, slab and layered
pared with those computed using the image source teafedia. These expressions, or fundamental solutions, re-
nigue, while the solutions obtained for the layered mediate the heat field variables (fluxes or temperatures) at
are then verified with those calculated by the Boundasgme location in the solid domain caused by a heat source
Element Method solution, which requires the discretizplaced elsewhere in the media.

tion of the interfaces between layers with boundary elghjs type of heat source can be seen as resulting from ap-
ments. plying a time Fourier transform to the heat point source
_ _ and then a spatial Fourier transform in the direction in

k_eyword: Green’s fpnctlons, transient heat condu%‘,\-,hiCh the geometry does not varg)( The 3D heat

tion, frequency domain field in the time domain can be then synthesized by us-
ing the inverse Fourier transforms in the frequency and

1 Introduction wavenumberK;) domain. If we assume the existence

The most important reference for heat transfer is Carslg\];v\”rtuaI hea}t Sources equglly spaced, Lz, a_llangus

and Jaeger's book (1959), which contains a set of afar. > Fourier transformation becomes a discrete sum-

Iytical solutions and Green'’s functions for the diffusior.r\nanor.]' Wh'Ch allows the solu'Flonto _be obtained by solv-
ing a limited number of two-dimensional problems. The

1Department of Civil Engineering, time-aliasing phenomenon can be avoided by using com-

Faculty of Sciences and Technology plex frequencies to attenuate the response at the end of
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the time frame. This effect is later taken into account fgce. The amplitudes of these surface terms are defined
re-scaling the response in the time domain. after ascribing the required boundary conditions: conti-

Thus, the Green’s functions for the case of a spatialiity of temperatures and normal fluxes between solid
sinusoidal, harmonic heat line source placed in an dayers, and null normal fluxes or null temperatures at the
bounded medium are developed by first applying a tinfiter surface.

Fourier transform to the time diffusion equation for a hedthe expressions presented here make it possible to com-
point source and then a spatial Fourier transform to thate the heat field inside a layered solid medium, without
resulting Helmholtz equation, along tlzedirection, in fully discretizing the interior domain, which is required
the frequency domain. by numerical techniques, such as the finite differences,

The derivation of the Green's functions for the layere@f €ven by discretizing the free surface using boundary
solid formations requires expressing the Green’s furRlements techniques.

tion for the unbounded media as a superposition of hddte authors believe that the fundamental solutions pre-
generated by plane diffusion sources. This follows ttlsented here can be of great value in formulating 3D tran-
approach similar to the one used first by Lamb (1904)ent heat conduction problems via boundary elements
for the propagation of elastodynamic waves in a twésgether with integral transforms, in layered media such
dimensional media, and then by other authors suchascomposite laminated slabs, building walls and ground
Bouchon (1979) and Tadeu and Ant6 (2001) to com- building floors. The fundamental solutions are expressed
pute three-dimensional elastodynamic fields using a dis-an explicit form, and represent the Green’s functions
crete wave number representation. In other elastodigr a harmonic (steady-state) line heat source load placed
namic related work Luco and De Barros (1995) conn an unbounded, half-space, slab and layered medium,
puted the three-dimensional seismic response of a layrose amplitude varies sinusoidally in the third dimen-
ered cylindrical valley. Zhang and Chopra (1991) usaibn. Such problems are referred to in the literature as
the direct boundary element to compute the impedarZz®&D problems. These equations are very important in
matrix for a three-dimensional foundation supported dhemselves, they can both relate the temperatures and
an infinitely long canyon of uniform cross-section cut iheat fluxes at some point produced by a point load some-
a homogenous half space. Stamos and Beskos (1996)wdilere in the three-dimensional space, and be incorpo-
culated the 3D dynamic response of long, lined tunneksted into a numerical boundary element approach de-
of uniform cross-section in a half-space subjected tos@ned to avoid the full discretization of the solid layered
plane harmonic waves propagating in an arbitrary diréaterfaces. Notice that this full discretization is only pos-
tion using the BEM formulation. Notice that the searchible using various simplified approaches, such as damp-
for Green's functions has been object of research over thg, otherwise it will lead to a system of equations that is
years because these expressions can be used as béocharge to be solved.

mark solutions, which can be incorporated in the devethis paper first formulates the three-dimensional prob-
opment of numerical methods such as the Boundary Blem and explains how the Green’s functions for a sinu-
ments Method (see, for examplep#l'and Gaul (2000), soidal heat line source, applied in an unbounded solid
Manolis and Pavlou (2002)Ochiai (2001), Sellountos afgrmation, can be obtained and written as a continuous
Polyzos (2003)and Zhang and Savaidis(2003)). superposition of plane waves in the frequency domain. A
In this work the heat conduction Green'’s functions for larief description of how the time solutions are obtained is
half space and a slab can be expressed as the sum oftbe given. In order to validate our solutions, the results
heat source terms equal to those in the full-space and tiéained for one, two and three-dimensional heat sources
surface terms required to satisfy the boundary conditioinsan unbounded medium are compared with those pro-
at the surfaces, which can be of two types: null normeided by analytical expressions, known in the time do-
fluxes or null temperatures. A similar technigue is usedain.

