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Initial Conditions Contribution in Frequency-Domain BEM Analysis

W. J. Mansur1, A. I. Abreu 1 and J. A. M. Carrer1

Abstract: This work is concerned with the compu-
tation of the contribution of initial conditions in two-
dimensional (2D) frequency-domain analysis of transient
scalar wave propagation problems with the correspond-
ing Boundary Element Method (BEM) formulation. The
paper describes how pseudo-forces, represented by gen-
eralized functions, can replace the initial conditions, re-
lated to the potential and its time derivative. The gener-
ation of such pseudo-forces is the subject of a detailed
discussion. The formulation presented here carries out
Discrete Fourier Transform (Direct: DFT, and Inverse:
IDFT) via FFT (Fast Fourier Transform) algorithms. At
the end of the paper four examples are presented in order
to show the potentialities and accuracy of the approach.

keyword: Boundary elements, Helmholtz equation,
frequency domain, scalar wave equation, Fourier trans-
form, initial conditions.

1 Introduction

Several BEM formulations have been developed so far
in order to solve problems governed by the scalar wave
equation. For general purposes, time-domain (TD) and
transformed-domain formulations can be employed to
solve scalar wave propagation problems. Time-domain
BEM formulations (TD-BEM), e.g., Mansur (1983),
Dominguez (1993), Antes and Von Estorff (1987),
Mansur, Carrer and Siqueira (1998), provide good repre-
sentation of causality and time response jumps and lead
to accurate results. Besides, the fulfillment of the radi-
ation condition makes them suitable for infinite domain
analysis. The computational cost, however, is high when
late time results are required due to the convolution per-
formed from the initial time to the current time. To avoid
such a high computational cost without a significant loss
of accuracy, truncation techniques, such as that presented
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by Mansur and DeLima-Silva (1992) can be employed.

Transformed-domain BEM formulations also have been
the subject of intense research work and are mainly
related either to the frequency-domain approach, e.g.,
Dominguez (1993), Godinho, Tadeu and Branco (2003),
Gaul and Wenzel (2002), or to the Laplace-domain
approach, e.g., Cruse and Rizzo (1968), Manolis and
Beskos (1981), etc. When employing these formulations,
the problem is initially solved in the transformed-domain
for a suitable number of discrete values of the transform
parameter and, when required, the solution in the time-
domain can be obtained by means of a suitable inverse
transformation procedure, e.g., Dubner and Abate (1983)
and Durbin (1974) for Laplace transform, and the well
known DFT (or FFT) algorithms for Fourier transform.
It is worth mentioning that some very attractive meshless
approaches to do frequency-domain modeling with BEM
have been subject of intensive research in recent years,
e.g., the MLPG (LBIE) method presented by Sellountos
and Polyzos (2003).

A very promising approach which has been more and
more employed is that based on the Operational Quadra-
ture Method (Lubich (1988), Gaul and Schanz (1999))
recently applied to crack analysis by Zhang and Savaidis
(2003).

Besides the aforementioned formulations, it is impor-
tant to mention alternative TD-BEM approaches that em-
ploy “static” fundamental solutions related to the prob-
lem analysed: in the case of time-domain analysis, two
BEM formulations that employ the static fundamental
solution have been employed successfully so far. Ac-
cording to the treatment given to the domain integrals
concerning inertial terms one has: the so-called D-BEM
(D meaning domain), that maintains the domain inte-
grals, e.g., Carrer and Telles (1992) and Hatzigeorgiou
and Beskos (2001), and the DR-BEM (DR meaning dual-
reciprocity). The latter transforms domain integrals into
boundary integrals, by means of suitable interpolation
functions as described by Nardini and Brebbia (1985)
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and Partridge, Brebbia and Wrobel (1992). The common
feature between them is that it becomes possible to use
step-by-step time-marching procedures, similar to those
employed in the Finite Element formulation.

This work presents a BEM frequency-domain formula-
tion that takes into account initial conditions contribution
in the solution of problems governed by the scalar wave
equation. Unlike Laplace-domain formulations, in which
initial conditions appear explicitly in the transformed-
domain equilibrium equations, authors who deal with
frequency-domain formulations do not consider non-null
initial conditions, e.g., Clough and Penzien (1993). In
this article, this difficulty was overcome in a very ele-
gant and simple way; basically, the methodology used
consists of replacing the initial conditions (related to the
potential and its time derivative) by pseudo-forces, repre-
sented by generalized functions. In the appropriate sec-
tion of this work, a detailed discussion concerning the
various aspects of this methodology denoted here ICPF
(Initial Conditions by Pseudo-Forces) is carried out.

