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The Characteristic Basis Function Method: A New Technique for Fast Solution of
Radar Scattering Problems
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Abstract: In this paper, we introduce a novel approach
for the efficient solution of electromagnetic scattering
problems from objects that can be represented in terms
of facets. The approach is based on the use of the Char-
acteristic Basis Functions (CBFs), which are high-level
basis functions of special types, and whose domains are
not bound by the conventional Rao, Wilton and Glis-
son (RWG) discretization using triangular patches that
are typically λ/10 to λ/20 in size. In contrast, the CBFs
are defined over much larger-size domains, even tens of
wavelengths in size, with no limit placed on the dimen-
sions of the facets. The use of these basis functions leads
to relatively small-size matrices, typically orders of mag-
nitude smaller than the conventional ones generated by
the RWG bases; and yet, the reduced matrices are sparse
and well-conditioned in nature, which is typically not the
case when conventional entire domain basis functions
are used instead. A novel technique for the construc-
tion of CBFs, which is based on the Windowed Plane
Wave Spectrum (WPWS) approach that totally bypasses
the RWG discretization, associated matrix generation, or
its solution, is presented in the paper. Some represen-
tative examples that illustrate the accuracy of the CBF
approach are included, and the numerical efficiency of
the CBF approach over the conventional integral equa-
tion formulation and matrix solution, including the Fast
Multipole Method (FMM), is demonstrated for a class of
problems whose geometries can be represented in terms
of facets.

keyword: Characteristic basis functions, Method of
Moments, Electromagnetic Scattering, Radar Cross Sec-
tion (RCS).

1 Introduction

Conventional approaches to solving a scattering prob-
lem by using the Method of Moments (MoM) involve
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the discretization of the object geometry as a first step.
It is a common practice to use the Rao, Wilton and
Glisson (RWG) basis functions [Rao, Wilton, and Glis-
son (1982)] in the MoM formulation, with a triangular
patch discretization whose size ranges from λ/10 to λ/20.
Thus, as the object dimensions become large in terms of
the wavelength, the size of the associated MoM matrix
grows very rapidly, and this, in turn, places an inordi-
nately heavy burden on the CPU in terms of both memory
and time. To-date, attempts to circumvent these prob-
lems by using entire domain basis functions have only
been marginally successful, because these functions tend
to make the resulting matrix highly ill-conditioned. Hy-
bridization of the MoM with asymptotic techniques, such
as the Physical Optics or ray-based methods, has been
proposed by a number of authors [Hodges and Rahmat-
Samii (1994,1997); Zhongxiang and Volakis (1999)] as
alternatives to the use of conventional entire domain ba-
sis functions, though this strategy has only met with a
limited success owing to a lack of methodologies that
provide a seamless merger of the numerically rigorous
and asymptotic techniques.

Recently, the Fast Multipole Method (FMM) has been in-
troduced to circumvent some of the problems alluded to
above [Engheta, Murphy, Rokhlin, and Vassiliou (1992);
Song, Lu, Chew (1997); Geng, Sullivan, and Carin
(2000); and more recently Chew et al. (2003)]. The
FMM has enabled us to take a quantum leap into the
realm of CEM capabilities. The FMM and its multi-
level versions have made it possible to analyze scatter-
ers via the MoM technique that are orders of magnitude
larger in size than could be handled just a few years ago.
The FMM realizes a saving in the memory requirements
by storing only the near-field interaction part of the full
matrix, and by carrying out the matrix vector product
needed in the iterative solvers—that are almost always
employed for the solution of large matrices—in a highly
efficient manner using the spherical harmonic expansion
technique. But even the FMM is locked into a geome-
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try discretization size ranging from λ/10 to λ/20, which
makes the near-field interaction part of the MoM matrix
still grow at a rapid pace as the object becomes electri-
cally large.

