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2.5D Green’s Functions in the Frequency Domain for Heat Conduction Problems
in Unbounded, Half-space, Slab and Layered Media

António Tadeu1, Julieta António and Nuno Simões

Abstract: This Analytical Green’s functions for the
steady-state response of homogeneous three-dimensional
unbounded, half-space, slab and layered solid media sub-
jected to a spatially sinusoidal harmonic heat line source
are presented. In the literature, this problem is frequently
referred to as the two-and-a-half dimensional fundamen-
tal solution or 2.5D Green’s functions.

The proposed equations are theoretically interesting in
themselves and they are also useful as benchmark re-
sults for validating numerical applications. They are
also of great practical use in the formulation of three-
dimensional heat transfer problems in layered solid for-
mations using integral transform methods and/or bound-
ary elements.

The final expressions for heat conduction in an un-
bounded medium are validated first, since time solutions
are known in analytical form. This requires the prior ap-
plication of an inverse Fourier transform to our frequency
domain results, using complex frequencies to avoid the
aliasing phenomena. The results provided by the pro-
posed expressions for half-space and slab are then com-
pared with those computed using the image source tech-
nique, while the solutions obtained for the layered media
are then verified with those calculated by the Boundary
Element Method solution, which requires the discretiza-
tion of the interfaces between layers with boundary ele-
ments.

keyword: Green’s functions, transient heat conduc-
tion, frequency domain

1 Introduction

The most important reference for heat transfer is Carslaw
and Jaeger’s book (1959), which contains a set of ana-
lytical solutions and Green’s functions for the diffusion

1 Department of Civil Engineering,
Faculty of Sciences and Technology
University of Coimbra, Portugal

equation. It also includes an extensive survey of numer-
ical methods, which can be grouped according to how
the time-dependent terms are dealt with. The first is a
“time marching” approach in which the solution is eval-
uated step by step at successive time intervals after an ini-
tially specified state has been defined. The second uses
the Laplace transform of the time in which the diffusion
equation becomes an elliptical one. After the solution
has been obtained for a sequence of values of the trans-
form parameter, a numerical transform inversion is used
to compute the physical variables in the real space.

Although the Laplace transform has been widely used for
solving diffusion problems, accuracy depends on an ef-
ficient and precise inverse transform, since small trun-
cation errors can be magnified in the inversion process.
Several inversion methods have been proposed over the
years, such as the Stehfest algorithm (1970).

The present work provides Green’s functions for comput-
ing the heat radiated by a spatially sinusoidal, harmonic
heat line source placed in solid formations with varying
configurations: unbounded, half-space, slab and layered
media. These expressions, or fundamental solutions, re-
late the heat field variables (fluxes or temperatures) at
some location in the solid domain caused by a heat source
placed elsewhere in the media.

This type of heat source can be seen as resulting from ap-
plying a time Fourier transform to the heat point source
and then a spatial Fourier transform in the direction in
which the geometry does not vary (z). The 3D heat
field in the time domain can be then synthesized by us-
ing the inverse Fourier transforms in the frequency and
wavenumber (kz) domain. If we assume the existence
of virtual heat sources equally spaced, Lz, alongz, this
inverse Fourier transformation becomes a discrete sum-
mation, which allows the solution to be obtained by solv-
ing a limited number of two-dimensional problems. The
time-aliasing phenomenon can be avoided by using com-
plex frequencies to attenuate the response at the end of
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the time frame. This effect is later taken into account by
re-scaling the response in the time domain.

Thus, the Green’s functions for the case of a spatially
sinusoidal, harmonic heat line source placed in an un-
bounded medium are developed by first applying a time
Fourier transform to the time diffusionequation for a heat
point source and then a spatial Fourier transform to the
resulting Helmholtz equation, along thez direction, in
the frequency domain.

The derivation of the Green’s functions for the layered
solid formations requires expressing the Green’s func-
tion for the unbounded media as a superposition of heat
generated by plane diffusion sources. This follows the
approach similar to the one used first by Lamb (1904)
for the propagation of elastodynamic waves in a two-
dimensional media, and then by other authors such as
Bouchon (1979) and Tadeu and Ant´onio (2001) to com-
pute three-dimensional elastodynamic fields using a dis-
crete wave number representation. In other elastody-
namic related work Luco and De Barros (1995) com-
puted the three-dimensional seismic response of a lay-
ered cylindrical valley. Zhang and Chopra (1991) used
the direct boundary element to compute the impedance
matrix for a three-dimensional foundation supported on
an infinitely long canyon of uniform cross-section cut in
a homogenous half space. Stamos and Beskos (1996) cal-
culated the 3D dynamic response of long, lined tunnels
of uniform cross-section in a half-space subjected to a
plane harmonic waves propagating in an arbitrary direc-
tion using the BEM formulation. Notice that the search
for Green’s functions has been object of research over the
years because these expressions can be used as bench-
mark solutions, which can be incorporated in the devel-
opment of numerical methods such as the Boundary Ele-
ments Method (see, for example, K¨ogl and Gaul (2000),
Manolis and Pavlou (2002)Ochiai (2001), Sellountos and
Polyzos (2003)and Zhang and Savaidis(2003)).