Linear boundary elements and linear triangular cells have
been employed in the BEM formulation. The reader is re-
ferred to Mansur (1983) and Carrer and Mansur (1996)
for general aspects concerning boundary and domain in-
tegration.

At the end of the paper, four examples are presented to
validate the formulation and verify its accuracy and ro-
bustness.

2 Boundary Element for the Helmholtz equation

The starting BEM equation corresponding to Helmholtz
equation in Ω ∪ Γ, for 2D problems, can be written as
Dominguez (1993):

c(ξ)U(ξ)

=
∫

Γ
U(X)p∗(X ,ξ)dΓ−

∫
Γ

P(X)u∗(X ,ξ)dΓ

+
∫

Ω
B(X)u∗(X ,ξ)dΩ (1)

where B(X) is a Ω domain body force, X = X(x,y) indi-
cates spatial dependency and the Γ boundary is assumed
to be constituted by Γ = Γ u ∪ Γp, Neumann and Dirich-
let boundary conditions being respectively prescribed on
Γu and Γp. In eq. (1), one has c( ξ) = 1 when ξ ∈ Ω and
c(ξ) = α / 2πwhen ξ∈ Γ (α is the internal angle formed
by tangents to Γ at ξ). In the above expression, u∗(X ,ξ)

is the fundamental solution and p ∗(X ,ξ) = ∂u∗(X ,ξ)/∂n.
Their expressions are given by (Morse and Feshbach
(1953):

u∗(r,γ) =
−i
4

H(1)
0 (γr)

p∗(r,γ) =
iγ
4

H(1)
1 (γr)

∂r
∂n

(2)

where γ is the wave number computed according to:
γ = ω / c, ω being the circular frequency and c the wave
propagation velocity, r = |X−ξ| is the Euclidian distance

between field X and source ξ points, H (1)
0 and H(1)

1 are the
Hankel functions of first type and zero and first order, re-
spectively (note that the wave number was not shown as
argument in expression (1)).

The application of the discretized version of eq. (1) to
all boundary nodes produces a system of algebraic equa-
tions, represented as follows:

H U = G P+B (3)

Taking into account the boundary conditions, the system
of equations (3) can be written according to:

A X = Y+B (4)

After solving the system of equations (4), all the bound-
ary variables (potential and flux) are known and the po-
tential at internal points ξ (ξ∈ Ω) can be computed from
eq. (1) if one takes c(ξ) = 1.

Therefore eq. (4) is a discrete integral form which pro-
duces approximate solutions of Helmholtz equation sub-
jected to boundary conditions.

3 Frequency-domain analysis

Frequency-domain analysis using standard Discrete
Fourier Transform (DFT) or Fast Fourier Transform
(FFT) algorithms (Clough and Penzien (1993), Op-
penheim and Schafer (1989), Paz (1997) and Brighan
(1974)) can only be carried out if damping (viscous, his-
teretical, geometrical, etc.) exists, due to the singularities
in the frequency spectrum at the natural frequencies, and
also because undamped systems responses do not follow
the theoretical decay condition as t → ∞, which renders
Fourier transform possible. It is important to notice that
extending the period, as required when DFT/FFT algo-
rithms are employed, can be unnecessary when the pro-
cedure described by Veletsos and Ventura (1984,1985)
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can be applied. According to Morse and Feshbach (1993)
(see also Chin (1994) and Graff (1975)), in the presence
of damping, the wave equation can be written as:

c2∇ 2u(X , t)−cv
∂u(X , t)

∂t
− ∂2u(X , t)

∂t2

= b(X , t) (5)

where c is the wave propagation velocity, and cv is a
coefficient related to coefficient of viscous damping bv

(cv = bv/ρ). A particular solution to equation (5) can be
obtained as long as boundary and initial conditions given
respectively by equations (6) and (7) are known (more
general boundary conditions are also possible but have
not been considered here).

u(X , t) = u(X , t)(X ∈ Γu);
∂u(X , t)

∂n
= p(X , t)(X ∈ Γ p) (6)

u(X ,0) = uo(X);

v(X ,0) =
∂u(X , t)