to find the Green’s functions for a layered formation. Thenen, a similar procedure is applied to the Green’s func-
final heat field is computed as the sum of the heat soufgshs for a sinusoidal line pressure load applied to a half
terms equal to those in the full-space and a set of surf@fﬁce and a slab with differing boundary conditions. In
terms, generated within each solid layer and at each infgfase cases, the image model technique can be also used
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to define these Green’s functions and this is thus used

to validate the solutions. This technique employs virtugi many cases, the analysis of 3D problems can become
heat sources (image heat sources) to compute the Reghputationally demanding, and it is often best to ex-
field. These heat sources are placed so that they can %iF@'ss the full 3D problem as a summation of simpler
ulate the reflections caused by the boundaries. 2D solutions, when the geometry of the problem remains
Finally, the Green'’s functions for a layered solid formazonstant along one direction (z). This is achieved by ap-
tion are established using the required boundary congdlying a Fourier transformation along that direction, and
tions at the various interfaces. The full set of expressioaspressing the solution as a summation of 2D solutions,
is compared with those provided by the Boundary Elevth different spatial wavenumbeks (Tadeu and Kausel
ment Method (BEM), for which a full discretization of(2000)). The application of a spatial Fourier transforma-
the boundary interfaces is required. tion along thez direction to the equation (2) leads to the
following equation
2 3D problem formulation and Green’s Functionsin

2
an Unbounded Medium ~ —iw ~
D2+ < T_(kz)2> T(w7x7y7 kZ) =0 (4)
The solution of transient heat conduction in solids is de
scribed by the diffusion equation 5
with 02 = <6x2 +5 ) .
v
mer - 19T (1)
K ot Applying a spatial Fourier transform, in téirection, to
X 2 2 3 o ~the fundamental equation for a heat point source (equa-
where [ = (a? +azt g) , tistime, T(t,X,Y,2) IS tion (3)) gives the fundamental solution for this equation,
temperatureK = ch is the thermal diffusivityk is the _
thermal conductivityp is the density and is the specific f; (¢, x,y, k,) = ! Ho
heat. Applying a Fourier transform in the time domain, 4K

one obtains

i ro> ®

where H, () are Hankel functions of the second kind

- 2 -
DZ+< /%’) T(@xy,2) =0 (2) @nd ordern, andro = \/(x—xo)2+(y—yo)2. This

response can be seen as the response to a spatially
varying heat line source of the form(w,X,y,kzt) =

where i= v/—1 and w is the frequency. Equa-O(X—%0)d(y— ¥o) €2 (see Fig. 1).

tion (2) is a Helmholtz equation similar to theThe full three-dimensional solution is then obtained by
one used to solve acoustic problems, whegpplying an inverse Fourier transform along tedo-
_iw main. If we assume the existence of virtual sources

oo/ (velocity of pressurewaves) corresponds toy/ =2 I d | hi F
in the diffusion equation. Thus, the transient heat prop %gua y spacedl.,, along z, this inverse Fourier trans-

gation solution can be seen as an harmonic propaga 8Hnat|on becomes a discrete summation, which allows
of heat. the solution to be obtained by solving a limited number

The fundamental solution of equation (2) for a heOf two-dimensional problems.

point source in an unbounded medium, located at e

(%.Y0, 0), P(0XY,2t) = B(x—%0) 8(y—yo) S(2) €/ T(@xy.2)= Z T(@xykam)e ©
whered (X—Xp), 8(y — Yo) andd(z) are Dirac-delta func-
tions, can be written as

with kz, being the axial wavenumber given iy, =

e (w. %Y, 2) E—Z‘m._ The dista_ncd;Z must be sufficiently large to avoid
1 \/K , — spatial contamination from the virtual sources [Bouchon
e VR V0™ Z  and Aki (1977)]. A similar procedure has been used by
2k \/ X—X0)* + (Y —Yo) + 22 the authors to analyze the wave propagation inside seis-

(3) mic prospecting boreholes [Tadeu et al. (2002)] and the
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Vn=1/7L_k2—KZ with (Im(v,) <O0)

21
ks = —n
XN Lx

which can in turn be approximated by a finite sum of
equationsi).

Notice thatk, = 0 corresponds to the two-dimensional

case.
(x0, y0)
y

2.1 Responsesin the time domain

y

The heat in the spatial-temporal domain is obtained by a

Figure 1: Spatially harmonic varying line load ~ humerical inverse fast Fourier transformidnand the fre-
guency domain. Complex frequencies with a small imag-

inary part of the formw. = w—in (with n = 0.7Aw, be-
outdoor . . ing Awthe frequency step) are used to avoid the aliasing
propagation of sound waves in the presence %enomena In the time domain, this shift is later taken

obstacles [Godinho et al. (2001)]. b ' ’

. into account by applying an exponential window of the
These same equations can be expressed as a CONfii; et to the response.

ous superposition of heat generated by plane diffusi;?_ﬂ - .
. , . e temporal variation of the source can be arbitrary. The
sources. Equation (5), which results from a spatially si-

. . . . . application of a time Fourier transformation defines the
gusi?led da;??r:r;or;:ﬁ&eat I;nf;iﬁg:]ceisé?]ng zr,megzornés_frequency domain where the BEM solution is required.
si%?]s P 0.Yo)» g y PS50 the frequency domain may range fror Hz to very
' high frequencies. However, we may cut off the upper
) | oo eivly-yd _ frequencies of this domain because _the heat responses
Tr (W, X, Y, kz) = ATk < 5 > e—'kx<X—X0>de (7) decrease very fast as the frequency increases. The fre-

oo guency 00 Hz is the static response that can be obtained
by limiting the frequency to zero. As we are using com-

he plex frequencies, the response can be computed because

— /e 2 ke wi
yvherev-_ /K kg — ke .Wlth (Im(v) <0), and_t the argument of the Hankel function in equation (5) is
integration is performed with respect to the horizontal.