In this work the heat conduction Green’s functions for a
half space and a slab can be expressed as the sum of the
heat source terms equal to those in the full-space and the
surface terms required to satisfy the boundary conditions
at the surfaces, which can be of two types: null normal
fluxes or null temperatures. A similar technique is used
to find the Green’s functions for a layered formation. The
final heat field is computed as the sum of the heat source
terms equal to those in the full-space and a set of surface
terms, generated within each solid layer and at each inter-

face. The amplitudes of these surface terms are defined
after ascribing the required boundary conditions: conti-
nuity of temperatures and normal fluxes between solid
layers, and null normal fluxes or null temperatures at the
outer surface.

The expressions presented here make it possible to com-
pute the heat field inside a layered solid medium, without
fully discretizing the interior domain, which is required
by numerical techniques, such as the finite differences,
or even by discretizing the free surface using boundary
elements techniques.

The authors believe that the fundamental solutions pre-
sented here can be of great value in formulating 3D tran-
sient heat conduction problems via boundary elements
together with integral transforms, in layered media such
as composite laminated slabs, building walls and ground
building floors. The fundamental solutions are expressed
in an explicit form, and represent the Green’s functions
for a harmonic (steady-state) line heat source load placed
in an unbounded, half-space, slab and layered medium,
whose amplitude varies sinusoidally in the third dimen-
sion. Such problems are referred to in the literature as
2.5D problems. These equations are very important in
themselves, they can both relate the temperatures and
heat fluxes at some point produced by a point load some-
where in the three-dimensional space, and be incorpo-
rated into a numerical boundary element approach de-
signed to avoid the full discretization of the solid layered
interfaces. Notice that this full discretization is only pos-
sible using various simplified approaches, such as damp-
ing, otherwise it will lead to a system of equations that is
too large to be solved.

This paper first formulates the three-dimensional prob-
lem and explains how the Green’s functions for a sinu-
soidal heat line source, applied in an unbounded solid
formation, can be obtained and written as a continuous
superposition of plane waves in the frequency domain. A
brief description of how the time solutionsare obtained is
also given. In order to validate our solutions, the results
obtained for one, two and three-dimensional heat sources
in an unbounded medium are compared with those pro-
vided by analytical expressions, known in the time do-
main.

Then, a similar procedure is applied to the Green’s func-
tions for a sinusoidal line pressure load applied to a half
space and a slab with differing boundary conditions. In
these cases, the image model technique can be also used



2.5D Green’s Functions in the Frequency Domain 45

to define these Green’s functions and this is thus used
to validate the solutions. This technique employs virtual
heat sources (image heat sources) to compute the heat
field. These heat sources are placed so that they can sim-
ulate the reflections caused by the boundaries.

Finally, the Green’s functions for a layered solid forma-
tion are established using the required boundary condi-
tions at the various interfaces. The full set of expressions
is compared with those provided by the Boundary Ele-
ment Method (BEM), for which a full discretization of
the boundary interfaces is required.

2 3D problem formulation and Green’s Functions in
an Unbounded Medium

The solution of transient heat conduction in solids is de-
scribed by the diffusion equation

∇ 2T =
1
K

∂T
∂t

(1)

where ∇ 2 =
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
, t is time, T (t,x,y, z) is

temperature,K = k
ρ c is the thermal diffusivity,k is the

thermal conductivity,ρ is the density andc is the specific
heat. Applying a Fourier transform in the time domain,
one obtains
∇ 2 +

(√
−iω

K

)2

 T̂ (ω,x,y, z) = 0 (2)

where i =
√−1 and ω is the frequency. Equa-

tion (2) is a Helmholtz equation similar to the
one used to solve acoustic problems, where

ω
/
(velocity o f pressure waves) corresponds to

√
−iω

K
in the diffusion equation. Thus, the transient heat propa-
gation solution can be seen as an harmonic propagation
of heat.
The fundamental solution of equation (2) for a heat
point source in an unbounded medium, located at
(x0,y0, 0), p(ω,x,y, z, t) = δ(x−x0)δ(y−y0)δ(z)ei(ωt)

whereδ(x−x0), δ(y−y0) andδ(z) are Dirac-delta func-
tions, can be written as

T̂f (ω,x,y, z)

=
1

2k
√

(x− x0)2 +(y− y0)2 + z2
e−
√

iω
K

√
(x−x0)

2+(y−y0)
2+z2

(3)

In many cases, the analysis of 3D problems can become
computationally demanding, and it is often best to ex-
press the full 3D problem as a summation of simpler
2D solutions, when the geometry of the problem remains
constant along one direction (z). This is achieved by ap-
plying a Fourier transformation along that direction, and
expressing the solution as a summation of 2D solutions,
with different spatial wavenumberskz (Tadeu and Kausel
(2000)). The application of a spatial Fourier transforma-
tion along thez direction to the equation (2) leads to the
following equation
∇̃ 2 +

(√
−iω

K
− (kz)

2

)2

 T̃ (ω,x,y,kz) = 0 (4)

with ∇̃ 2 =
(

∂2

∂x2 + ∂2

∂y2

)
.

Applyinga spatial Fourier transform, in thez direction, to
the fundamental equation for a heat point source (equa-
tion (3)) gives the fundamental solution for this equation,

T̃f (ω,x,y,kz) =
−i
4k

H0

(√
−iω

K
− (kz)

2 r0

)
(5)

where Hn () are Hankel functions of the second kind

and ordern, and r0 =
√

(x−x0)
2 +(y−y0)

2. This
response can be seen as the response to a spatially
varying heat line source of the formp(ω,x,y,kz, t) =
δ(x−x0)δ(y−y0)ei(ωt−kzz) (see Fig. 1).

