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Transform Domain Based Hybrid Element Formulations for Transient
Electromagnetic Field Computations
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Abstract: In this article, a novel hybrid finite element
and Laplace transform formulation is presented for the
computations of transient electromagnetic fields. The
formulation is first based on application of Laplace trans-
form technique for the pertinent differential equations,
namely the Maxwell’s equation in the non-integral form
with subsequently, employing the Galerkin finite element
formulations on the transformed equations to maintain
the modeling versatility of complex geometries and nu-
merical features for computational analysis. In addi-
tion, in conjunction with the above, proper scaling of
the field quantities is applied to improve the condition of
the effective global stiffness matrix. The problem is first
solved in the transform domain itself, and then an inverse
Laplace transformation on the resultant field variables
is employed to yield the time-domain solution at de-
sired times of interest. Pertinent details of the approach,
computational methodology adopted, convergence stud-
ies and accuracy of results are described in detail. Nu-
merical test cases are compared with exact analytic so-
lutions to verify the method. In addition, the practical
applicability of the method for scattering and radar cross
section prediction for two-dimensional problems is pre-
sented for illustration.
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1 Introduction

Electromagnetic (EM) field problems permeate several
fields of study in electrical engineering from high power
machines to high bandwidth communications. Design
of electric machinery is critically dependent on accurate
solutions of magnetic and electric fields in the station-
ary and rotating parts of motors and generators. Power
electronic designers today are investing more and more
resources in calculating and minimizing the electromag-
netic interference caused by high power switching cir-
cuits. Semiconductor device design is another area where
the classical lumped parameter models for circuit ele-
ments like resistors, capacitors and inductors are becom-
ing less and less valid as their operating frequencies go
higher and higher. Communication systems need con-
stant improvement of signal-to-noise ratio which calls for
more exact characterization of the media. Design of an-
tennas and receivers need reasonably accurate EM field
solutions. In short, from milli-watt to mega-watt, from 60
hertz to several giga-hertz, Electrical Engineering today
leans on accurate methods to obtain solutions for electro-
magnetic fields.

The similarity of electromagnetic field problems to those
in fluid flow have to an extent also inspired the analy-
sis of the former using finite element techniques com-
monly used for fluid flow computations [Morgan., Has-
san, and Peraire (1994); Morgan, Hassan, and Peraire
(1996)]. Various methods of analysis exist in the liter-
ature from both computational and mathematical view-
points. To date, of the various approaches existing in
the literature, there are two principal schools of thought,
namely, time domain analysis and frequency domain
analysis. However, EM fields, for the most part, are
linear, and so simpler methods can give equally accu-
rate yet effective advantages in the computations of the
resulting solutions with improved efficiency. For exam-
ple, yet effective, transforming the field variables to the
transform domain eliminates the time dimension and en-
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ables the problem to be considered as a quasi-steady-
state one. No restricted time-stepping is necessary - a
straight forward inverse transformation of the Laplace
transform solution can give the solution at any desired
time instant. Laplace transform techniques have been
used for the analysis of linear transient and a class of
non-linear transient problems in heat conduction [Tamma
and Railkar (1988a),Tamma and Railkar (1988b)] and
structural dynamics [Yao, Fung, and Tseng (1999)] and
[Beskos and Boley (1975)]. Along similar lines, Cai and
Costache [Cai and Costache (1994)] describe a method
to decompose the system to individual modes by eigen
value decomposition. The inverse Laplace transform of
the resultant modal equations is straightforward, which
gives the time domain solution at any instant. How-
ever, this method is not practical for large problems be-
cause of the requirement of eigen value decomposition.
For related hybrid methods in frequency domain refer to
[Reddy (2004)].

In contrast, in this study, the numerical inversion of the
Laplace transform is performed using the method de-
veloped by Durbin [Durbin (1974)]. Time scaling of
Maxwell’s equations is proposed to improve the condi-
tioning of the element and global matrices (this tech-
nique also applies to time-domain methods as well). Fur-
ther, decoupling of the Maxwell’s EM equations into two
groups can result in reduction of the global matrix size
for planar problems.