. =in, that is, other than zero.
wave numberk) along thex direction. _ .
As stated before, the Fourier transformations are

The transformation of this integral into a summation Callhieved by discrete summations over wavenumbers

be achieved if an infinite number of such sources are d(,lﬂ%-oI frequencies, a procedure which is mathematically

equivalent to adding periodic sources at spatial inter-

valsL, = 21/ Ak, (in the z-axis), and temporal intervals

N =00 ( E ) T = 21/ Aw, with Ak, being the wavenumber step. The
Eq

tributed along the direction, at equal intervalsy. The
above equation can then be written as

T (W, X, Y, kz) = Eg Z (8) spatial separatioh, must be such that contamination
n=-o of the response by the periodic sources cannot occur.
In other words, the contribution to the response by the

Vn

whereEq = ﬁ'x fictitious sources must be guaranteed to occur at times
_ later than T. Achievement of this goal can also be aided
E — g Vnly—Yol substantially by the shift adopted for the frequency axis

_ (0 = w—in). This technique results in the significant
Ey = e Mkn(x—%0) attenuation or virtual elimination of the periodic sources.
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2.2 Responsesin the time domain

The procedures described in the previous section were %8 T T

implemented and validated by using them to calculate — v dsoh g
the one, two and three dimensional exact time solutions ¢ .

for a unit heat source placed in an unbounded mediung.
The exact solution of the diffusion equation (1) in an un:g' I |
bounded medium in the time domain, describing the temg 04 - 7
perature field generated by a unit heat source applied at I ]

point (Xo, Yo, Zo) at timet = tq, is = 0 |

2
. 1 () A
(t,x,y,z)_id/ze if t>tg (9)
pc(4mkr) 45 40 05 0 0.5 1.0 15

wheret =t —tg, rog is the distance between the source

point and the field pointx,y,z), andd = 3, d = 2 and

d = 1 when in the presence of a three, two and one-
dimensional problem, respectively (Carslaw and Jaeger
(1959)).

Consider a homogeneous unbounded solid mediu
with thermal material properties that allok =
1.4w.m-Lloc-1 ¢ = 8800 J.Kg~ Loc-1 and p =
2300Kg.m" 3. Attimet = 277.8h, a unit heat source
is excited atX = 0.0m,y = 0.0m, z= 0.0m). Figure

3 displays the temperature computed using equation (9),
along a line of 40 receivers placed from= —1.5 m to
y=15m, (see Fig. 2) for a plan& & 1), cylindrical

(d = 2) and sphericald = 3) unit heat source, at differ-
ent times.

TemperaBre (°C)

rd
[€—n
B
3
z
3
Temperature (°C)

-1.50 m Source 1.50 m
y

Figure 2 : Geometry of the problem

X (m) 0)

The heat responses at these receivers were also computed
using the proposed Green'’s function. Computations are
Flgure 3: Temperature along a line of 40 receivers, at
he f 1 H h
performed |n_t © requencyiang_e;[o, &29 2] .Wlt different times (350 h, 450 h, 550 h and 650 h): a) for a
a frequency increment @&w = 10~ Hz, which defines a ol 1) unit heat “b) f lindricadl (-
time window of T = 2777.8h. The solution for a plane plane ¢ = 1) unit heat source; b) or a cylindric &
2) unit heat source; c) for a spherical £ 3) unit heat
unit heat source propagating along thaxis has been ;
modeled ascribing, = 0 andky, = 0 to equation (8) mul- source
tiplied by L.
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The solution for a cylindrical unit heat source has beéull normal flux at y = 0,
calculated using equation (5), ascribing= 0, while the -
. . _ — 00 E f
re_sponse_for a spherlcal unit heat source has been ?Roo,x,y, k) = Eo Z (_a) Eq
tained using equation (3) divided byt2 Complex fre- nw \ Vn
guencies of the formw. = w— 0.7iAw have been used
to avoid the aliasing phenomenon. The markers in Fijull temperatureaty = 0,
3 display the response computed using the proposed -
y . . . _ — 00 E
Green’s functions, and the solid line represents the Sojﬂéoo, xyk)=Eo 3 (_at) Eq (12)
tion given by equation (9). The agreement between thes o
two solutions is excellent. _ _
The cylindrical and the spherical unit heat source rethereEqs =e Vo) andEy = —e W0V 30),
sponses have also been computed performing discrete
summations over wavenumbers, following equations (6he Green’s functions for a half-space are then given by
and (8), which is mathematically equivalent to addingpe sum of the source terms and these surface terms. Af-
sources at spatial intervals, L,. The spatial period haster adding these terms together, we get expressions for
been set atx = L, = 2,/k/(pcAf). The agreementthe half-space of the form:
among solutions has also proved to be excellent.

n

Null normal flux at y = 0,
3 Green'sFunctionsin a Half-space

~ n=Ae E + Eaf
The Green’s functions for a half-space solid formatioh(®%.¥;kz) = Eon_Z_m< Vh ) Eq (13)
can be expressed as the sum of the source terms equal
to those in the full-space and the surface terms needqg temperatureat y = 0,
to satisfy the free-surface conditions (null heat fluxes or

null temperatures). These surface terms can be expressed " t* E—Eg

in a form similar to that of the source term, namely, 1 (@XY: k) = EOHZ_OO ( Vi ) Eq (14)
- e [E

Ta(w,x y,kz) = Eon > (V—:An> Eq (10) which can be written as

whereE, = e V. A, is as yet unknown coefficient toNull normal fluxat y =0,

be determined from the appropriate boundary condition~s, i

so that the field produced simultaneously by the sourtgw,x,y,k;) = M [Ho (Kiro) +Ho (Kt r1)] (15)
and surface terms should produtgw,x,y,k;) = 0 or

W =0aty=0. Null temperatureat y = 0,

The imposition of the stated boundary conditions for .

each value oh leads to an equation in the one unknowii (¢, x, y, k,) = ;_Il [Ho (K ro) — Ho (K¢ 11)] (16)

constant. The final result will then be obtained,
Null normal flux at y = 0,

An — e—iVn Yo

where ry= \/(x—xo)2+(y+yo)2 and

Ke = 1/ 52 — (k;)*.