The full three-dimensional solution is then obtained by
applying an inverse Fourier transform along thekz do-
main. If we assume the existence of virtual sources
equally spaced,Lz, along z, this inverse Fourier trans-
formation becomes a discrete summation, which allows
the solution to be obtained by solving a limited number
of two-dimensional problems.

T̂ (ω,x,y, z) =
2π
L

M

∑
m=−M

T̃ (ω,x,y,kzm)e−ikzmz (6)

with kzm being the axial wavenumber given bykzm =
2π
Lz

m. The distanceLz must be sufficiently large to avoid
spatial contamination from the virtual sources [Bouchon
and Aki (1977)]. A similar procedure has been used by
the authors to analyze the wave propagation inside seis-
mic prospecting boreholes [Tadeu et al. (2002)] and the
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Figure 1 : Spatially harmonic varying line load

outdoor propagation of sound waves in the presence of
obstacles [Godinho et al. (2001)].

These same equations can be expressed as a continu-
ous superposition of heat generated by plane diffusion
sources. Equation (5), which results from a spatially si-
nusoidal harmonic heat line source along thez direction,
applied at the point(x0,y0), is then given by the expres-
sions,

T̃f (ω,x,y,kz) =
−i

4πk

+∞∫
−∞

(
e−iν|y−y0|

ν

)
e−ikx(x−x0)dkx (7)

whereν =
√

−iω
K −k2

z −k2
x with (Im(ν)≤ 0), and the

integration is performed with respect to the horizontal
wave number (kx) along thex direction.

The transformation of this integral into a summation can
be achieved if an infinite number of such sources are dis-
tributed along thex direction, at equal intervalsL x. The
above equation can then be written as

T̃f (ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
E
νn

)
Ed (8)

whereE0 = −i
2kLx

E = e−iνn|y−y0|

Ed = e−ikx n(x−x0)

νn =
√

−iω
K −k2

z −k2
xn with (Im(νn) ≤ 0)

kxn =
2π
Lx

n

which can in turn be approximated by a finite sum of
equations (N).
Notice thatkz = 0 corresponds to the two-dimensional
case.

2.1 Responses in the time domain

The heat in the spatial-temporal domain is obtained by a
numerical inverse fast Fourier transform inkz and the fre-
quency domain. Complex frequencies with a small imag-
inary part of the formωc = ω− iη (with η = 0.7∆ω, be-
ing ∆ω the frequency step) are used to avoid the aliasing
phenomena. In the time domain, this shift is later taken
into account by applying an exponential window of the
form eη t to the response.

The temporal variation of the source can be arbitrary. The
application of a time Fourier transformation defines the
frequency domain where the BEM solution is required.
So the frequency domain may range from 0.0Hz to very
high frequencies. However, we may cut off the upper
frequencies of this domain because the heat responses
decrease very fast as the frequency increases. The fre-
quency 0.0Hz is the static response that can be obtained
by limiting the frequency to zero. As we are using com-
plex frequencies, the response can be computed because
the argument of the Hankel function in equation (5) is
−iη, that is, other than zero.

As stated before, the Fourier transformations are
achieved by discrete summations over wavenumbers
and frequencies, a procedure which is mathematically
equivalent to adding periodic sources at spatial inter-
valsLz = 2π/∆kz (in the z-axis), and temporal intervals
T = 2π

/
∆ω, with ∆kz being the wavenumber step. The

spatial separationLz must be such that contamination
of the response by the periodic sources cannot occur.
In other words, the contribution to the response by the
fictitious sources must be guaranteed to occur at times
later than T. Achievement of this goal can also be aided
substantially by the shift adopted for the frequency axis
(ωc = ω− iη). This technique results in the significant
attenuation or virtual elimination of the periodic sources.
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2.2 Responses in the time domain

The procedures described in the previous section were
implemented and validated by using them to calculate
the one, two and three dimensional exact time solutions
for a unit heat source placed in an unbounded medium.
The exact solution of the diffusion equation (1) in an un-
bounded medium in the time domain, describing the tem-
perature field generated by a unit heat source applied at
point(x0,y0, z0) at timet = t0, is

T (t,x,y, z) =
1

ρc(4πkτ)d/2
e

(
− r2

00
4kτ

)
if t > t0 (9)

whereτ = t − t0, r00 is the distance between the source
point and the field point(x,y, z), andd = 3, d = 2 and
d = 1 when in the presence of a three, two and one-
dimensional problem, respectively (Carslaw and Jaeger
(1959)).

Consider a homogeneous unbounded solid medium
with thermal material properties that allowk =
1.4W.m- 1.oC−1, c = 880.0 J.Kg- 1.oC−1 and ρ =
2300Kg.m- 3. At time t = 277.8h, a unit heat source
is excited at (x = 0.0 m,y = 0.0m, z = 0.0 m). Figure
3 displays the temperature computed using equation (9),
along a line of 40 receivers placed fromy = −1.5 m to
y = 1.5 m, (see Fig. 2) for a plane (d = 1), cylindrical
(d = 2) and spherical (d = 3) unit heat source, at differ-
ent times.