A brief introduction to Maxwell’s equations is given in
Section 2. Section 2.3 describes the benefits of time-
scaling of Maxwell’s equations which can improve the
condition of the finite element matrices. Section 2.4 ex-
plains how two decoupled systems of equations can be
formed for planar electromagnetic problems. The weak
formulation of the problem using Galerkin’s method is
detailed in Section 3, and the inversion procedure for
the Laplace transform domain solution is explained in
Section 4. Some novel and interesting issues on the
unique, yet effective strategies via the present develop-
ments for subsequent use in large-scale computations are
highlighted with particular attention to contrasting the
difference with the traditional paradigms for solving time
domain and the so-called frequency domain computa-
tional electro magnetic (CEM) equations. Numerical ex-
amples to verifying the present developments are given
in Section 5. The remaining two sections contain discus-
sions highlighting the pros/cons and the relevant conclu-
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Figure 1 : Problem description, domain, boundaries and
boundary conditions.

sions and future directions.

2 Maxwell’s Equations

2.1 Maxwell’s equations in time domain

The behavior of electric and magnetic fields, with and
without the presence of a medium, are completely de-
termined by a set of partial differential equations known
as the Maxwell’s equations. In their most general sense,
they can be written in non-integral form as [Wangsness
(1979)]

∇ ×E = −∂B
∂t

(1)

∇ ×H = J+
∂D
∂t

(2)

∇ ·D = ρ f (3)

∇ ·B = 0 (4)

where E is the electric field, H is the magnetic field, D
is the electric flux density, B is the magnetic flux density,
J is the free current density, and ρ f is the free charge
density.

It should be noted that in a charge-free medium (ρ = 0),
Equation 3 can be derived from Equation 1 and Equation
4 from Equation 2. In addition, these fields have to satisfy
the boundary conditions at any interface Γ i j between the
two media Ωi and Ω j, given by

n̂ · (D j −Di) = σ f (5)

n̂× (E j −Ei) = 0 (6)

n̂ · (B j −Bi) = 0 (7)

n̂× (H j −Hi) = K f (8)
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where, n̂ is the unit normal to the interface, pointing from
region Ωi to region Ω j, σ f is the surface charge density at
the interface, and K f is the surface current density at the
interface. Constitutive properties for a uniform isotropic
medium, namely, the electric and the magnetic flux den-
sities and the current density can be completely charac-
terized by

D = εE (9)

B = µH (10)

J = σE (11)

where, ε is the permittivity, µ is the permeability, and σ
is the conductivity of the medium. Employing the Eqs. 9
– 11, Maxwell’s equations can be simplified as

∇ ×E = −µ
∂H
∂t

(12)

∇ ×H = σE+ε
∂E
∂t

(13)

∇ ·E = 0 (14)

∇ ·H = 0 (15)

Using Eq. 9 through 11, the boundary conditions to be
satisfied by the electric and magnetic fields can be sim-
plified as

n̂ · (εiE j −ε jEi) = σ f (16)

n̂× (E j −Ei) = 0 (17)

n̂ · (µiH j −µ jHi) = 0 (18)

n̂× (H j −Hi) = K f (19)

Within a perfect conductor, both the electric and mag-
netic fields are zero. Hence on a conductor surface we
have E j = 0 and H j = 0 in Eq. 16 through Eq. 19. In this
case,

n̂ ·Ei = −σ f

εi
(20)

n̂×Ei = 0 (21)

n̂ ·Hi = 0 (22)

n̂×Hi = −K f (23)

In other words, a conductor interface imposes constraints
on the tangential component of the electric field, and the
normal component of the magnetic field.

For any medium, we define the relative permeability µr

and relative permittivity εr, as

µ = µ0µr (24)

ε = ε0εr (25)

where, ε0 is the permittivity of free space = 8.85419×
10−12 F/m, and µ0 is the permeability of free space =
4π×10−7 H/m. Also, the velocity of propagation of an
electromagnetic wave in a medium is given by

c =
1√
µε

(26)

The characteristic impedance of the medium is defined
as

η =
√

µ
ε

(27)

In free space, the quantities c and η become

c0 =
1√
µ0ε0

; η0 =
√

µ0

ε0
(28)

2.2 Maxwell’s equations in Laplace domain

Using Laplace transforms of E and H, we can write Eq.
12 through Eq. 15 as

∇ ×E = −µ(sH−H0) (29)

∇ ×H = (σ+εs)E−εE0 (30)

∇ ·E = 0 (31)

∇ ·H = 0 (32)

where E and H are Laplace transforms of E and H re-
spectively, and E0 and H0 are the initial values.