Null temperatureaty = 0,

. 3.1 Validation of the Solution
Ag=—e VYo (11) . . . :
The image model technique employs virtual sources (im-

Having obtained the constant, we may compute the hege sources) to compute the heat field. These sources are
associated with the surface terms by means of equatmaced so that they can simulate the reflections caused by
(10). the reflecting boundaries. This technique is reliable, but
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Figure4: Geometry of the problem for a half-space fo
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the computations involving models with complex geom-

etry can become very complicated, and entail high com-
putational costs. In this simpler case we may find that
the image model technique will yield the same results as
those given by equation (13). Notice that the position of

the virtual source required to solve the present problem
would be placed atxo, —Yo).

Figure 5 presents the results obtained at the receiver
(x=0.1my = 0.1m) when a line heat source with
spatial sinusoidal variatiork{ = 0.4 rad / m} is excited

rqt (x=0.0m,y =0.2m) in a homogeneous solid half-
space medium with thermal material properties that al-
low k = 1.4W.m~ 1oc-1, ¢ = 8800J.Kg" 1.°c* and
p=2300Kg.m" 3 (see Fig. 4). The solid line represents
the results provided by the proposed solutions while the
markers correspond to the solution computed using the
image source technique. The square and the round marks
indicate the real and imaginary part of the responses, re-
spectively. The results allow verifying that both solutions
are similar.

4 Green'sfunctionsin a solid slab for mation

The Green’s functions for a solid slab formation with
thicknessh can be expressed as the sum of the source
terms equal to those in the full-space and the surface
terms needed to satisfy the boundary conditions at the
two slab surfaces (null heat fluxes or null temperatures).
Both interfaces (top and bottom) generate surface terms
which can be expressed in a form similar to that of the
source term,

Solid medium (top surface)

3 R,
Tl((*)vxay7kz)_E0 Z V_An Ed

Nn=—oo n

Solid medium (bottom surface)

N=-+oco
-FZ(wvxay7 kZ) = EO Z (%Af?) Ed (17)

Nn=—oo n

where, Ep = e Valy-h_ AL and AR are as yet unknown
coefficients to be defined by imposing the appropriate

Figure 5 : Real and imaginary parts of the response @ ndary conditions, so that the field produced simul-
a half-space solid formation with spatial wavenumbegyneqysly by the source and the surface terms guarantees

k, = 0.4 rad / m: a) Null normal flux ay = 0. b) Null

temperature af =0

null heat fluxes or null temperaturesyat 0 and aty = h.

The imposition of the two stated boundary conditions for
each value oh leads to a system of two equations in
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the two unknown constants. Three different cases are @ase | - null heat fluxes at the top and bottom surfaces.
fined in terms of null heat fluxes or null temperatures pre-
scribed for the top and bottom surfaces. T(oo X, Y, Kz)

(NS4
Case| - null heat fluxes at the top and bottomsurfaces. = zp [HO(KtFO)] m { Zo [Zl Ho(Ker j)] } (22)
m= 1=
1 _e—ivnh AE*: e—ivn Yo
elvih g ] [ A ] N [ —e1valh-ol (18)

Case Il - null temperatures at the top surface and null

Case Il - null temperatures at the top surface and null
heat fluxes at the bottom surface.

heat fluxes at the bottom surface. T(wxy k) = 7 [HO(KtFO)]
. . . (NS
1 e T A —e Yo + S ()™ Ho(Ker1) + Ho(Kir)
[ e 1 ] HE [ o |09 T A,
—Ho(Ktl'g) — Ho(KtI'4)]} (23)
Case Il - null temperatures at the top and bottom sur-
faces. Case Il - null temperatures at the top and bottom sur-
1 _eivan AL _evnvo faces.
e—iVnh 1 |: AE :| _e—iVn‘h_yO‘ (20) -
T((x), XY, kZ) = _k [HO(KtrO)]

NS
Once this system of equations has been solved, the am-— " { Z —Ho(Kir1) — Ho(Kir2)
plitude of the surface terms has been fully defined, and4 m=0

the heat propagation in the slab can thus be found. The

final expressions for the Green’s functions are then de-+Ho(Kirs) +Ho(Kira)] } (24)
rived from the sum of the source terms and the surface

terms originated in the two free surfaces, which leads. to

the following expressions,

'f(ooxy,k) rl_\/X X0)+ (y+Yo +2hm)?

"2 (Ea Eb b
— Ho(Kiro) +Eo 3 (W,AHQAn) Bs (D) 1= \/(x—%0)?+ (y—2h+yo — 2hm)?