∂t
|t=0 = vo(X) (7)

Applying the Fourier transform to eq. (5), a generalized
Helmholtz equation is obtained:

∇ 2U(X)+γ2
c U(X) = B(X) (8)

where the wavenumber γc is a complex variable, given
by:

γ=
(

ω2

c2 − iω
cy

c2

)1/2

(9)

The Fourier transforms of u(X , t) and b(X , t) are
represented, respectively, by the complex quantities
U(X)=U(X,ω) and B(X)=B(X,ω). After applying the
Fourier transform to the boundary conditions given by
eq. (6), the same steps presented in the previous section
must be followed in order to obtain equation (4), which
now will correspond to a frequency of the Fourier spec-
trum: one must note that the fundamental solution, in this
case, is a function of the complex wavenumber γc.

3.1 Numerical procedure

The numerical model employed considers the Γ bound-
ary discretized by linear elements whereas the part of

the Ω domain, where non-homogeneous initial condi-
tions appear, say Ω0, is discretized by linear triangular
cells.

Once the spectrum of b(X , t), B(X,ωnt) and that of the
prescribed boundary conditions have been obtained, NT
harmonic problems governed by equation (8) have to be
solved (nt = 1, . . . NT; where NT is the total number of
frequencies). The responses at boundary nodes and in-
ternal points can be stored in matrix form (named, fre-
quency depend matrix M(ω) for instance) and the fi-
nal time-dependent responses (named, ub for instance)
are computed by applying the Inverse Discrete Fourier
Transform (IDFT) to M(ω).

When one employs DFT (or FFT) algorithms it is nec-
essary to make a good guess of the extended period
“length”. Good results have been reported in the litera-
ture, e.g., Mansur, Ferreira, Claret, Venâncio-Filho and
Carrer (2000), when the period extension is such that
the “amplitude” decays, at the end of the period, to 1%
of its initial value. As the highest contribution for the
displacement is due fundamentally to the first vibration
mode, and considering an exponential time decay, one
can write:

eζω1Tp =
1

100
⇒ Tp =

ln(100)
ζω1

(10)

In the above expression ζ is the damping ratio related
to the first vibration mode, ω1 is the fundamental eigen-
frequency and Tp is the extended period. It is im-
portant to recall that the maximum frequency spectrum
frequency (Nyquist frequency) is ωmax=π/∆t, thus if
the problem response contains relevant contributions for
ωnt > ωmax, the time response will not be accurate due to
aliasing (Oppenheim and Schafer (1989), Paz (1997) and
Brighan (1974)). It is important to mention that although
expression (10) tends to overestimate the extended pe-
riod, it is still a good initial guess, an optimum choice,
though, may depend strongly on the experience one has
with frequency-domain approaches.

4 Initial Conditions Contribution

Due to the linearity of the problem, the initial conditions
and other contributions can be studied separately and the
corresponding solutions can be added together to obtain
to the final response. Although the methodology is quite
general, its basic steps will be presented and discussed
for the 2D case.
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4.1 Initial displacement

The response corresponding to an initial displacement
field uo(X) is computed by adding to the initial displace-
ment field itself the response corresponding to a suddenly
applied load − fuo(X)H(t−0) (H(t−0) is the Heaviside
function). This load − fuo(X) is a reactive static domain
force obtained from eq. (1) when it is particularized to
the Poisson equation, i.e., when γ = 0 and the corre-
sponding Green’s function is employed rather than that
indicated by eq. (2). Replacing B(X) by fuo(X) in eq.
(1), one can write:

ΦΦΦ

[
fff b

uo

fff d
uo

]

=

([
HHH bb OOO

HHH d b III

][
uuub

o

uuud
o

]
−
[

GGGbb

GGGd b

][
pppb

o

])
(11)

or, in a compact notation:

Φfff uo = [HHHuuuo −GGGpppo] (12)

Note that fff uo is the static reactive force vector which re-
sults from a prescribed static field uo.