2.3 Time Scaling of Maxwell’s Equations

The differential equations which govern the electric and
magnetic fields have been discussed in the previous sec-
tion. The numerical values of µ and ε are very low, and
can cause the effective element and global stiffness ma-
trices to be ill-conditioned because of very small diago-
nal entries. To overcome this problem, we apply a time
scaling by c0, i.e., we define t̃ = c0t. Hence, the complex
frequency variable s gets scaled as s̃ = s

c0
Thus, we can

rewrite Eq. 29 through 32 as

∇ ×E = −µc0(s̃H−H0) (33)

∇ ×H = (σ+εs̃c0)E−c0εE0 (34)

∇ ·E = 0 (35)

∇ ·H = 0 (36)
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Substituting for c0 from Eq. 28, we get

∇ ×√
ε0E = −µr

√
µ0(s̃H−H0) (37)

∇ ×√
µ0H = (ση0 +εrs̃)

√
ε0E−εr

√
ε0E0 (38)

∇ ·E = 0 (39)

∇ ·H = 0 (40)

We define quantities EEE and HHH such that

EEE =
√

ε0E (41)

HHH =
√

µ0H (42)

which yields,

∇ ×EEE = −µr(s̃HHH −HHH 0) (43)

∇ ×HHH = (ση0 +εrs̃)EEE −εrEEE0 (44)

∇ ·EEE = 0 (45)

∇ ·HHH = 0 (46)

In most cases, for plane wave propagation, the peak value
of the electric and magnetic fields are related to each
other by [Wangsness (1979)]

|E|
|H| = η (47)

From Eq. 24, 25 and 27, we have

η =
√

µr

εr
η0 = 376

√
µr

εr
ohms (48)

This means that the magnitudes of the electric and mag-
netic fields are different by two orders of magnitude. This
is generally the case in most wave-propagation problems.
However, from Eq. 41 and 42, we have

|EEE |∣∣HHH ∣∣ =
√

µr

εr
(49)

The magnitudes of EEE and HHH are of the same order, ex-
cept in the case of a ferromagnetic medium with high
µr. Hence, the truncation and roundoff errors affect both
the fields equally if time-scaling is employed. It is to
be noted that this scaling is equally beneficial for time-
domain methods as well.

2.4 Decoupling of Maxwell’s Equations

In the finite element formulation, for each node of the
mesh, we have six degrees of freedom, three each for E
and H at a node. However, in some special cases, three
of the six degrees of freedom are completely decoupled
from the other three. This results in a drastic reduction
in the complexity of the problem, and can in some cases,
eliminate three degrees of freedom. Such a simplification
significantly improves the speed of solution of the result-
ing effective global stiffness matrix. Expanding Eq. 12
through 15 for a two-dimensional domain, we get

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y 0

Ex Ey Ez

∣∣∣∣∣∣ = −µ(
∂Hx

∂t
x̂+

∂Hy

∂t
ŷ+

∂Hz

∂t
ẑ) (50)

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y 0

Hx Hy Hz

∣∣∣∣∣∣ = ε(
∂Ex

∂t
x̂+

∂Ey

∂t
ŷ+

∂Ez

∂t
ẑ)

+σ(Exx̂+Eyŷ+Ezẑ) (51)

∂Ex

∂x
+

∂Ey

∂y
= 0 (52)

∂Hx

∂x
+

∂Hy

∂y
= 0 (53)

Alternatively,

∂Ey

∂x
− ∂Ex

∂y
= −µ

∂Hz

∂t
(54)

∂Ez

∂y
= −µ

∂Hx

∂t
; −∂Ez

∂x
= −µ

∂Hy

∂t
(55)

∂Hy

∂x
− ∂Hx

∂y
= −ε

∂Hz

∂t
+σEz (56)

∂Hz

∂y
= ε

∂Ex

∂t
+σEx; −∂Hz

∂x
= −ε

∂Ey

∂t
+σEy (57)

∂Hx

∂x
+

∂Hy

∂y
= 0 (58)

∂Ex

∂x
+

∂Ey

∂y
= 0 (59)

In other words, the group of variables Ex, Ey, and Hz

are completely decoupled from the group Hx, Hy, and
Ez. Hence for planar problems, it may be sufficient to
consider only one of the groups of variables, by properly
orienting the coordinate axes.
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3 Weak Formulation

To derive the numerical solution for Eq. 43 through 46,
we make use of the Galerkin weighted residual formu-
lation for illustration. Other spatial high-order methods
can be readily employed.