X

                                

0.35 m 

y

-1.50 m 1.50 m 

R1 R40
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Figure 2 : Geometry of the problem

The heat responses at these receivers were also computed
using the proposed Green’s function. Computations are
performed in the frequency range [0,1024x10−7Hz] with
a frequency increment of∆ω= 10−7Hz, which defines a
time window ofT = 2777.8h. The solution for a plane
unit heat source propagating along they axis has been
modeled ascribingkz = 0 andkxn = 0 to equation (8) mul-
tiplied byLx.
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Figure 3 : Temperature along a line of 40 receivers, at
different times (350 h, 450 h, 550 h and 650 h): a) for a
plane (d = 1) unit heat source; b) for a cylindrical (d =
2) unit heat source; c) for a spherical (d = 3) unit heat
source
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The solution for a cylindrical unit heat source has been
calculated using equation (5), ascribingkz = 0, while the
response for a spherical unit heat source has been ob-
tained using equation (3) divided by 2π. Complex fre-
quencies of the formωc = ω− 0.7i∆ω have been used
to avoid the aliasing phenomenon. The markers in Fig.
3 display the response computed using the proposed
Green’s functions, and the solid line represents the solu-
tion given by equation (9). The agreement between these
two solutions is excellent.

The cylindrical and the spherical unit heat source re-
sponses have also been computed performing discrete
summations over wavenumbers, following equations (6)
and (8), which is mathematically equivalent to adding
sources at spatial intervalsLx, Lz. The spatial period has

been set asLx = Lz = 2
√

k
/
(ρ c ∆ f ) . The agreement

among solutions has also proved to be excellent.

3 Green’s Functions in a Half-space

The Green’s functions for a half-space solid formation
can be expressed as the sum of the source terms equal
to those in the full-space and the surface terms needed
to satisfy the free-surface conditions (null heat fluxes or
null temperatures). These surface terms can be expressed
in a form similar to that of the source term, namely,

T̃1(ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
Ea

νn
An

)
Ed (10)

whereEa = e−iνny. An is as yet unknown coefficient to
be determined from the appropriate boundary conditions,
so that the field produced simultaneously by the source
and surface terms should produceT̃1(ω,x,y,kz) = 0 or
∂T̃1(ω,x,y,kz)

∂y = 0 aty = 0.

The imposition of the stated boundary conditions for
each value ofn leads to an equation in the one unknown
constant. The final result will then be obtained,

Null normal flux at y = 0,

An = e−iνn y0

Null temperature at y = 0,

An = −e−iνn y0 (11)

Having obtained the constant, we may compute the heat
associated with the surface terms by means of equation
(10).

Null normal flux at y = 0,

T̃1(ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
Ea f

νn

)
Ed

Null temperature at y = 0,

T̃1(ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
Eat

νn

)
Ed (12)

whereEa f = e−iνn(y+y0) andEat = −e−iνn(y+y0).

The Green’s functions for a half-space are then given by
the sum of the source terms and these surface terms. Af-
ter adding these terms together, we get expressions for
the half-space of the form:

Null normal flux at y = 0,

T̃ (ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
E +Ea f

νn

)
Ed (13)

Null temperature at y = 0,

T̃ (ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
E −Eat

νn

)
Ed (14)

which can be written as

Null normal flux at y = 0,

T̃ (ω,x,y,kz) =
−i
4k

[H0 ( Ktr0)+H0 (Kt r1)] (15)

Null temperature at y = 0,

T̃ (ω,x,y,kz) =
−i
4k

[H0 (Kt r0)−H0 (Kt r1)] (16)

where r1 =
√

(x−x0)
2 +(y+y0)

2 and

Kt =
√

−iω
K − (kz)

2.

3.1 Validation of the Solution

The image model technique employs virtual sources (im-
age sources) to compute the heat field. These sources are
placed so that they can simulate the reflections caused by
the reflecting boundaries. This technique is reliable, but
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Figure 4 : Geometry of the problem for a half-space for-
mation
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Figure 5 : Real and imaginary parts of the response for
a half-space solid formation with spatial wavenumber
kz = 0.4 rad / m: a) Null normal flux aty = 0. b) Null
temperature aty = 0

the computations involving models with complex geom-
etry can become very complicated, and entail high com-
putational costs. In this simpler case we may find that
the image model technique will yield the same results as
those given by equation (13). Notice that the position of
the virtual source required to solve the present problem
would be placed at(x0,−y0).
Figure 5 presents the results obtained at the receiver
(x = 0.1 m,y = 0.1 m) when a line heat source with
spatial sinusoidal variation (k z = 0.4 rad / m) is excited
at (x = 0.0 m,y = 0.2 m) in a homogeneous solid half-
space medium with thermal material properties that al-
low k = 1.4W.m- 1.oC−1, c = 880.0 J.Kg- 1.oC−1 and
ρ = 2300Kg.m- 3 (see Fig. 4). The solid line represents
the results provided by the proposed solutions while the
markers correspond to the solution computed using the
image source technique. The square and the round marks
indicate the real and imaginary part of the responses, re-
spectively. The results allow verifying that both solutions
are similar.

4 Green’s functions in a solid slab formation

The Green’s functions for a solid slab formation with
thicknessh can be expressed as the sum of the source
terms equal to those in the full-space and the surface
terms needed to satisfy the boundary conditions at the
two slab surfaces (null heat fluxes or null temperatures).
Both interfaces (top and bottom) generate surface terms
which can be expressed in a form similar to that of the
source term,

Solid medium (top surface)

T̃1(ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
Ea

νn
At

n

)
Ed

Solid medium (bottom surface)

T̃2(ω,x,y,kz) = E0

n=+∞

∑
n=−∞

(
Eb

νn
Ab

n

)
Ed (17)

where,Eb = e−iνn|y−h|. At
n andAb

n are as yet unknown
coefficients to be defined by imposing the appropriate
boundary conditions, so that the field produced simul-
taneously by the source and the surface terms guarantees
null heat fluxes or null temperatures aty = 0 and aty = h.