In expressions (11) and (12), ΦΦΦ is the matrix resulting
from the domain integration. As mentioned in the intro-
duction of this work, the domain integration is restricted
to the part of the domain with non-homogeneous initial
conditions. Additionally, matrices H and G are assem-
bled in a unified way to take into account the contribution
of the initial displacements in the computation of bound-
ary fff b

uo
and domain fff d

uo
unknowns. The distinction be-

tween the positions occupied by source and filed points
is done by the superscripts b and d: b means boundary
and d means domain. Matrices HHH bb and GGGbb are related
to the boundary integral equation; matrices HHH bd and GGGbd ,
on the other hand, are obtained when ξ∈ Ωo and the in-
tegration is carried out on the boundary (in others words,
they are the matrices related to the integral equation writ-
ten for internal points). The identity matrix I appears be-
cause for internal point one has (ξ).

In the assemblage of the matrices H and G shown in eq.
(12), as γ= 0, the corresponding expressions for u∗(X ,ξ)
and p∗(X ,ξ) are given by:

u∗(r) =
−1
2π

ln(r)

p∗(r) =
−1
2πr

∂r
∂nnn

(13)

It is important to notice that vectors u o and po in eq. (12)
are both known. When grad(uo(X)) is discontinuous, in
every point i where this discontinuity exists, additional
boundary (pppb

o )i and/or domain (pppd
o )i line force appears.

Thus, line forces contributions will have to be consid-
ered, through line integrals as shown in the examples of
section 5 (a discussion is presented in example 5.4). Line
forces distribution will appear when eq. (12) is solved
even when not a priori considered; however, a very fine
mesh is required in order to have a good approximation
to such a localized effect. The best representation can be
achieved if one is able to identify discontinuities of u o

space derivatives and thus compute equivalent forces ei-
ther analytically or numerically. In fact, eq. (12) need
not be employed at all to compute fff uo , it is sufficient
to compute the Laplacian of uo(c2∇ 2uo) as uo is known.
However, employing eq. (12) may lead to more accurate
results than those obtained taking second derivatives of
a given uo(X) function, when analytical expression for
uo(X) is not known.

Due to the periodicity implicit in the Fourier trans-
form approach, the time response produced by the force
fff uoH(t −0) can not be computed correctly, i.e., as DFT
algorithms consider periodic functions they do not rec-
ognize the jump that occur at the initial time when the
applied force is kept constant until the end of the analy-
sis. It is possible to overcome this drawback by assuming
the extended period equal to 2Tp, and by considering fff uo

constant within the time interval [0, Tp] and null within
the interval [Tp, 2Tp].

Once the dependence on time of fff uo is established as ex-
plained before, the Fourier transform of fff uo can be com-
puted and the response spectrum represented by XXX nt

uo
can

be obtained from the solution of the eq. (14) for all the
frequencies (FFF nt

uo
is the frequency spectral vector corre-

sponding to fff uo):

AAAXXX nt
uo

= −FFF nt
uo

(14)

The time-domain response, xxxuo , is computed by applying
the IDFT algorithm to the matrix M(ω) that stores all
the frequency responses at boundary nodes and internal
points.

The final response uid (id means initial displacement) due
to the initial displacement uo is calculated by adding to
the initial displacement the response due to − fff uo , i.e.:

uuuid = xxxuo + uuuo (15)
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4.2 Initial velocity

The response due to the initial velocity v o(X) can be
computed from the condition “impulse = momentum
change”, i.e., the effect of the initial velocity is the same
as that of the impulsive force ρvo(X)δ(t−0). The discrete
time series fvo(X)r of the external force that considers
this effect, in what DFT/FFT algorithms are concerned,
is defined as follows:

fvo(X)r =




ρvo(X)
∆ t

for r = 1 (t = 0)

0 for r > 1
(16)

where ρ is the mass density per unit area and ∆t is the
time sampling interval. The force fvo(X , t) should be ap-
plied at each nodal point of the domain mesh, and as a
domain force, computed according to eq. (8), it must be
divided by E = c2ρ (E is the Young modulus). Thus the
vector of nodal impulsive forces which will give the con-
tribution equivalent to the known initial velocity v o(X)
is:

( fff vo)r =
vvvo

c2 ∆ t
δlr (17)

where the vector vo in expression (17) is the spatial dis-
cretized form of vo(X) and δ1r is the Kroenecker delta.
The Fourier spectrum of fff vo , denoted by FFF nt

vo
is then

computed, and a procedure similar to that explained pre-
viously for the pseudo-force − fff uo is followed, i.e., the
boundary response spectrum due to the initial velocity is
computed from:

AAA XXX nt
vo

= FFF nt
vo

(18)

The responses in the frequency-domain at the internal
points are computed and the NT time dependent re-
sponses xxxvo are computed using the IDFT algorithm. Fi-
nally, the response for the initial displacement and veloc-
ity contributions is given by (ic means initial conditions):

uuuic = uuuid +xxxvo (19)

If the problem presents sources such as b(X , t), the cor-
responding final response u f inal in the time-domain is the
sum of all the contributions and is written as:

uuu f inal = uuu+uuub +uuuic (20)

where u and ub are respectively responses due to bound-
ary conditions and sources.