∫
Ω

Wc,e(∇ ×EEE +µr(s̃HHH −HHH 0))dΩ = 0 (60)
∫

Ω
Wc,h(∇ ×HHH − ((ση0 +εrs̃)EEE −εEEE 0))dΩ = 0 (61)

∫
Ω

Wd,e(∇ ·EEE)dΩ = 0 (62)
∫

Ω
Wd,h(∇ ·HHH)dΩ = 0 (63)

Choosing the weighting functions to be same as the shape
functions, we have

Wc,e = NT
e ; Wd,e = NT

e

Wc,h = NT
h ; Wd,h = NT

h

(64)

and using the vector identities

∇ × (W A) = ∇ W ×A+W ∇ ×A∫
Ω

∇ ×AdΩ =
∫

Γ
n̂×AdΓ

(65)

Employing the above identities in Eqns. 60 and 61 yields

µrs̃
∫

Ω
(Wc,eHHH)dΩ−

∫
Ω
(∇ Wc,e ×EEE)dΩ

= µr

∫
Ω
(Wc,eHHH 0)dΓ−

∫
Γ
(n̂×Wc,eEEE)dΓ (66)

µrs̃
∫

Ω
(Wc,hEEE)dΩ+

∫
Ω
(∇ Wc,h ×HHH)dΩ

= µr

∫
Ω
(Wc,hEEE 0)dΓ +

∫
Γ
(n̂×Wc,hHHH)dΓ (67)

In Cartesian coordinates,

EEE = EEExx̂+EEEyŷ+EEEzẑ

HHH = HHHxx̂ +HHHyŷ+HHHzẑ
(68)

As an illustration, for a simple triangular mesh, we have
the shape function N defined as

N =[ ap+bpx+cpy aq+bqx+cqy ar+brx+cry ] (69)

For simplicity we choose Ne = Nh = N in Eqn. 68 which
results in

EEEx = N�Ex; EEEy = N�Ey; EEEz = N�Ez

HHHx = N�Hx; HHHy = N�Hy; HHHz = N�Hz

(70)

where �Ex =
[

EEEx,p,EEEx,q,EEEx,r, . . .
]T

and p,q, r, ... desig-
nating the nodes which form the element. One can read-
ily use high-order elements as well as approaches such
as discontinuous Galerkin formulations for the spatial
aspects with arbitrary order [Hesthaven and Warburton
(2004)]. Substituting EEE and HHH (Eqs. 70) in Eq. 60
through 63 we can readily derive the effective element
stiffness matrix. Employing Eqs. 54 – 57 in the trans-
formed domain in the Eqs. 66 – 67 yields

(ση0 +εrs̃)MI�Ex −My
�Hz = εrMI�Ex0 (71)

(ση0 +εrs̃)MI�Ey +Mx
�Hz = εrMI�Ey0 (72)

−My�Ex +Mx�Ey +µrs̃MIHHH z = µrMI
�Hz0 (73)

µrs̃MI
�Hx +My�Ez = µrMI

�Hx0 (74)

µrs̃MI
�Hy −Mx�Ez = µrMI

�Hy0 (75)

My
�Hx −Mx

�Hy +(ση0 +εr s̃)MIEEE z = εrMI�Ez0 (76)

The Eqns. 71 through 76 are used to formulate the ele-
ment matrices. The global matrix can then be formed by
assembling the various element matrices. The solution
of the resultant system of equations will give the Laplace
domain solution of the electric and magnetic fields for
a particular value of s̃. Any of the direct methods like
Cholesky or Gaussian elimination can be used for solv-
ing the system in the transform domain itself. However,
for large systems, iterative solvers with preconditioners
can improve the solution speed (including element-by-
element [EBE] based techniques). The structure of the
global system matrix does not change for each solve.
Only the values of some of the entries do change. Also,
for smaller variations in s, the change in system matrix
entries themselves is quite small. Hence, a single pre-
conditioner matrix can be used to solve several of the
global stiffness matrices. This saves significant amount
of time, since obtaining the preconditioner matrix is often
a time-consuming process. In all the examples described
in this paper, all the solves have been done using the GM-
RES algorithm [Saad (2002)], which is adapted to solve a
complex variable system that significantly improved the
solution speed compared to Gaussian elimination. Once
the solution is obtained in the transformed domain, the
time domain solution can be directly obtained at any de-
sired instant of time.
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4 Inversion of Laplace Domain Solution