The imposition of the two stated boundary conditions for
each value ofn leads to a system of two equations in



50 Copyright c© 2004 Tech Science Press cmes, vol.6, no.1, pp.43-58, 2004

the two unknown constants. Three different cases are de-
fined in terms of null heat fluxes or null temperatures pre-
scribed for the top and bottom surfaces.

Case I - null heat fluxes at the top and bottom surfaces.[
1 −e−iνnh

e−iνnh −1

][
At

n

Ab
n

]
=

[
e−iνn y0

−e−iνn|h−y0|

]
(18)

Case II - null temperatures at the top surface and null
heat fluxes at the bottom surface.[

1 e−iνnh

e−iνnh −1

][
At

n
Ab

n

]
=

[
−e−iνn y0

−e−iνn|h−y0|

]
(19)

Case III - null temperatures at the top and bottom sur-
faces.[

1 −e−iνnh

e−iνnh 1

][
At

n
Ab

n

]
=

[
−e−iνn y0

−e−iνn|h−y0|

]
(20)

Once this system of equations has been solved, the am-
plitude of the surface terms has been fully defined, and
the heat propagation in the slab can thus be found. The
final expressions for the Green’s functions are then de-
rived from the sum of the source terms and the surface
terms originated in the two free surfaces, which leads to
the following expressions,

T̃ (ω,x,y,kz)

=
−i
4k

H0(Kt r0)+E0

n=+∞

∑
n=−∞

(
Ea

νn
At

n +
Eb

νn
Ab

n

)
Ed (21)

4.1 Validation of the Solution

The expressions described above were used to calculate
the heat field generated by a spatially harmonic varying
line load in thez direction, in a slab 0.5 m thick. The
results provided were then compared with those arrived
at by using the image model function that can be derived
for the present case.

This function can be achieved by superposing the heat
field generated by virtual sources with positive or neg-
ative polarity, and located so that the desired boundary
conditions are ensured.

Case I - null heat fluxes at the top and bottom surfaces.

T̃ (ω,x,y,kz)

=
−i
4k

[H0(Ktr0)]+
−i
4k

{
NS

∑
m=0

[
4

∑
j=1

H0(Ktr j)

]}
(22)

Case II - null temperatures at the top surface and null
heat fluxes at the bottom surface.

T̃ (ω,x,y,kz) =
−i
4k

[H0(Ktr0)]

+
−i
4k

{
NS

∑
m=0

(−1)m [−H0(Ktr1)+H0(Ktr2)

−H0(Ktr3)−H0(Ktr4)]

}
(23)

Case III - null temperatures at the top and bottom sur-
faces.

T̃ (ω,x,y,kz) =
−i
4k

[H0(Ktr0)]

+
−i
4k

{
NS

∑
m=0

[−H0(Ktr1)−H0(Ktr2)

+H0(Ktr3)+H0(Ktr4)]

}
(24)

in which

r1 =
√

(x−x0)2+(y+y0 +2hm)2

r2 =
√

(x−x0)2+(y−2h+y0 −2hm)2

r3 =
√

(x−x0)2+(y+2h−y0 +2hm)2

r4 =
√

(x−x0)2+(y−2h−y0 −2hm)2

The number of sources to be used (NS) is determined so
that all the signals needed to define the signal within the
time interval fixed by the frequency increment are taken
into account.

For the three scenarios above, the medium re-
mains constant, so thatk = 1.4W.m - 1.oC−1, c =
880.0J.Kg- 1.oC−1 andρ = 2300.0Kg.m- 3. The slab
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Solid slab medium
0.5 m 

Y

X

Source

Receiver

Figure 6 : Geometry of the problem for a solid slab for-
mation

is heated by a harmonic point heat source applied at the
point (x = 0.0 m,y = 0.2 m) (see Fig. 6).

Calculations are performed in the frequency range
[0,128x10−7Hz] with a frequency increment of∆ω =
10−7Hz. The imaginary part of the frequency has been
set toη = 0.7∆ω. To validate the results, the response is
computed at a single value ofkz(kz = 0.4 rad / m). The
real and imaginary parts of the responses at the receiver
(x = 0.1m,y = 0.1 m) are shown in Fig. 7. The solid
lines represent the discrete analytical responses, while
the marked points correspond to the image model tech-
nique. The square and the round marks indicate the real
and imaginary part of the responses, respectively. As
can be seen, these two solutions are in very close agree-
ment, and equally good results were obtained from tests
in which heat sources and receivers were situated at dif-
ferent points.

5 Green’s functions in a layered formation

Next, the Green’s functions for a solid layer over a solid
half-space, a solid layer bounded by two semi infinite
solid media and a multi-solid layer are established us-
ing the required boundary conditions at the solid-solid
interfaces and at the free surface.

5.1 Solid layer over a solid half-space

The solution is again expressed as the sum of the source
terms (the incident field) equal to those in the full-space
and the surface terms needed to satisfy the continuity of
temperature and normal fluxes at the solid-solid interface
and null heat fluxes or null temperatures at the top surface
(see Fig. 8). All solid interfaces (1,2) generate surface
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Figure 7 : Real and imaginary parts of the responses
for a solid slab formation. Heat source applied at the
point (x = 0.0m,y = 0.2m): a) Case I (null heat fluxes
at the top and bottom surfaces). b) Case II (null tem-
peratures at the top surface and null heat fluxes at the
bottom surface). c) Case III (null temperatures at the top
and bottom surfaces). Heat source applied at the point
(x = 0.0m,y = 0.2m)
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terms, which can be expressed in a form similar to that
of the source term.