The macro basis function (MBF) approach and a sim-
ple recursive technique called a subdomain multilevel
approach (SMA) have been recently developed to han-
dle large planar antenna arrays [Suter and Mosig (2000);
Hurst (2000)], and a similar technique for microstrip cir-
cuit analysis (including arrays) has been proposed by
Matekovits, Vecchi, Dassano, and Orefice (2001). These
approaches entail the analysis of partial domains of the
original geometry for the construction of the MBFs. The
domains of the MBFs are larger than that used in the con-
ventional MoM formulation using the RWGs; hence, this
leads to a reduction in the number of unknowns. While
the MBF approach has been shown to be often quite ac-
curate for planar antenna arrays, at least away from the
frequencies where the inter-element coupling is negligi-
ble, it is not obvious how we might generalize it to han-
dle arbitrary three dimensioned objects that are normally
encountered in EM scattering problems of the type inves-
tigated in this paper. Furthermore, it may not be evident
to the user how the MBF approach can provide an in-
dependent indication of the convergence of the solution,
and what might be a systematic approach to improving
the solution, if such an improvement is warranted.

The technique introduced in this paper differs from
the MBF and related approaches, significantly, in sev-
eral aspects. First, the technique presented herein is
more general, and can be applied to any arbitrary,
three-dimensional, faceted surfaces. Second, it includes
the mutual coupling effects rigorously, and yet reduces
the number of degrees of freedom (DoFs) dramatically
in comparison to the conventional RWG formulation.
Third, it uses a new type of high level basis functions,
referred to herein as primary and secondary Characteris-
tic Basis Functions (CBFs), which are used to represent
the unknown induced current. Unlike the RWG bases,
the CBFs are specially constructed to fit the problem ge-
ometry, and this is done by incorporating the physics
of the problem into the basis functions. The use of the
CBFs not only assures that the solution will naturally
tend to the asymptotic limit, it also obviates the need to
hybridize them with other basis functions derived by us-
ing asymptotic methods, e.g., GTD or PO/PTD. Fourth,
and perhaps one of the most unique features of these ba-

sis functions is that for objects represented by facet-type
of discretization as shown in Fig.1 (facet sizes can be
arbitrarily large in terms of the wavelength), the above
basis functions can be generated without solving an in-
tegral equation and, hence, the formulation totally by-
passes the usual RWG discretization and associated ma-
trix generation or solution. Although in the asymptotic
limit the dominant term of the CBF is the Physical Op-
tics (PO) current, it uses several hundred (or even thou-
sands) additional terms to account for the contributions
of the other facets. Thus, it is able to capture of the nu-
ances of the shadow and transition regions and the travel-
ing wave contributions that are difficult to add-on to the
GTD and PO/PTD algorithms for complex structures, for
little additional cost. To the best of the knowledge of the
authors, this novel feature is not available in any other
approaches to constructing the high-level basis functions.
We should mention that the CBFs were originally intro-
duced for the analysis of microstrip circuits and antennas
by Mittra, Du, Prakash, Yeo, and Kwon (2002), but the
technique for constructing them for faceted objects by
using a matrix-free approach, which is described in this
work, was not mentioned by them, because the matrix-
free approach is not applicable to microstrip circuit prob-
lems. Finally, we mention that the concept of CBF is
also very different from the higher-order basis function
employed in the time domain by Hesthaven et al. (2003).

Figure 1 : A faceted geometry.

To demonstrate the effectiveness of the CBFs, we present
numerical solutions for the problem of scattering from a
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class of geometries that serve to illustrate the applica-
bility, accuracy, and numerical efficiency of these new
basis functions. The results obtained via the use of the
CBFs are compared with those derived by using the con-
ventional triangular patch discretization with RWG basis
functions to illustrate the significant computational ad-
vantages gained by using the CBFs is evident from these
examples.

2 Construction of Primary Characteristic Basis
Functions

We now outline the procedure for constructing the pri-
mary basis functions [see Prakash and Mittra (2003)] for
a planar facet with a polygonal boundary. The matrix-
free approach to constructing the CBF for this geometry
is based on a windowed plane wave spectrum (WPWS)
approach by Mittra, and Prakash (2002) for truncated pe-
riodic structures, e.g., Frequency Selective Surface (FSS)
radomes, and later extended to the problem of scatter-
ing from a plate by Monorchio, Tiberi, Manara, and Mit-
tra (2002). However, our approach for constructing the
CBFs is different from their work because we are assum-
ing that the facet #m does not have a free edge, i.e., it
is connected to other facets surrounding it (see Fig. 2a).
An important consequence of dealing with this type of
facet is that the CBFs we generate will not have the sin-
gularity in the induced currents associated with the free
edges. On the other hand, we can readily extend the pro-
cedure (and in fact we already have) to the cases where
one or more edges of the facet are free, by including the
requisite singular behavior in the basis functions.