In the previous section, we have discussed how to pose
the EM field problem in the s-domain in a finite-element
sense, and its solution procedure. The inverse procedure
is described next. The Laplace transform of a function
f (t) is defined as

F(s) =
∫ ∞

0
e−st f (t)dt (77)

The inverse Laplace transform is then,

f (t) =
1

2πJ

∫ ∞

−∞
estF(s)ds

=
1

2πJ

∫ ∞

−∞
e(a+J ωtF(a+J ω)J dω

=
eat

2π

∫ ∞

−∞
eJ ωtF(a+J ω)dω

=
eat

2π

∫ ∞

−∞

[(
ℜ (F(a+J ω))cosωt

− ℑ (F(a+J ω)) sinωt
)

+J
(

ℜ (F(a+J ω)) sinωt

+ ℑ (F(a+J ω))cosωt
)]

(78)

Since f (t) is real,

ℜ (F(a+J ω)) = ℜ (F(a−J ω))
ℑ (F(a+J ω)) = −ℑ (F(a−J ω))

(79)

and

∫ ∞

−∞

(
ℜ (F(a+J ω)) sinωt+ℑ (F(a+J ω))cosωt

)
dω=0

(80)

Thus,

f (t) =
eat

π

∫ ∞

0

(
ℜ (F(a+J ω))cosωt

−ℑ (F(a+J ω)) sinωt
)

dω
(81)

Also, for causal systems, f (t) = 0, t < 0. Hence,

∫ ∞

0

(
ℜ (F(a+J ω))cosωt

+ℑ (F(a+J ω)) sinωt
)

dω= 0
(82)

In other words,

f (t) =
2eat

π

∫ ∞

0
ℜ (F(a+J ω))cosωt dω

= −2eat

π

∫ ∞

0
ℑ (F(a+J ω)) sinωt dω

(83)

Using the algorithm described by Durbin [Durbin
(1974)], we get

f (t)+
∞

∑
k=1

e−akT f (akT + t) =
2eat

T

[1
2

ℜ (F(a))

+
NSUM

∑
k=1

(
ℜ (F(a+

J 2πk
T

))cos
2πkt

T

− ℑ (F(a+
J 2πk

T
)) sin

2πkt
T

)

+
∞

∑
NSUM +1

(
ℜ (F(a+

J 2πk
T

))cos
2πkt

T

− ℑ (F(a+
J 2πk

T
)) sin

2πkt
T

)]

(84)

The second summation on the right side is the truncation
error εt . The second term on the left side is the error
arising due to the algorithm itself, which we refer to as
εa. Thus,

εa =
∞

∑
k=1

e−akT f (akT + t) (85)

εt =
2eat

T

[ ∞

∑
NSUM+1

(
ℜ (F(a+

J 2πk
T

))cos
2πkt

T

−ℑ (F(a+
J 2πk

T
)) sin

2πkt
T

)]
(86)

Then, Eq. 84 becomes,

f (t)+εa =
2eat

T

[1
2

ℜ (F(a))

+
NSUM

∑
k=1

(
ℜ (F(a+

J 2πk
T

))cos
2πkt

T

− ℑ (F(a+
J 2πk

T
)) sin

2πkt
T

)]
+εt

(87)

5 Illustrative Examples

To verify the overall formulations, a few simple wave
propagation problems are solved and compared with an-
alytical results. Detailed analysis of these test cases can
be found in [Ramo, Whinnery, and Duzer (1979)] and
[Harrington (1961)].
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Figure 2 : Transmission line analyzed in numerical ex-
amples 1 and 2.

5.1 Plane wave along a transmission line with electric
field along y-direction

A plane electromagnetic (Transverse Electric and Mag-
netic) wave is incident on a lossless transmission line
whose major dimension is along the x-direction (see
Fig. 2). The initial value of the fields are given by

Ey0 = 0; Ez0 = e−( x−x0
b )2

Hy0 =
1
η0

e−( x−x0
b )2

; Hz0 = 0
(88)

The boundary conditions are Ey = 0 for x = 0, x = L
where L is the length of the line.