Solid layer (interface 1)

T̃11(ω,x,y,kz) = E01

n=+∞

∑
n=−∞

(
E11

νn1
At

n1

)
Ed (25)

Solid layer (interface 2)

T̃12(ω,x,y,kz) = E01

n=+∞

∑
n=−∞

(
E12

νn1
Ab

n1

)
Ed (26)

Half space (interface 2)

T̃21(ω,x,y,kz) = E02

n=+∞

∑
n=−∞

(
E21

νn2
At

n2

)
Ed (27)

whereE0 j = −i
2k jLx

, E11 = e−iνn1y, E12= e−iνn1|y−h1|, E21=

e−iνn2|y−h1|, νn j =
√

−iω
Kj

−k2
z −k2

xn with Im(νn j)≤ 0 and
h1 is the layer thickness (j = 1 stands for the solid layer
(medium 1) while j = 2 indicates the solid half-space
(medium 2)). Meanwhile,Kj = k j

ρ j c j
is the thermal diffu-

sivity in the solid mediumj (k j, ρ j andc j are the thermal
conductivity, the density and the specific heat of the ma-
terial in the solid mediumj, respectively).

The coefficientsAt
n1, Ab

n1 and At
n2 are as yet unknown

coefficients to be obtained from the appropriate bound-
ary conditions, so that the field produced simultaneously
by the source and surface terms leads to the continuity
of heat fluxes and temperatures aty = h1, and null heat
fluxes (Case I) or null temperatures (Case II) aty = 0.

X

Medium 1 

Medium 2 

h1=5.0 m 

Y

Source

Receiver 1

Receiver 2

Interface 1 

Interface 2 

Figure 8 : Geometry of the problem for a solid layer over
a solid half-space

Imposing the three stated boundary conditions for each
value ofn, a system of three equations in the three un-
known coefficients is defined.

Case I - null heat fluxes at y = 0.


 1 −e−iνn1 h1 0

e−iνn1 h1 −1 −1

e−iνn1 h1 1 − k1νn1
k2νn2




 At

n1
Ab

n1
At

n2


=


 b1

b2

b3



(28)

where

b1 = e−iνn1 y0

b2 = −e−iνn1|h1−y0|

b3 = −e−iνn1|h1−y0|

when the source is in the solid layer (y0 < h1),
while

b1 = 0

b2 = −e−iνn2|h1−y0|

b3 = k1νn1
k2νn2

e−iνn2|h1−y0|

when the source is in the half-space (y0 > h1).

Case II - null temperatures at y = 0.


 1 e−iνn1 h1 0

e−iνn1 h1 −1 −1

e−iνn1 h1 1 − k1νn1
k2νn2




 At

n1
Ab

n1
At

n2


=


 b1

b2

b3



(29)

where

b1 = −e−iνn1 y0

b2 = −e−iνn1|h1−y0|

b3 = −e−iνn1|h1−y0|when the source is in the solid layer
(y0 < h1),
while

b1 = 0

b2 = −e−iνn2|h1−y0|

b3 = k1νn1
k2νn2

e−iνn2|h1−y0|when the source is in the half-space
(y0 > h1).
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The heat within the two solid media is then computed
by adding the contributions of the source terms to those
associated with the surface terms generated at the various
interfaces.

y0 < h1

T̃ (ω,x,y,kz) =
−i
4k1

H0 (Kt1 r0)+

E01

n=+∞

∑
n=−∞

(
E11

νn1
At

n1+
E12

νn1
Ab

n1

)
Ed if y < h1

T̃ (ω,x,y,kz) = E02

n=+∞

∑
n=−∞

(
E21

νn2
At

n2

)
Ed if y > h1 (30)

y0 > h1

T̃ (ω,x,y,kz) = E01

n=+∞

∑
n=−∞

(
E11

νn1
At

n1 +
E12

νn1
Ab

n1

)
Ed

if y < h1

T̃ (ω,x,y,kz) =
−i
4k2

H0 (Kt2 r0)+

E02

n=+∞

∑
n=−∞

(
E21

νn2
At

n2

)
Ed if y > h1 (31)

with Kt j =
√

−iω
Kj

− (kz)
2 ( j = 1, 2).

5.2 Solid layer bounded by two semi-infinite solid me-
dia

In this case, the solution needs additionally to account for
the surface heat waves generated in the solid interface
1 which propagate through the top semi-infinite space
(medium 0) (see Fig. 9).

T̃02(ω,x,y,kz) = E00

n=+∞

∑
n=−∞

(
E01

νn0
Ab

n0

)
Ed (32)

whereE0 j = −i
2k jLx

andE00 = e−iνn0y.

The surface heat waves, generated in the solid interfaces
1 and 2 and propagating in the solid layer and in bottom
semi-infinite space, are expressed as in equations (25-
27).

The coefficientsAb
n0, At

n1, Ab
n1 andAt

n2 are computed by
imposing the continuity of heat fluxes and temperatures
at y = h1 andy = 0. This leads to the following system

X

Medium 0 

Medium 1 

Medium 2 

h1=5.0 m 

Y

Source

Receiver 1

Receiver 2

Interface 1 

Interface 2 

Figure 9 : Geometry of the problem for a solid layer
bounded by two semi-infinite solid media

of four equations when the heat source is placed within
the solid layer.