N=—oo

which

4.1 Validation of the Solution s = \/(X_XO)Z+ (y+2h—yo +2hm)?

The expressions described above were used to calcujgte \/ X—X0)2+ (Y — 2h—yp — 2hm)?2

the heat field generated by a spatially harmonic varying

line load in thez direction, in a slab ® m thick. The

results provided were then compared with those arrivétie number of sources to be us& is determined so

at by using the image model function that can be derivétht all the signals needed to define the signal within the
for the present case. time interval fixed by the frequency increment are taken
This function can be achieved by superposing the héao account.

field generated by virtual sources with positive or nedror the three scenarios above, the medium re-
ative polarity, and located so that the desired boundanains constant so that = 1.4W.m~ .°C—1, c=
conditions are ensured. 8800J.Kg~ Loc-1 andp = 23000Kg.m~ 3. The slab
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X 1.0»
/ » Receiver i
¢ Source
i i o 05
05m Solid slab medium )
(]
T
2
Ez I
\ < 0
Y Y
-0.5"“““““‘
Figure 6 : Geometry of the problem for a solid slab for- 0 0.4x10° 0.8x10° 1.2x10°
mation Frequency (Hz) a)

is heated by a harmonic point heat source applied at the
point x= 0.0 my = 0.2 m) (see Fig. 6).

Calculations are performed in the frequency rang
[0,12810~"Hz] with a frequency increment aiw =
10~"Hz. The imaginary part of the frequency has beer'i_-
set ton = 0.7Aw. To validate the results, the response is®

computed at a single value &f(k; = 0.4rad/m. The ok i
real and imaginary parts of the responses at the receiver I ]
(x=0.1my = 0.1m) are shown in Fig. 7. The solid 0.04L— 7% e e e

lines represent the discrete analytical responses, while 0.4x10° 0.8x10° 1.2x10°
the marked points correspond to the image model tech- Frequency (Hz) b)
nigue. The square and the round marks indicate the real ¢4
and imaginary part of the responses, respectively. As I
can be seen, these two solutions are in very close agree-
ment, and equally good results were obtained from tests
in which heat sources and receivers were situated at di2
ferent points. g

tude (BC)

Amplitud

5 Green'sfunctionsin alayered formation

Next, the Green'’s functions for a solid layer over a solid
half-space, a solid layer bounded by two semi infinite PV R e
solid media and a multi-solid layer are established us- 0 0.4x10° 0.8x10° 1.2x10°
ing the required boundary conditions at the solid-solid Frequency (Hz) o)
interfaces and at the free surface.

5.1 Solid layer over a solid half-space Figure 7 : Real and imaginary parts of the responses
o _ for a solid slab formation. Heat source applied at the
The solution is again expressed as the sum of the so St (x=0.0my = 0.2m): &) Case | (null heat fluxes

terms (the incident field) equal to thqse in the fuII.-sp_a%ﬁ the top and bottom surfaces). b) Case Il (null tem-
and the surface terms needed to satisfy the continuity of o5 at the top surface and null heat fluxes at the
temperature and normal fluxes at the solid-solid interfagg;om surface). c) Case Il (null temperatures at the top

and null heat fluxes or null temperatures at the top surfage pitom surfaces). Heat source applied at the point
(see Fig. 8). All solid interfaces (2) generate surface(xz 0.0my = 0.2m)
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terms, which can be expressed in a form similar to thatposing the three stated boundary conditions for each

of the source term.

Solid layer (interface L

n=-o

~ E

sl ~Eor 3 (524, ) & 25)
N=—o0

Solid layer (interface P

- n=te /g

Taloxyk) ~Eor 3 (288 ) E (26)
N=—oo Vn1

Half space (interface)2

- n=te /g

TZl((*)vxay7kZ):E02 Z < 21An2> (27)
N=—o0

—iany, Epo= e—ivnl\y—hl\’ By =

—I(,o k2

—i
Whel’eon - m, E]_l -
g Vnaly-hal ) . — k2. with Im(v,i) <0 and
j S j

h; is the layer thickness;( 1 stands for the solid layer

(medium 1) whilej = 2 indicates the solid half-spacep, =

(medium 2)). Meanwhilel{; = = is the thermal diffu-
sivity in the solid mediunj (kj, pJ andcJ are the thermal

value ofn, a system of three equations in the three un-
known coefficients is defined.

Casel - null heat fluxesaty = 0.

_e—ian hy

conductivity, the density and the specific heat of the ma-

terial in the solid mediunj, respectively).
The coefficientsAl, A2, and AL, are as yet unknown

coefficients to be obtained from the appropriate boung-
ary conditions, so that the field produced simultaneously g-ivm hy
by the source and surface terms leads to the continujty oV by

of heat fluxes and temperaturesyat h;, and null heat
fluxes (Case 1) or null temperatures (Case Iy at 0.

Interface 1

= Receiver 1
Source

he=5.0 m Medium 1

i Interface 2
= Receiver 2 nterface

Medium 2

Figure8: Geometry of the problem for a solid layer ovep, —

a solid half-space

gvmh 1 -1 b= b
e vy 1 _% t2 bs
(28)
where
bl — e—ian Yo
by = _e—ian\hl—YO\
bs = |Vn1\h1 Yol
when the source is in the solid layen(< hy),
while
b;=0
_e—iVnz\hl—YO\
= 'lzlxnle—wnz\hl Yol
2Vn2
when the source is in the half-spagg & h;).
Casell - null temperaturesat y = 0.
—ivpy h
1 g VM 0 tl b1
-1 -1 A | =1 by
K1vn t
1 - 2 bs
(29)
where
bl — _e—ian)’o
by = _e—ian\hl—YO\
bs = —e Vuli—Yolwhen the source is in the solid layer
(Yo < hy),
while
b;=0
by = _e—iVnz\hl—YO\

"1"”1 e—'"ﬂz‘hl yolwhen the source is in the half-space
(Yo > hl)
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The heat within the two solid media is then computed
by adding the contributions of the source terms to those

associated with the surface terms generated at the various

interfaces.