5.1.1 Analytical solution

For a plane wave propagating in x-direction,

Ex = Hx = 0 (89)

Also, since Ey0 = 0 and Hz0 = 0, we have

Ey = Hz = 0 for t ≥ 0 (90)

For a lossless transmission line, σ = 0. Then, from equa-
tions 54 through 57, we get

∂Ez

∂x
= µ

∂Hy

∂t
∂Hy

∂x
= ε

∂Ez

∂t

(91)

Thus,

∂2Ez

∂x2 = µε
∂2Ez

∂t2 (92)

The analytical solution for the above problem is given as

Ez(x, t)=A0

∞

∑
n=1

e−( nπb
2L )2

sin(ωt +ω0) sin
nπx
L

Hy(x, t)=−A0

∞

∑
n=1

e−( nπb
2L )2

cos(ωt+ω0)(1−cos
nπx
L

) (93)

where A0 = 2b
√

π
L and ω0 = nπx0

L .

5.1.2 Numerical solution

Given the specification of the problem, we use the vari-
able group Hx,Hy,Ez. Then, from equations 71 through
76, we form the element matrix as


 µrs̃MI 0 My

0 µrs̃MI −Mx

My −Mx (ση0 +εr s̃)MI







�Hx
�Hy
�Ez




=




µrMI
�Hx0

µrMI
�Hy0

εrMI�Ez0




(94)

The transmission line parameters were chosen as
length=10 m, breadth=0.5 m. A triangular mesh was gen-
erated with a resolution of 0.125 m. The incident wave
parameters were chosen as x0 = 3 m, b = 1 m. Relative
permeability µr and relative permittivity εr were assumed
to be unity. For the Laplace transform algorithm, the fi-
nal time t f was chosen to be 45 ns. aT was chosen to
be 5. Then, T = t̃ f = t f c0 = 13.5 m, a = 5

13.5 = 0.3704,
NSUM was chosen to be 256. The number of time points at
which the solution was sought was taken to be 5, yield-
ing solutions at 9, 18, 27 and 36 ns. A comparison of
the computed results with the exact solution is given in
Fig. 3.

5.2 Convergence study

To study the effectiveness of the method, several combi-
nations of a and NSUM were tried to solve the same prob-
lem. The parameters used are:

• aT = 0.5 to 7.5

• NSUM = 2 to 1024

• Number of time points = 64

• Final time t f = 45 ns
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Figure 3 : Time domain solution in comparison with exact solution for plane wave incident on a transmission line,
with electric field along z-axis.

The convergence error εconv is defined as

εconv =
E2

z,numeric −E1
z,numeric

max(
∣∣∣E1

z,numeric

∣∣∣) (95)

where, E1
z,numeric is the numeric solution of Ez with the

current value of NSUM and E2
z,numeric is the numeric so-

lution of Ez with a higher value of NSUM . The absolute
error εabs is

εabs =
Ez,numeric −Ez,exact

max(|Ez,exact |) (96)

where Ez,exact is the exact analytic solution. The abso-
lute error and convergence error plots thus obtained are
shown in Figs. 4 and 5.

From the plots, it is clear that for large values of aT ,
though there is a potential to achieve better absolute er-
ror, convergence is achieved only for large NSUM (Fig.
5b), which is exactly the number of times the global ma-
trix is to be solved. This is due to the fact that the trun-
cation error εt is directly related to eat (Eq. 86). When
aT is too small, the path of integration gets too close to

the J ω axis, which gives rise to large errors for a wave
propagation problem due to the singularity at J ω0, where
ω0 is the angular frequency of the wave. In fact, setting
a = 0 is the same as the Fourier transform method, just as
Fourier transform itself is analogous to the Laplace trans-
form with s = J ω. However, the pole on the J ω axis for
wave propagation problems will cause large errors in the
Fourier transform method. The present hybrid transform
method, however, does not suffer from this problem, and
so is well suited for wave propagation problems like the
ones discussed in this paper. From Fig. 4, it appears ap-
propriate to choose aT to be around 3.5 – 5. Another
interesting observation is the limit to which the abso-
lute error converges as in Fig. 4a. This is determined by
e−aT , as given in [Durbin (1974)]. However large value
of NSUM we choose, the absolute error will not be less
than εa of Eq. 85. As far the convergence plots are con-
cerned, the drawback of large aT is immediately obvi-
ous from Fig. 5b where large values of aT , larger NSUM

is required for good convergence. As seen in Fig. 5a,
the large convergence error (and also absolute error) for
small NSUM is partly due to improper frequency sampling
which happens at low values of NSUM . In fact, a good
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Figure 4 : Convergence of absolute error for different
values of NSUM and aT .