−1 −1 e−iνn1h1 0
1

k0νn0
− 1

k1νn1
− eiνn1h1

k1νn1
0

0 e−iνn1h1 −1 −1

0 1
k1νn1

e−iνn1h1 1
k1νn1

1
k2νn2






Ab
n0

At
n1

Ab
n1

At
n2




=




−e−iνn1y0

1
k1νn1

e−iνn1y0

−e−iνn1|h1−y0|

− 1
k1νn1

e−iνn1|h1−y0|


 (33)

The temperature for the three solid media are then com-
puted by adding the contribution of the source terms to
those associated with the surface terms originated at the
various interfaces. This procedure produces the follow-
ing expressions for the temperatures in the three solid
media.

T̃ (ω,x,y,kz) = E00

n=+∞

∑
n=−∞

(
E01

νn0
Ab

n0

)
Ed if y < 0

T̃ (ω,x,y,kz) =
−i
4k1

H0(Kt1 r0)

+E01

n=+∞

∑
n=−∞

(
E11

νn1
At

n1+
E12

νn1
Ab

n1

)
Ed if 0 < y < h1

T̃ (ω,x,y,kz) = E02

n=+∞

∑
n=−∞

(
E21

νn2
At

n2

)
Ed if y > h1 (34)
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


−1 −1 e−iνn1h1 ... 0 0 0
1

k0νn0
− 1

k1νn1
− ei

k1νn1
... 0 0 0

0 e−iνn1h1 −1 ... 0 0 0

0 e−iνn1h1

k1νn1

1
k1νn1

... 0 0 0
... ... ... ... ... ... ...

0 0 0 ... −1 e−iνnmhm 0

0 0 0 ... − 1
k1νnm

− eiνnmhm

kmνnm
0

0 0 0 ... e−iνnmhm1 −1 −1

0 0 0 ... e−iνnmhm

kmνnm

1
kmνnm

1
km+1νn(m+1)







Ab
n0

At
n1

Ab
n1

...
At

nm
Ab

nm
At

n(m+1)




=




−e−iνn1y0

e−iνn1y0

k1νn1

−e−iνn1|h1−y0|

− e−iνn1|h1−y0|
k1νn1

...

0
0
0
0




(37)

The derivation presented assumed that the spatially si-
nusoidal harmonic heat source is placed within the solid
layer. However, the equations can be easily manipulated
to accommodate another position of the source.

5.3 Multi-solid layer

Consider a medium built from a set ofm solid flat lay-
ers of infinite extent bounded by flat, semi-infinite, solid
media (top semi-infinite medium (medium 0) and bottom
semi-infinite medium (mediumm+1)). The thermal ma-
terial properties and thicknesses of the different layers
may differ. This system is excited by a spatially sinu-
soidal heat source placed in the first layer (medium 1).
The solution is obtained by adapting and extending the
models described above. As before, the solution is ob-
tained by adding the direct contribution of the heat source
and the surface heat terms generated at all interfaces.

For the solid layerj, the heat surface terms on the upper
and lower interfaces can be expressed as

T̃j1(ω,x,y,kz) = E0 j

n=+∞

∑
n=−∞

(
E j1

νn j
At

n j

)
Ed

T̃j2(ω,x,y,kz) = E0 j

n=+∞

∑
n=−∞

(
E j2

νn j
Ab

n j

)
Ed (35)

whereE j1 = e
−iνn j

∣∣∣∣y− j−1
∑

l=1
hl

∣∣∣∣, Ej2 = e
−iνn j

∣∣∣∣y− j
∑

l=1
hl

∣∣∣∣ andhl is
the thickness of the layerl. Meanwhile, the heat surface
terms generated at interfaces 1 andm +1, governing the
heat that propagates through the top and bottom semi-

infinite media, are respectively expressed by

T̃02(ω,x,y,kz) = E00

n=+∞

∑
n=−∞

(
E01

νn0
Ab

n0

)
Ed

T̃(m+1)2(ω,x,y,kz)

= E0(m+1)

n=+∞

∑
n=−∞

(
E(m+1)2

νn(m+1)
At

n(m+1)

)
Ed (36)

The final system matrix assembled accounts for the cou-
pling between the different layers, so that the heat pro-
duced simultaneously by the source and surface terms
leads to the continuity of fluxes and temperatures along
them +1 solid interfaces. For each value ofn, a system
of 2(m + 1) equations in the 2(m + 1) unknown coeffi-
cients is defined (Fa = b). (See Equation 37)

Once the amplitude of the surface terms in each solid
interface has been obtained, the Green’s functions for a
solid formation are given by the sum of the source terms
and these surface terms, yielding the following expres-
sions,

top semi-infinite medium (medium 0)

T̃ (ω,x,y,kz) = E00

n=+∞

∑
n=−∞

(
E01

νn0
Ab

n0

)
Ed if y < 0

solid layer 1 (source position)

T̃ (ω,x,y,kz) =
−i
4k1

H0(Kt1 r0)+

E01

n=+∞

∑
n=−∞

(
E11

νn1
At

n1+
E12

νn1
Ab

n1

)
Ed if 0 < y < h1
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Figure 10 : Solid layer over a solid half-space: a) Case I – null heat fluxes aty = 0, responses at receivers 1 and 2.
b) Case II – null temperatures aty = 0, responses at receivers 1 and 2

solid layer j ( j �= 1)

T̃ (ω,x,y,kz) = E0 j

n=+∞

∑
n=−∞

(
E j1

νn j
At

n j +
E j2

νn j
Ab

n j

)
Ed if

j−1

∑
l=1

hl < y <
j

∑
l=1

hl

bottom semi-infinite medium (medium m+1)

T̃(m+1)2(ω,x,y,kz) = E0(m+1)

n=+∞

∑
n=−∞

(
E(m+1)2

νn(m+1)
At

n(m+1)

)
Ed

(38)

The solution for a heat source located in a different solid
layer can be obtained, maintaining the same matrix sys-
tem (F) and changing only the independent terms defined
by the direct incident field (b). Thus, the derivation of the
total system of equations is quite straightforward, and for
this reason is not presented here.