Yo < hg
- —i

T(wv XY, kZ) = 4k,

Emn:im EA%H'EA% Eq ify<hy
= \Vn1 Vn1

Ho (Kt1 ro) +

~ Nn=+4o E
T(w XY, k) =Eo2 ) ( 2L tz) Eq if y>hy

Nn=—oo Vn2

53
Medium 0
Interface 1 5
= Receiver 1 >
Source
hy=5.0 m Medium 1
(
= Receiver 2 Interface 2
Medium 2

(30)

Figure 9 : Geometry of the problem for a solid layer
bounded by two semi-infinite solid media

of four equations when the heat source is placed within

Yo >
~ e =T =P
T(w,x Y k) =E —t+—b>E :
(@, XY, k) 01n:Z_m (anAnl anAnl d the solid layer.
if y<h 1 1 O
_j ,
T(wW, XY, k) = —Ho (K2 1 1 1 _ elvmh
( XY, Z) 4k, 0( t2 0) + kovno K1vn1 k1vn1
N=--0c0 =] 0 e vmh -1
E ——A) E if y>h 31 1 —ivyh 1
OZnZZOO (VnzAn2> d y 1 (31) 0 e Vnihy 1
— —ian)’o
W|th Ktj = %‘) — (kz)z (J = l, 2) _ lelnle_Ianyo
—egvm[hi—yol
5.2 Solidlayer bounded by two semi-infinite solid me- _ﬁe—ivnl‘hl—yo‘
dia 1Vnl

In this case, the solution needs additionally to account b

0 b
0
0 '
b
-1 An
1 t2
kavn2

(33)

pe temperature for the three solid media are then com-

the surface heat waves generated in the solid interf&#€d by adding the contribution of the source terms to

1 which propagate through the top semi-infinite spala0Se associated with the surface terms originated at the
various interfaces. This procedure produces the follow-

ing expressions for the temperatures in the three solid

(medium 0) (see Fig. 9).

~ . e EOl b
To2(w. Xy, kz) = Eoo ) Ano | Ed

Nn=—o VnO

whereEy; = ﬁ andEqp = e VoY,

The surface heat waves, generated in the solid interfaces
1 and 2 and propagating in the solid layer and in bottdniw, X, y, k;) =
semi-infinite space, are expressed as in equations (25-

27).

The coefficientsAl,, AL;, A, andAl, are computed by
imposing the continuity of heat fluxes and temperatur;f-:‘&o xyk) = E " (B
aty = h; andy = 0. This leads to the following system \ > ¥ @ = =02

media.

Vno

- Nn=+4o E
T(w,%Y,k) =Eoo Y ( °1Aﬁo> Eq if y<O

N=—o0

Ho(Kip 1
2k, o (K1 ro)
n=te /E E
+Eo1 (ﬂAﬁl—I—ﬁ
N=—o0 Vn1 Vn1

2

N=—o0

Vn2

Aﬁl) Eq ifO<y<hy

2) Eq if y>hy (34)
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_ _ —iVaihy i . i
11 e 0 0 0 vy
4 ___¢€ .
kovno k1vn1 kivm 0 0 0 r b 7 e vnyo
0 elvmh 1 0 0 0 no KV
H _ —Iv 1‘h1—yo‘
0 e—Ianhl 1 0 O o bl e . n
K1vn1 K1vn1 1 _ e 1vni|h ol
. = K1vn1 (37)
0 0 0 -1 e—anmhm 0 tm
iv hy b 0
1 gvmhm Anm
0 0 0 K1Vnm KmVnm 0 AE‘| 0
0 0 0 g Vb -1 L n(med) 0
—iv hy
g~ !vnmhm 1 1 0
L 0 O o KmVom KmVom km+an(m+1) i - -

The derivation presented assumed that the spatially isifinite media, are respectively expressed by
nusoidal harmonic heat source is placed within the solid -

layer. However, the equations can be easily manlpulapgzcau %,Y,kg) = Eoo Z (V_OAEO> Eq
n

to accommodate another position of the source. e
| lid | -r(m+l)2(w7 X, Y, kZ)
5.3 Multi-solid layer n=+o /E
1)2
. . . . = EO(m+1) Z ( () A;(m.t,_]_)) Ed (36)
Consider a medium built from a set of solid flat lay- e \ Vn(m+1)

ers of infinite extent bounded by flat, semi-infinite, solid
media (top semi-infinite medium (medium&nd bottom The final system matrix assembled accounts for the cou-
semi-infinite medium (mediumm+1)). The thermal ma- pling between the different layers, so that the heat pro-
terial properties and thicknesses of the different layettsced simultaneously by the source and surface terms
may differ. This system is excited by a spatially sindeads to the continuity of fluxes and temperatures along
soidal heat source placed in the first layer (medium them+-1 solid interfaces. For each valuemfa system
The solution is obtained by adapting and extending tieé 2(m+-1) equations in the @n+ 1) unknown coeffi-
models described above. As before, the solution is ahients is definedRa = b). (See Equation 37)
tained by adding the direct contribution of the heat sourggnce the amplitude of the surface terms in each solid
and the surface heat terms generated at all interfacesinterface has been obtained, the Green's functions for a
For the solid layelj, the heat surface terms on the uppeolid formation are given by the sum of the source terms
and lower interfaces can be expressed as and these surface terms, yielding the following expres-
sions,