rule of thumb in choosing NSUM could be the Nyquist
criterion of sampling, which states that the sampling fre-
quency should be at least twice the maximum frequency
of interest. Using the hybrid transform domain based fi-
nite element method, the highest frequency for which the
system is solved for is NSUM

t f
. Therefore, if the minimum

time constant of interest in the system is τ min, then

NSUM

t f
>

2
τmin

(97)

In our example, the significant wavelength of the Gaus-
sian pulse is λ ≈ 1.5b, or 1.5 m. Hence, the significant
time period is

τ =
λ
c

= 5×10−9 (98)

Using the Nyquist criterion, the minimum value of NSUM

would be

NSUM =
45×10−9

1
2 5×10−9

= 18 (99)
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Figure 5 : Convergence of relative error for different val-
ues of NSUM and aT .

However, this is the bare minimum; a good convergence
is obtained for NSUM slightly higher than this, normally 3
or 4 times the value obtained by Eq. 97.

6 Scattering Problem and Radar Cross Section
(RCS) Computation

Scattering cross section (or Radar cross section) is a mea-
sure of the amplitude of a scattered wave from a body in
any particular direction. For a plane wave incident on an
infinite cylinder, the bistatic scattering cross section per
unit length of cylinder, also called the scattering width is
given by

σ(φi,φs) = lim
r→∞

2πr
|Es(r,φs)|2
|Ei(0,φi)|2

(100)

The Radar cross section is then defined as

RCS = 10log(σ) (101)
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6.1 Computation of RCS using the proposed hybrid
formulations

The computation of RCS using the hybrid formulation
proceeds on similar lines as in the case of the time do-
main finite element methods. The grid used is unstruc-
tured and consists of triangular elements. The finite do-
main is surrounded by perfectly matched layers (PML).
The formulation due to [Sacks, Kingsland, Lee, and Lee
(1995)] is employed for the purpose as to approximate
an infinite domain. Equations 1 were then solved using
the present formulations. The finite domain solution is
then converted to a far field solution. If Es and Hs are the
solutions for the scattered electric and magnetic fields on
a surface S, then the corresponding fields at any point r0

can be obtained using the relation; see Bladel (1985)

Es(r0) =
1

4π

∫
S

[
(n̂ ·Es)∇φ +(n̂×Es)× ∇φ

− jωµ0(n̂×Hs)φ
]

dS

Hs(r0) =
1

4π

∫
S

[
(n̂ ·Hs)∇φ +(n̂×Hs)× ∇φ

− jωε0(n̂×Es)φ
]

dS

(102)

As an example, the scattering of a TE wave by an infinite
metal cylinder was analyzed using the proposed develop-
ments. The wavelength of the incident wave λ was taken
to be same as the radius of the cylinder. The mesh con-
sisted of 15,763 nodes and 30,397 elements, as shown in
Fig. 6. aT was chosen to be 5 and NSUM = 256. An FFT
performed on the steady state solution gave the ampli-
tudes of the scattered wave. Using these values in Eq.
102 gave the far-field quantities. Then, the RCS was
computed using Eq. 100 and Eq. 101. The computed
RCS was then compared with that calculated using the
analytical solution as shown in Fig. 8. The excellent ac-
curacy of the results is noteworthy.

7 Discussion of Hybrid Finite Element Method

The hybrid finite element method with Laplace trans-
forms provides a way of finding the time domain re-
sponse without time-stepping. For very large meshes,
the explicit time stepping approaches often limit the time
step due to stability limitations, and other drawbacks
such as numerical dispersion are also inherent. Durbin’s

Figure 6 : Scattering of a plane TE wave by a coated per-
fectly conducting cylinder; Computational domain and
the finite element mesh employed.

algorithm approximates the Laplace Inversion to a good
extent, but relies on multiple solves of the system for dif-
ferent values of s. To have a comparison, let us consider
the RCS example considered in the previous section. In
the present formulation of the RCS example, we used
NSUM = 256. The size of the global matrix is given by

Ng,s = 2×do f ×Nn (103)

where, do f is the degrees of freedom per node and Nn is
the number of nodes. For the mesh in the example, Nn =
15,763. Hence, Ng,s = 94,578. Therefore, to find the
response at 45 ns, it amounts to 256 solves of the global
matrix of size 94,578 (alternatively, an EBE procedure
could be readily employed).