The steps for WSPS approach are given below:

• Step-1. Window the incident plane wave such that
is non-zero only on the extended facet # m (see
Fig.2b), which is realized by adding a λ/5 wide bor-
der to it.

• Step-2. Extend the facet to an infinite plane and
solve for the induced current on that plane for each
of the constituent plane waves of the windowed inci-
dent field. Note that the implementation of this step
is trivial, and requires no matrix generation, or so-
lution. In addition, the time required to construct
the basis functions is fast (see examples given in
sec. 4), even though we may include several hun-
dred constituent homogeneous and inhomogeneous

(visible and invisible) plane waves to represent the
windowed plane waves incident on the facet.

• Step-3: Retain only the portion of the current on the
original facet and define it as the primary character-
istic basis function

Facet # m

Facet # 

n

Facet # m

Facet # 

n

(a)

Facet # mFacet # m

(b) 

Figure 2 : (a) Facet # m illuminated by a plane wave. It
is assumed that the facet has no free edges; (b) extended
facet # m.

3 Generation of Secondary Basis Functions

The secondary basis functions are the currents induced
on different facets, say facet # n in Fig. 2a for exam-
ple, by the primary CBF residing on facet # m. The two
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facets need not be co-planar and their orientations may
be arbitrary.

The form of the CBF generated by the technique de-
scribed in the last paragraph is such that their plane wave
spectra are readily obtainable. We take advantage of this
fact in computing the secondary basis functions, and fol-
low the same procedure as that employed for the pri-
mary CBFs, except that we now have a spectrum of plane
waves incident on the facet # n rather than a single one
as before when the primary ones were derived.

This unique feature of the CBFs enables us, once again,
to construct the secondary ones without the use of RWGs,
matrix generation or solution. As pointed out before, this
feature for constructing the CBFs is not found in other
approaches to generating high-level basis functions. Of
course, one can always exercise the option of using the
RWG formulation of the original problem as a starting
point, and construct the CBFs by solving blocks of ma-
trices that are much smaller than the original one, albeit
at an increased cost in the computation time. In fact, in
some cases it may well be necessary to follow this ap-
proach when a facet in question has fine features, e.g.,
has a thin wire antenna attached to it, or has a conformal
antenna embedded in it. What is important, however, that
regardless of how the CBFs are generated, their use re-
sults in a reduced matrix, whose derivation is described
below.

4 Reduced Matrix Generation and Solution

The third step in the solution process is to generate a re-
duced matrix by using the Galerkin procedure. A typical
element of the reduced matrix may be expressed as <Em,
Jn>, where Em is the tangential electric field induced on
the facet # n by the primary (or secondary) basis func-
tion residing on the facet # m (see Fig. 2); and, Jn is the
testing function on the facet # n, which is also one of the
primary (or secondary) basis functions, previously gener-
ated by using the procedure described in the last section.

The reduced matrix, which is orders of magnitude
smaller in size than its RWG counterpart, can now be
solved directly, without the use of iteration in many prac-
tical cases, and the RCS can then be computed in the
usual way. We have found that the reduced matrices gen-
erated by using the CBF’s are not only well-conditioned,
but quite sparse as well. We conjecture, therefore, that
sparse matrix solvers can be successfully used to carry

out a direct LU decomposition of the reduced matrix
when it is large, and one may seldom need to resort to
iterative solvers for a wide range of problems formulated
by using the CBFs. Some examples of the reduced matrix
sizes are given in the next section where the correspond-
ing size of the conventional RWG matrix is also given for
comparison.