5 Examples

Four numerical applications are analysed next in order to
verify the accuracy of the numerical results provided by
the formulation presented in this work. The dimension-
less parameter β = c∆t/l, was used to estimate the time-
step length (l is the smallest boundary element length).

The FFT and the Inverse Fast Fourier Transform (IFFT)
algorithms Brighan (1974) were used with the aim of re-
ducing the computational effort. As defined in section
3.1, the response at boundary nodes and internal points
can be stored in a frequency depend matrix M(ω). As
M(ω) and M(-ω) are complex conjugate matrices M(ω)
is calculated only at NT/2 points (note that M(ω = 0)
and M(ω = ωNT /2) are real). The 2D responses were
compared with the corresponding one-dimensional re-
sponses, determined in the same manner using this new
methodology (Mansur, Abreu, Carrer and Ferro (2002)).

The following parameters were adopted for the one-
dimensional examples (sections 5.1, 5.3 and 5.4): length
L = 12, c = 1 and ζ = 0.016, 2Tp = 1842.3808 (Tp
was estimated by expression (10) taking ω1=πc/2L). The
one-dimensional numerical model analyses were car-
ried out with NT = 8192, which renders a time interval
∆t = 0.2249. The number of sampling points for the two-
dimensional numerical models of the one-dimensional
examples, indicated in the appropriate sections, is much
smaller than NT = 8192 mentioned above. This exces-
sively high NT value adopted aimed at leaving no doubt
about the one-dimensional numerical model results accu-
racy. In fact one-dimensional numerical models results
are so accurate that they were also used as analytical so-
lution.

5.1 One-dimensional rod under sinusoidal initial dis-
placement

The first example, shown in Fig. 1, consists of a one-
dimensional rod under initial displacement with sinu-
soidal space dependence, as follows:

u(X ,0) = uo(X) = A sin
(πx

a

)
(21)

where A is the amplitude (A = 1 in this case). Fig. 2
shows the boundary mesh used for the two-dimensional
analysis. The selected internal points at which the nu-
merical responses were computed are on the horizon-
tal line y = 0. The two-dimensional numerical model
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a

u = 0a/2

p = 0
u = 0

x

y

p = 0

uo(X) = A sen( x/a)

Figure 1 : One-dimensional rod under sinusoidal initial
displacement: geometry, boundary and initial conditions.

B

Figure 2 : One-dimensional rod under sinusoidal initial
displacement: 2D boundary and domain discretization.

employed twenty four linear elements, resulting in NN
= 28 boundary nodes, 64 linear cells for the entire do-
main discretization, NT = 2048, resulting in a time in-
terval ∆t = 0.8996, being the parameter β = 0.60. Eight
linear one-dimensional cells were employed in the one-
dimensional numerical analysis.

In Fig. 3 the responses due to the displacement sinusoidal
initial condition are compared against the 1D responses.

5.2 Square membrane under prescribed discontinu-
ous initial velocity

This example consists of a square membrane under pre-
scribed initial velocity as shown in Fig. 4, i.e.:

vo(X) = c ;

(
3a
8

≤ x ≤ 5a
8

,
3a
8

≤ y ≤ 5a
8

)
(22)

whose boundary is fixed.

Fig. 5 shows the boundary mesh used with 64 boundary
nodes and the internal point C selected. For this analysis

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

t=60 t

t=500 t

t=100 t

t=6 t

t=2 t

t= t

t=0

u

x

 1D

 2D

Figure 3 : Comparison of displacements for 1D and 2D
numerical models for the one-dimensional rod under si-
nusoidal initial displacement.

a
a/4

c

y

a/4

x

vo(X) = c

Figure 4 : Square membrane analysis: geometry and
boundary conditions.

8 linear triangular cells were employed.