For an explicit time-stepping algorithm, the global matrix
size is

Ng,t = do f ×Nn (104)

In our case, Ng,t = 47,289. According to [Morgan, Has-
san, and Peraire (1996)], the time step required or a time-
stepping algorithm is

∆t = min(
√

µeεehe) (105)
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Figure 7 : Scattering of a plane TE wave by a coated per-
fectly conducting cylinder; Detail of the computed con-
tours of the scattered Ez field.

The minimum length of edge in our problem was he,min =
0.0078 m. Thus, ∆t = 0.026 ns. Hence, one needs

45
0.026 = 1732 time step computations with vector oper-
ation of size 47,289 to reach 45 ns (and for large tran-
sient duration the size is much larger). However, for low-
order time stepping methods, the electric and magnetic
solutions have significant dispersion error which necessi-
tates the need to employ high-order time stepping meth-
ods which increases the effective vector operations by
the number of stages employed in the high-order time
stepping methods and also the number of time steps em-
ployed as the critical time step also reduces with the
spatial order of approximations (see Cockburn and Shu
(2001) Table 2.2, page 191).

However, for the hybrid method, the real savings comes
from the following three facts. First, note that the solve
for each s value is independent, and so the formulations
can be easily parallelized. For this example, as an illus-
tration, if the analysis is conducted on a 256 processor
parallel computer, then effectively there exists the no-
tion of only a single system with a single solve. This
is especially attractive for problems analyzed on paral-
lel computers. Much shorter simulation times can be
achieved since there is no need of processor communica-
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Figure 8 : Scattering of a plane TE wave by a coated
perfectly conducting cylinder; Comparison between the
exact and the computed distribution of the RCS employ-
ing the hybrid finite element formulation.

tion during the solve. Second, each of these independent
solves can be carefully chosen such that the total number
of computation is a minimum. For example, to reduce
the numerical error of a solution, we would need dou-
ble the complex frequency points for which the global
matrix is solved, and all the complex frequency points
already solved for can be reused. That is, assume that to
start with, a problem is analyzed with a minimum number
NSUM frequency points. The frequency points used in the
analysis are a,a+J 2π

T ,a+J 4π
T ,a+J 6π

T , · · · ,a+J 2πNSUM
T .

To reduce the truncation error by using 2NSUM points, we
need to solve a global matrix for a,a+J 2π

T ,a+J 4π
T ,a+

J 6π
T , · · · ,a+J 4πNSUM

T . Notice that the solution for the first
half of the frequency points are already available and the
global matrix needs to be solved only for the complex
frequency points higher than a+J 2πNSUM

T . Thus, it is pos-
sible to start off at a small NSUM and progressively refine
the solution till the desired convergence is achieved. In
a typical time-marching methods, to refine the solution,
the whole problem would have to be solved again right
from the initial state with a smaller time step. Thirdly,
the proposed formulations readily permit the solution at
any desired time point of interest during a transient anal-
ysis without restriction on the step chosen. In this regard,
for preliminary design analysis of RCS computations, the
approach is fairly effective.
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8 Conclusions

A novel hybrid computational methodology for solving
Electromagnetic field problems has been developed us-
ing the inverse Laplace transform technique of Durbin
[Durbin (1974)]. Numerical results were compared with
the exact analytical solutions and were found to be of
good accuracy. The method promises a number of ad-
vantages; in particular over the traditional paradigms of
time-stepping methods, and also the frequency domain
analysis. The considerations include:

• The global matrix for each complex frequency is in-
dependent of the other frequency points; hence, the
solution can be easily parallelized on a multi-node
super-computer, without any inter-nodal communi-
cation.

• In a single-processor scenario, the fact that the vari-
ation of the global matrix from one frequency point
to a nearby frequency point is usually small obvi-
ates the need for preconditioning the global matrix
at each step, which can yield significant improve-
ment in solve times.

• The system solution can be refined simply by con-
sidering more complex frequency points and adding
on to the already obtained solution. There is no need
to restart the solve process.

• The method gives good results for the present
case of RCS computations in electromagnetic wave-
propagation problems since the complex frequency
integration contour avoids any poles of the system,
including the ones on the J ω axis.

• The approach has the advantage of obtaining the so-
lution at any desired time point of interest without
severe restrictions such as those placed on time step-
ping based methods.
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