5 Illustrative Numerical Results

To illustrate the accuracy of the procedure we compare
the field radiated by the CBF generated for a 3.8λ x 3.8λ
plate (the extended plate size is 4λ x 4λ), and compare
this radiated field with that generated by using approx-
imately 5000 RWG basis functions. The comparison,
shown in Fig.3, is seen to be very good. (Through not
shown here, the induced currents also compare very well
with each other). It has also been verified that the bound-
ary condition on the tangential E-field is indeed well sat-
isfied on the PEC plate by the scattered field generated
by the CBF.
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Figure 3 : Field radiated by the CBF of a 3.8λ x 3/8λ
PEC plate at θi = φi = 1◦, TE pol.

To demonstrate the power of this approach we repeat the
same procedure for a 9.8λ x 9.8λ plate (extended size
10λx 10λ), illuminated by a plane wave incident at an
angle of θ=30◦. Figure 4 shows the comparison of the
fields radiated by the RWG currents, and by the CBF
(one single basis function for the entire plate) derived
by using the matrix-free method described above. The
time taken to generate the CBF is still <10 secs, (and it
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Figure 4 : Field radiated by the CBF of a 9.8λ x 9/8λ
PEC plate at θi = 30◦,φi = 1◦, TE pol.

is virtually independent of the size of the facet), whereas
the a multilevel FMM code to generate the same CBF re-
quires 29,800 unknowns, and approximately 30 min. per
frequency point.

CBF

region 

RWG

Figure 5a : Hybridization of the basis for a conducting
plate by combining the CBF and the RWG basis func-
tions.

Next, we demonstrate a hybrid approach, which com-
bines the CBF and the RWG basis functions for the case
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Figure 5b : RCS of the 4λ x 4λ PEC plate computed by
using PWS and RWG basis.

of a PEC plate, as shown in Fig.5a. For the case of 4λ x
4λ PEC plate, the CBF region is 3.8λ x 3.8λ in size, while
the RWG bases have been used in the edge regions. The
radar cross-section of the plate has been evaluated by us-
ing the hybrid approach and compared with that obtained
by using the conventional MoM over the entire plate. The
results presented in Fig.5b, again show good agreement
with each other. They serve to demonstrate that, if de-
sired, the CBF approach can be hybridized with the RWG
method in a convenient manner.

As mentioned earlier, we have the option to derive the
CBFs by using a legacy MoM code that employs the
RWG basis functions. To illustrate this procedure, we
used an RWG-based MoM code (which solves EFIE) and
derived the CBF’s for two specific examples, namely, a
2λ x 2λ PEC plate, and a 90◦ corner reflector. For the
case of the PEC plate, the geometry was divided into
16 blocks, leading to 256 CBFs. It was found later,
via numerical experimentation, that only 8 CBFs would
have been sufficient for this problem, as compared with
4720 unknowns that were needed in the original RWG
discretization. The RCS results for the plate have been
computed for the normal and 45◦ incidence cases, and
are presented in Fig.6. The close agreement between
the CBF-based and the direct MoM solutions once again
serve to demonstrate that the proposed technique yields
accurate solutions in a numerically efficient manner.

For the case of 90◦ corner reflector, shown in Fig.7, the
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Figure 6 : Radar cross-section of 2λ x 2λ PEC plate at
normal and oblique incidences.
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Figure 7 : A 90◦ corner reflector divided into 8 blocks.
Each block has 8 CBFs.

original RWG discretization require 2340 unknowns, but
we employ only 64 CBF’s with 8 blocks, though the lat-
ter could be further reduced to only 3 blocks, viz., the
two plates and the overlapping corner region. (The op-
timal number of domains can be determined by balanc-
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Figure 8 : Radar cross-section of corner reflector at nor-
mal and oblique incidences.

ing the times taken to generate the CBFs, constructing
the reduced matrix, and solving the same.) The RCS
of the structure has been computed for normal and 45◦

incidence cases, by using the conventional RWGs and
the CBFs, and the results are presented in Fig.8. We
note that, unlike the plate example, there is considerable
amount of interaction (multiple scattering) between the
adjacent facets in the present case. The results computed
by using the CBF are found, once again, to be in close
agreement with the direct MoM solution, and this proves
that the concept of CBF’s can be extended to the cases
where the individual facets strongly couple to each other.