In Fig. 6 the response at point C for ζ = 0.25, ∆t = 0.03
and NT = 4096 are compared with the dampingless an-
alytical response presented by Mansur (1983); here the
extended period is 2Tp = 123 and β = 0.48. Fig. 7 shows
similar responses at point C for ζ = 0.025, ∆t = 0.025
and NT = 8192, the extended period is 2Tp = 205 and
β = 0.4.

5.3 One-dimensional rod under initial conditions pre-
scribed over the entire domain

This example consists of a one-dimensional rod fixed at
x = a, under a Heaviside-type forcing function applied
at x = 0, at t = 0 and kept constant from this time
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C

Figure 5 : Square membrane analysis: boundary and cell
discretization and internal point C.

0.00 0.50 1.00 1.50 2.00 2.50

-0.05

0.00

0.05

0.10

 Analytical

 BEM

u
/a

ct/a

Figure 6 : Displacement time history for the membrane
under prescribed initial velocity for ζ = 0.25.

onwards, i.e., p(t) = P/E H(t −0) as shown in Fig. 8.
Initial displacements and velocities at t = 0, shown in

0.00 0.50 1.00 1.50 2.00 2.50

-0.05

0.00

0.05

0.10

 Analytical

 BEM

u
/a

ct/a

Figure 7 : Displacement time history for the membrane
under prescribed initial velocity for ζ = 0.025.

a

a/2 p

p = 0

p(t) = P/E H(t - 0)

y

p = 0

u = 0

x

Figure 8 : One-dimensional rod under initial conditions
prescribed over the entire domain: geometry and bound-
ary conditions.

Fig. 9 and 10 respectively, are given by:

uo(X) =
P
E

(a−x);

vo(X) =
Pc
E

(
0 ≤ x ≤ a ,−a

4
≤ y ≤ a

4

)
(23)

The mesh is the same already depicted in Fig. 2.

Fig. 11 depicts two curves which represent the time his-
tories at point B represented in Fig. 2 due to the initial
displacement and due to the initial velocity; whereas in
Fig. 12 results considering all the contributions together
are plotted. Fig. 12 also displays displacement time his-
tory due to the boundary load only (u o = vo = 0) which
if shifted to the left by t = a/c coincides with the re-
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p = 0

a

uo(X) = P/E (a - x)

p = 0

p = 0

xu = 0

y

Figure 9 : One-dimensional rod under initial conditions
prescribed over the entire domain: initial displacement.

a

y

p = 0

vo(X) = (P/E)c

p = 0

p = 0

u = 0
x

Figure 10 : One-dimensional rod under initial conditions
prescribed over the entire domain: initial velocity.
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1D BEM       2D BEM

 Uo  Uo

 Vo  Vo

E
u
/P

a

ct/a

Figure 11 : One-dimensional rod under initial conditions
prescribed over the entire domain: displacements for 1D
and 2D numerical models for initial displacement and
initial velocity plotted separately.
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 P(t)

 P(t)+Uo+Vo

2D BEM

 P(t)

 P(t)+Uo+Vo

E
u
/P

a

ct/a

Figure 12 : Displacements at point D for the one-
dimensional rod under initial conditions prescribed over
the entire domain: effects of boundary load p(t), ini-
tial displacement uo and initial velocity vo considered to-
gether. Also plotted the time-history due to p(t) only.

sponse obtained considering initial conditions given by
expression (23). In the present example all 2D analyses
were carried out with NT = 2048 and 2Tp = 1842.0681,
the time interval is ∆t = 0.8994 and β = 0.60.

It is important to notice that in the present example, xxxuo

shown in expression (15) is due to two boundary loads
(line loads) applied at x = 0 (boundary flux) and x = a.

5.4 One-dimensional rod under initial conditions pre-
scribed over a subdomain

This example consists of a one-dimensional rod under a
Heaviside-type forcing function applied in a similar way
as that of the previous example, (see Fig. 8) subjected
to initial displacements and velocities, shown in Fig. 13
and Fig. 14, respectively, given by:

uo(X) =
P
E

(
a
4
−x);

vo(X) =
Pc
E

(
0 ≤ x ≤ a

4
,−a

4
≤ y ≤ a

4

)
(24)

Fig. 15 represents the boundary element mesh and the
point D selected: in this analysis 48 boundary elements
and 64 linear triangular cells were used. An important
aspect concerning this example must be stated now: line
forces appear where grad(uo(X)) is discontinuous. In
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a

p = 0

uo(X) = P/E (a/4 - x)

p = 0

p = 0

a/4

y

u = 0

x

Figure 13 : One-dimensional rod under initial conditions
prescribed over a subdomain: initial displacement.

x
p = 0

p = 0
a

a/4

u = 0

y

p = 0

vo(X) = (P/E) c

Figure 14 : One-dimensional rod under initial conditions
prescribed over a subdomain: initial velocity.