5.4 Validation of the Solution

The results provided by the analytical expressions pre-
sented here were compared with those arrived at by ap-
plying the BEM model, which requires the discretization

of all solid interfaces using the Green’s functions for a
full space. The BEM code has been validated for the case
of circular ring inclusions, for which analytical solutions
have already been derived (not included here).

The unlimited discretization of the solid interfaces was
avoided by using complex frequencies with a small imag-
inary part of the formωc = ω− iη (with η = 0.7∆ω)
[Bouchon and Aki (1977), Phinney (1965)]. Boundary
elements make a significant contribution to the response
up to a definite distance and in the presence of a certain
value of damping, but are otherwise unnecessary. These
elements are distributed along the surface up to a spe-
cific spatial distance. We have computed this distance as

Ldist = 2
√

k j
/
(ρ j c j∆ f ). The thermal material proper-

ties used were those from the solid medium that leads to
the largest spatial distance.

Next, the results are found for the three scenarios. First,
a solid flat layer, 5.0m thick, is assumed to be bounded
by one solid half-space. Null heat fluxes or null tem-
peratures are prescribed at the top surface (see Fig. 10).
Then, the solid flat layer is bounded by two semi-infinite
solid media (see Fig. 11). The thermal material proper-
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ties used are listed in the Tab. 1.

Table 1 : Thermal material properties
 Solid layer 

(concrete) 

Lower solid 

medium 

(steel)

Top solid 

medium 

(steel)

Thermal 

conductivity

( 1-1.W.m Co )

4.11k 9.632k 9.630k

Density

( -3Kg.m )
23001 78322 78320

Specific heat 

( 1-1.J.Kg Co )
0.8801c 0.4342c 0.4340c
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Figure 11 : Solid layer bounded by two semi-infinite
solid media: a) Receiver 1. b) Receiver 2

The three solid structures are heated by a harmonic point

source applied in the solid layer medium at point (x =
0.0m,y = 1.2 m). The computations are performed in
the frequency range (0,128×10−7Hz), with a frequency
increment of∆ω = 1×10−7 Hz. The imaginary part of
the frequency has been set toη = 0.7∆ω. To validate
the results, the response is computed at a single value of
kz(kz = 0.4rad / m). The real and imaginary parts of the
responses at receiver 1 (x = 0.1m,y = 0.75 m) and re-
ceiver 2 (x = 0.1m,y = 5.75 m) are shown in Fig. 10 and
11. The analytical responses are represented by the solid
lines, while the marked points correspond to the BEM
solution. The square and the round marks indicate the
real and imaginary parts of the responses, respectively.

As can be seen, these two solutions are in very close
agreement, and equally good results were obtained from
tests in which sources and receivers were situated at dif-
ferent points.

6 Summary of Green’s Functions

The Tables 2 – 5 summarizes the Green’s functions pre-
sented throughout the paper.

Table 2 : Green’s Functions in an Unbounded Medium.
Model Equations 

Three-dimensional (3) 

Two-dimenisonal ( 0zk ) (5) 

One-dimensioanl ( 0zk , 0xnk ) (8) 

Table 3 : Green’s Functions in a Half-space

Boundary Conditions Equations 

Null normal flux at 0y (15) 

Null temperature at 0y , (16) 

7 Conclusions

The analytical solutions described here for calculating
the heat propagation in unbounded, half-space, slab and
layered media, when subjected to a spatially sinusoidal
harmonic heat line source, appeared to be eminently suit-
able for performing transient heat conduction analyses.
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Table 4 : Green’s Functions in a Slab
Boundary Conditions Equations 

Null heat fluxes at the top and bottom 
surfaces

(18, 21), (22) 

Null temperatures at the top surface and 

null heat fluxes at the bottom surface
(19, 21) , (23) 

Null temperatures at the top and bottom 

surfaces 
(20, 21) , (24) 

Table 5 : Green’s Functions in a Layered formation

Boundary Conditions Equations 

Solid layer over a solid half-space - 

null heat fluxes at 0y .
(28, 30, 31) 

Solid layer over a solid half-space - 

null temperatures at 0y .
(29, 30, 31) 

Solid layer bounded by two semi-

infinite solid media. 
(33, 34) 

Multi-solid layer. (39, 40) 

In addition to the frequency responses, synthetic signa-
tures were computed by means of inverse Fourier trans-
formations, using complex frequencies in order to avoid
the aliasing phenomenon.

The solutions presented were found to be in very close
agreement with other analytical solutions in the case
of unbounded, half-space and slab media and with the
Boundary Elements Solution in the case of layered me-
dia, which requires the discretization of the solid inter-
faces with a large number of boundary elements.

The analytical solutions presented in this paper are in-
trinsically interesting. If the solutions are applied in con-
junction with numerical methods, such as the BEM, they
may prove to be very useful in many engineering appli-
cations, such as the calculation of the thermal insulation
provided by solid walls and slabs.
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