In fact, our experience shows that the CBF approach is
very general and, as mentioned earlier, it has been ap-
plied to microstrip circuits and antennas, including reso-
nant configurations, e.g., filters and patch arrays, that are
highly resonant structures. As for the RCS problems, it
has been also used to analyze a number of other objects,
including a PEC cube and a large, truncated Frequency
Selective Surface (FSS) to test its versatility. Detailed
discussions of these problems are beyond the scope of
this paper, and they will appear in separate publications
that are currently being prepared by the authors. How-
ever, we include the numerical result for the RCS of a
truncated FSS screen with 25x25 crossbar elements (ar-
bitrarily large number of patches can be treated with the
CBF approach without any difficulty), shown in Fig.9,
and the time comparisons with an FMM code that are
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Figure 9 : Scattered Far-field from a 25 x 25 free stand-
ing FSS screen.

Table 1 : Computational details

MonoStatic Radar Cross-Section 

Fast Multipole Method         : 19.872 dBSm 

FSS Software      : 19.729 dBSm

Computational Requirements 

                 Memory(Mb)     CPU time (s)       Computer 

FMM             1087               25212            IBM RS6000 

FSS Code       19                   689               PC 662MHz 

given in Table 1.

We should point out the convergence of the FMM code
was much slower for the FSS case than that for a thin
plate of the same size, because the associated MoM ma-
trix for the FSS, which is a resonant structure, was ill-
conditioned, even when a pre-conditioner was employed
to improve the matrix conditioning, however, no such
problem was experienced in the CBF approach. It may
be worthwhile to mention that the infinite extension of
the truncated FSS is a doubly-periodic of the structure,
which can be analyzed conveniently by modeling just the
unit cell, which is a very manageable problem.

Finally, we close this section with several comments on
the CBFM. First, we mention that CBFM has been re-
cently extended to handle multiple incident angles, where
a single set of primary basis functions, corresponding
to these angles, have been found adequate without the
need of secondary functions. This separates the CBFM

from iterative approaches, which must start the solution
process anew for multiple right hand sides (incident an-
gle) [Mittra and Prakash (2003)]. In fact, the CBFM has
been used over a wide frequency range as well, with
a single set of basis function over the range [Prakash
(2003)]. This feature also sets the CBFM apart from
other higher-order basis functions. Second, we mention
that the CBF approach can be extended to objects cov-
ered by one or more layers of coating materials (with-
out the use of impedence boundary condition approxi-
mation), curved facets with large radii of curvature that
have no shadowing (as mentioned earlier, the shadowing
case can be easily treated by using multiple patches), and
facets with rough surfaces. Once again, the authors plan
to cover these cases in future publications that are cur-
rently in preparation.

6 Conclusions

In this paper, we have introduced a novel approach for
efficient solution of the problem of radar scattering from
object that can be represented in terms of facets. The
approach is based on the use of Characteristic Basis
Functions (CBFs), which are not bound by the conven-
tional λ/20 discretization in the context of the Method of
Moments, but are defined on much larger-size domains.
Representing the induced currents on a scatterer in terms
of the CBFs enables one to handle electrically large ge-
ometries with a relatively few unknowns, typically sev-
eral orders of magnitude smaller than that required in
the RWG approach. Furthermore, the CBFs can be con-
structed by using a matrix-free approach that can result
in considerable savings in CPU time and memory, even
when compared to the FMM approach for solving simi-
lar problems. The authors believe that the CBF approach
will open new horizons in numerical modeling of elec-
tromagnetic scattering problems and would enable us to
solve much larger-size problems than currently possible
by using one of the existing numerically rigorous codes–
be it MoM (including FMM and its multi-level variants),
FEM, or the FDTD. And yet, on the basis of our expe-
rience, we anticipate that the accuracy levels achieved
by the CBF approach is expected to be comparable to
those provided by the above codes, and superior to the
asymptotic techniques that are typically employed for
such problems when the CPU time and memory limita-
tions preclude the use of the rigorous codes.
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