D

E

F

Figure 15 : One-dimensional rod under initial condi-
tions prescribed over a subdomain: boundary discretiza-
tion and cells.

this particular example, the volume integral that appears
in the boundary integral equation (1) is reduced to line
integrals. According to the previous observation, the
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Figure 16 : One-dimensional rod under initial conditions
prescribed over a subdomain: displacements for 1D and
2D numerical models for prescribed initial displacement
and prescribed initial velocity plotted separetely.

pseudo-forces which account for initial displacements
contribution are constituted only by two line sources: one
is a body force along the line x = a/4 and the other is
a boundary flux along the boundary x = 0. Thus B(X)
in eq. (1) is equal to −(P/E)δ(x−a/4) and the volume
integral indicated there becomes a line integral along the
segment EF in Fig. 15:

−
∫ F

E
u∗(X ,ξ)|x=a/4

dΩ (25)

Fig. 16 presents separate plots representing initial dis-
placement and velocity contributions at point D only; and
Fig. 17 depicts results in which the initial conditions
are null (uo = vo = 0) and the total contribution where
boundary conditions and initial conditions contributions
are added together. Note that the corresponding 1D re-
sults are also presented, and that the curves represent-
ing the response due to the boundary load only and that
which includes boundary load and initial conditions are
shifted by a time equal to a/4c. The numerical parame-
ters of this analyses were the same as those of the previ-
ous one except for the β parameter which was considered
equal to 1.20 in the present case.

6 Remarks

The discussion presented in previous sections shows that
the present formulation gives quite accurate results pro-
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Figure 17 : Displacements at point D for the one-
dimensional rod under initial conditions prescribed over
a subdomain: effects of boundary load p(t), initial dis-
placement uo and initial velocity vo considered together.
Also plotted the time-history due to p(t) only.

vided good space and time discretization are employed.
Time response curves presented separately show that
time history due to either initial displacement or initial
velocity are quite accurate. Total results shown, where
boundary and initial conditions effects were considered
together, were also very accurate, meaning that the su-
perposition of these effects does not generate any signif-
icant time shifting or other disturbing effect. It is worth
noting that Fig. 6 and Fig. 7 display a small amount of
oscillation: expected, as the time-domain surface traction
is singular for a discrete number of time instant; it is in
fact difficult to obtain oscillation free results from IFFT
(or IDFT) algorithms in this case. As expected, the os-
cillation level shown in Fig. 6 is lower than that shown
in Fig. 7, as the damping concerning the former is higher
than that of the latter.

7 Conclusions

The present work presents a BEM formulation which
allows for the computation of initial conditions contri-
bution in frequency-domain analyses of transient scalar
wave propagation problems. In the approach described
here, named ICPF (Initial Conditions by Pseudo-Forces)
initial displacement and velocity are replaced by equiv-
alent pseudo-forces represented with help of generalized
functions. A number of examples was presented in order

to demonstrate the excellent accuracy of the results, and
to illustrate the required time and space discretization re-
finement.

The approach presented here not only enhances the range
of applications of BEM frequency-domain approaches,
as non-null initial conditions contribution can now be
considered, but can equally be followed when other nu-
merical methods, e.g., Finite Elements, Finite Differ-
ences, Finite Volumes, etc., are employed, as the de-
velopments presented concern the differential equation
itself, not the numerical algorithm. Thus, the present
approach can also be used when transforms other than
Fourier are employed (e.g., Laplace, Hankel, Wavelets,
etc.).

Finally, it is important to highlight that the application
presented here concerned 2D scalar wave propagation
problems; however, the formulation presented applies to
a large number of other 2D and 3D problems, e.g., acous-
tic, seismic and electromagnetic waves, dynamic analysis
of structures, soil-fluid-structures interaction, etc.

References

Antes, H.; Von Estorff, O. (1987): On Causality in Dy-
namic Response Analysis by Time-dependent Boundary
Element Methods. Earthquake Engineering and Struc-
tural Dynamics, vol. 15, pp. 865-870.