- N=+-o00 E;
Ti1(w,x Y, k) = Eo; “BA) E
ip(@xyke) =Eoj 3 (v A’”) d top semi-infinite medium (medium 0)

N=-—oo nj
~ n—t» /g _
n=+eo /g T(wv XY, kZ) = EOO Z <V_O§AEO> Ed if y< 0
~ i2 ——o00 n
TjZ((*)v XY, kZ) = EOJ Z <V_JA2]> Ed (35) "
N=—o nj
_ i1 _ i solid layer 1 (source position)
—lvnjly— 3 h —lvnjly=3 h i
whereEj; = e =1 =1 —

the thickness of the layér Meanwhile, the heat surface 4ky
terms generated at interfaces 1 and 1, governing theE e Ei ¢ | En2
heat that propagates through the top and bottom sen(ﬁl-n:z_oo

Ho (Kt1 ro) +

b .
— Eg fO<y<h
Vn1 1 Vn1 Anl) d y !
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Figure 10 : Solid layer over a solid half-space: a) Case | — null heat fluxgs=a0, responses at receivers 1 and 2.
b) Case Il — null temperaturesyat 0, responses at receivers 1 and 2

solidlayerj (j #1)
N=-o0

f((x), XY, kZ) = EOJ Z

N=—o0

-1 j
Z h<y< Z hy
=1 =1

€

E; E;
—J.lA?jJFV—J.Z
nj nj

Agj) Eq if

bottom semi-infinite medium (medium m+- 1)

of all solid interfaces using the Green’s functions for a
full space. The BEM code has been validated for the case
of circular ring inclusions, for which analytical solutions
have already been derived (not included here).

The unlimited discretization of the solid interfaces was
avoided by using complex frequencies with a small imag-
inary part of the formw; = w—in (with n = 0.7Aw)
[Bouchon and Aki (1977), Phinney (1965)]. Boundary
elements make a significant contribution to the response

R ST
Tim+1)2(0,X, Y, kz) = Egmy-1) Z m

N=—o0

A;(m—s—l)) Eq
(38)

up to a definite distance and in the presence of a certain
value of damping, but are otherwise unnecessary. These
elements are distributed along the surface up to a spe-
The solution for a heat source located in a different solific spatial distance. We have computed this distance as
layer can be obtained, maintaining the same matrix sygz, — 2 /ki /(pj cjAT). The thermal material proper-
tem E) and changing only the independent terms defingds sed were those from the solid medium that leads to
by the directincident fieldy). Thus, the derivation of the 1,4 largest spatial distance.

total system of equations is quite straightforward, and f

) . Rrext, the results are found for the three scenarios. First,
this reason is not presented here.

a solid flat layer, ' m thick, is assumed to be bounded
by one solid half-space. Null heat fluxes or null tem-
peratures are prescribed at the top surface (see Fig. 10).
The results provided by the analytical expressions pfenen, the solid flat layer is bounded by two semi-infinite

sented here were compared with those arrived at by @Bfig media (see Fig. 11). The thermal material proper-
plying the BEM model, which requires the discretization

5.4 Validation of the Solution
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ties used are listed in the Tab. 1.

Table 1: Thermal material properties

Solid layer | Lower solid | Top solid
(concrete) medium medium
(steel) (steel)
Thermal
conductivity k=14 ky =63.9 ko =63.9
( W'm-l'acfl )
Density
(Kgm™) Py = 2300 Py =7832 po =7832
Specific heat
(J Kg'l ,,C,l) c; =880.0 ¢y =434.0 ¢y =434.0

Amplitude (°C)

Figure 11 :
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source applied in the solid layer medium at poixt(
0.0my = 1.2m). The computations are performed in
the frequency range (0,12810-7Hz), with a frequency
increment ofAw = 1 x 10" Hz. The imaginary part of
the frequency has been setrjo= 0.7Aw. To validate

the results, the response is computed at a single value of
kz(k; = 0.4rad / m. The real and imaginary parts of the
responses at receiver £ £ 0.1my = 0.75m) and re-
ceiver 2 k= 0.1my = 5.75m) are shown in Fig. 10 and
11. The analytical responses are represented by the solid
lines, while the marked points correspond to the BEM
solution. The square and the round marks indicate the
real and imaginary parts of the responses, respectively.

As can be seen, these two solutions are in very close
agreement, and equally good results were obtained from
tests in which sources and receivers were situated at dif-
ferent points.

6 Summary of Green's Functions

The Tables 2 — 5 summarizes the Green'’s functions pre-
sented throughout the paper.

Table 2 : Green’s Functions in an Unbounded Medium.

Model Equations
Three-dimensional (3)
Two-dimenisonal (k, =0) (5)
One-dimensioan! (k, =0, k., =0) ¥

Table 3: Green’s Functions in a Half-space

Boundary Conditions Equations
Null normal flux at y =0 (15)
Null temperature at y =0, (16)

7 Conclusions

eThe analytical solutions described here for calculating
the heat propagation in unbounded, half-space, slab and
layered media, when subjected to a spatially sinusoidal

harmonic heat line source, appeared to be eminently suit-

The three solid structures are heated by a harmonic pabte for performing transient heat conduction analyses.
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Table4: Green's Functions in a Slab Nurmer. Methodsin Eng., vol. 26, pp. 1709-1728.
Boundary Conditions Equations Bouchon, M.; Aki, K. (1977b): Discrete wave-number
Null heat ﬂ”xe:u“r;;ﬁ:‘)p andbottom | ¢ 51y (22) | representation of seismic-source wave fielliletin of

Null temperatures at the fop surface and the Seismological Society of America, vol. 67, pp. 259-

null heat fluxes at the bottom surface (19,21), 23) 277.
Null temperatures at the top and bottom (20,21, (24) Cardaw, H. S.; Jaeger, J. C. (1959): Conduction of
surfaces Heat in Solids, second edition. Oxford University Press.