Brighan, E. O. (1974): The Fast Fourier Transform,
Prentice-Hall, New Jersey.

Carrer, J. A. M.; Mansur, W. J. (1996): Time-domain
BEM Analysis for the 2D Scalar Wave Equation: Ini-
tial Condition Contributions to Space and Time Deriva-
tives. International Journal for Numerical Methods in
Engineering, vol. 39, pp. 2169-2188.

Carrer, J. A. M.; Telles, J. C. F. (1992): A Boundary El-
ement Formulation to Solve Transient Dynamic Elasto-
plastic Problems. Computer and Structures, vol. 45, pp.
707-713.

Chin, W. C. (1994): Wave Propagation in Petroleum En-
gineering, Gulf Publishing Company, Houston.

Clough, R. W.; Penzien, J. (1993): Dynamics of Struc-
tures. (2 ed) McGraw-Hill, New York.

Cruse, T. A.; Rizzo, F. J. (1968): A Direct Formulation
and Numerical Solution of the General Transient Elasto-
dynamic Problem I. J. Math. Anal. Appl., vol. 22, pp.
244-259.



Frequency-Domain BEM Analysis 41

Cruse, T. A.; Rizzo, F. J. (1968): A Direct Formulation
and Numerical Solution of the General Transient Elasto-
dynamic Problem II. J. Math. Anal. Appl., vol. 22, pp.
341-355.

Dominguez, J. (1993): Boundary Elements in Dynam-
ics. Computational Mechanics Publications, Southamp-
ton and Boston.

Dubner, H.; Abate, J. (1983): Numerical Investigation
of Laplace Transforms by Relating them to the Finite
Fourier Cosine Transform. Journal of the Association for
Computing Machinery, vol. 15, pp. 115-123.

Durbin, F. (1974): Numerical Inversion of Laplace
Transforms: an Efficient Improvement to Dubner and
Abate’s Method. Computer Journal, vol. 17, pp. 371-
376.

Gaul, L.; Schanz, M. (1999): A Comparative Study
of Three Boundary Element Approaches to Calculate
the Transient Response of Viscoelastic Solids with Un-
bounded Domains. Computer Methods in Applied Me-
chanics and Engineering, vol. 179, pp. 111-123.

Gaul, L.; Wenzel, W. (2002): A Coupled Symmetric
BE–FE Method for Acoustic Fluid–structure Interaction.
Engineering Analysis with Boundary Elements, vol. 26,
pp. 629-636.

Godinho, L.; Tadeu, A.; Branco, F. J. (2003): Wave
Scattering by Infinite Cylindrical Shell Structures Sub-
merged in a Fluid Medium. Wave Motion, vol. 1134, pp.
1-19.

Graff, K. F. (1975): Wave Motion in Elastic Solids,
Dover Publications, New York.

Hatzigeorgiou, G. D.; Beskos, D. E. (2001): Transient
Dynamic Response of 3D Elastoplastic Structures by the
D/BEM. In: D. E. Beskos; C. A. Brebbia; J. T. Kat-
sikadelis; G. D. Manolis (ed) Proceeding of Boundary
Elements XXIII. Lemnos, Greece.

Lubich, C. (1988): Convolution Quadrature and Dis-
cretized Operational Calculus I. Numerische Mathe-
matik, v. 52, pp. 129-145.

Lubich, C. (1988): Convolution Quadrature and Dis-
cretized Operational Calculus II. Numerische Mathe-
matik, v. 52, pp. 413-425.

Manolis, G. D.; Beskos, D. E. (1981): Dynamic
Stress Concentration Studies by Boundary Integrals and
Laplace Transform. International Journal for Numerical
Methods in Engineering, vol. 17, pp. 573-599.

Mansur, W. J.; Carrer, J. A. M.; Siqueira, E. F. N.
(1998): Time Discontinuous Linear Traction Approxi-
mation in Time Domain BEM Scalar Wave Propagation
Analysis. International Journal for Numerical Methods
in Engineering, vol. 42, pp. 667-683.

Mansur, W. J.; DeLima-Silva, W. (1992): Efficient
Time Truncation in Two-Dimensional BEM Analysis of
Transient Wave Propagation Problems. Earthquake En-
gineering and Structural Dynamics, vol. 21, pp. 51-63.

Mansur, W. J.; Ferreira, W. G.; Claret, A. M.;
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