Godinho, L.; Antonio, J.; Tadeu, A. (2001): 3D sound
. _ ~scattering by rigid barriers in the vicinity of tall build-
Table5: Green’s Functions in a Layered formation ings. Journal of Applied Acoustics, vol. 62, r° 11, pp.
Boundary Conditions Equations 1229-1248.

Solid layer over a solid half-space - | 5q 34 31) Kogl, M.; Gaul, L. (2000): A 3-D Boundary Element
null heat fluxes at y =0. Method for Dynamic Analysis of Anisotropic Elastic
(29, 30, 31) Solids. CMES Computer Modeling in Engineering &

null temperatures at y =0. Sciences, Vol. 1, no 4, pp. 27-44.
Solid layer bounded by two semi-

Solid layer over a solid half-space -

infinite solid media. (33,34) Lamb, H. (1904): On the propagation of tremors at the
surface of an elastic solidPhil. Trans. Roy. Soc. Lon-
Multi-solid layer. (39, 40) don. A203:1-42

Luco, J. E.;; De Barros, F. C. P. (1995): Three-
dimensional response of a layered cylindrical valley em-
bedded in a layered half-spadearthquake Eng. Struct.

In addition to the frequency responses, synthetic sigriayn., vol. 24, r?1, pp. 109-125.

tures were computed by means of inverse Fourier traRganolis G. D.; Pavlou, S. (2002): A Green’s Function
formations, using complex frequencies in order to avojgr variable Density Elastodynamics under Plane Strain
the aliasing phenomenon. Conditions by Hormander’s MethodCMES: Computer
The solutions presented were found to be in very closodeling in Engineering & Sciences, Vol. 3, no 3, pp.
agreement with other analytical solutions in the cag99-416.

of unbounded, half-space and slab media and with @ghiai, v. (2001): Steady Steady Heat Conduction Anal-
Boundary Elements Solution in the case of layered Mgsis in Orthotropic Bodies by Triple-reciprocity BEM.

dia, which requires the discretization of the solid inteE\ES Computer Modeling in Engineering & Sciences,
faces with a large number of boundary elements. \ol. 2, no 4, pp. 435-446.

The analytical solutions presented in this paper are ilﬁhinney, R. A. (1965): Theoretical calculation of the

trinsically interesting. If the solutions are applied in congpectrum of first arrivals in the layered elastic medium.
junction with numerical methods, such as the BEM, they Geophysics, Res., vol. 70, pp. 5107-5123.

may prove to be very useful in many engineering applky; o5 £ 3.; Polyzos, D. (2003): A MLPG (LBIE)

cations, such as the calculation of the thermal insulatliwe,[hOOI for Solving Frequency Domain Elastic Prob-
provided by solid walls and slabs. lems.CMES: Computer Modeling in Engineering & Sci-
ences, vol. 4, no. 6, pp. 619-636.

References. Stamos, A. A.; Beskos, D. E. (1996): 3-D seismic re-

Bouchon, M. (1979): Discrete wave number represefPONS€ analysis of long lined tunnels in half-spasa

tation of elastic wave fields in three-space dimensior®y"- EarthauakeEng., vol. 15, pp. 111-118.

Journal of Geophysical Research, Vol. 84, pp. 3609- Stehfest, H. (1970): Algorithm 368: Numerical Inver-
3614. sion of Laplace TransformCommunications of the As-

gociation for Computing Machinery, vol. 13, n°. 1, pp.

Bouchon, M.; Aki, K. (1977a): Time-domain transien
Elastodynamic Analysis of 3D Solids by BENht. J.



58 Copyright(© 2004 Tech Science Press

Tadeu, A.; Antonio, J. (2001): 2.5D Green’s Functions
for Elastodynamic Problems in Layered Acoustic and
Elastic Formations CMES. Computer Modeling in En-
gineering & Sciences, vol. 2, no 4, pp. 477-495.

Tadeu, A.; Godinho, L.; Santos, P. (2002): Wave
motion between two fluid filled boreholes in an elastic
medium.Engineering Analysiswith Boundary Elements,
EABE, vol. 26, 1 2, pp. 101-117.

Tadeu, A.; Kausel, E. (2000): Green’s functions
for two-and-a-half dimensional elastodynamic problems.
Journal of Engineering Mechanics - ASCE, vol. 128, n
10, pp. 1093-1097.

Zhang, L.; Chopra, A. K. (1991a): Three-dimensional
analysis of spatially varying ground motions around a
uniform canyon in a homogeneous half-spadearth-
quake Eng. Struct. Dyn., vol. 20, r? 10, pp. 911-926.

Zhang, L.; Chopra, A. K. (1991b): Impedance func-
tions for three-dimensional foundations supported on an
infinitely-long canyon of uniform cross-section in a ho-
mogeneous half-spacdzarthquake Eng. Struct. Dyn.,

vol. 20, no 11, pp. 1011-1027.

Zhang, Ch.; Savaidis, A. (2003): 3-D Transient Dy-
namic Crack Analysis by a Novel Time-Domain BEM.
CMES Computer Modeling in Engineering & Sciences,

vol. 4, no. 5, pp. 603-618.

cmes, vol.6, no.1, pp.43-58, 2004




