
Copyright c© 2004 Tech Science Press cmes, vol.5, no.5, pp.395-407, 2004

High-Order Accurate Methods for Time-domain Electromagnetics

J. S. Hesthaven1 and T. Warburton2

Abstract: We discuss the formulation, validation, and
parallel performance of a high-order accurate method
for the time-domain solution of the three-dimensional
Maxwell’s equations on general unstructured grids. At-
tention is paid to the development of a general discontin-
uous element/penalty approximation to Maxwell’s equa-
tions and a locally divergence free form of this. We fur-
ther discuss the motivation for using a nodal Lagrangian
basis for the accurate and efficient representation of so-
lutions and operators. The performance of the scheme
is illustrated by solving benchmark problems as well as
large scale scattering applications.

keyword: Time-domain CEM, Maxwell’s equations,
high-order accurate methods, unstructured grids, parallel
computing.

1 Introduction

The increasing interest in the modeling and design of
emerging technologies such as very low observable ve-
hicles, ground/foliage penetrating radars, and phase sen-
sitive components, imposes requirements on the accu-
racy and performance of the computational tools well
beyond that of existing techniques. The eminent need
to identify new approaches to electromagnetic modeling
and design is further emphasized by the requirements
to accurately model the interaction of very broad band
signals with electrically large and geometrically com-
plex objects, often including regions of inhomogeneous,
anisotropic, lossy materials.

While frequency domain methods are less appealing for
the modeling of such problems due to the complexity as-
sociated with broad band applications and the inclusion
of complex realistic multilayered material models, most
current time-domain methods remain 2nd order accurate
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at best. This severely limits their ability to correctly rep-
resent wave motion over long distances unless the grid
is prohibitively fine. Furthermore, most standard tech-
niques, i.e., the finite-difference time-domain method
[Taflove (1995); Nambura, Mark and Clarke (2004)] in
particular and the finite-volume/finite-element methods
[Mohammadian, Shankar and Hall (1991); Rao (1999)]
to a lesser extent, suffer from an inability to accurately
and efficiently represent complex geometries. Several
recent efforts have been aimed at addressing the short-
comings of the classical FDTD schemes, e.g., embed-
ding schemes to overcome staircasing [Ditkowski, Dridi,
and Hesthaven (2001)] and high-order finite difference
schemes [Turkel and Yefet (2000); Yefet and Petropou-
los (2001); Yefet and Turkel (2000); Xie, Chan and
Zhang (2002)]. However, these technqiues largely re-
main experimental. In the context of finite element meth-
ods, recent years has seen a number of developments,
both of low [Hassan, Morgan, Jones, Larwood, and
Weatherill (2004)] and high-order accuracy [Castillo,
Koning, Rieben, and White (2004)]. While these are
well suited to deal with complex geometries, they be-
come implicit, at higher than 2nd order accuracy. Ef-
forts to address this by proposed fast and accurate time-
advancement methods are discussed in [Jose, Kanapady,
and Tamma (2004)] and references therein.

For the accurate modeling of large scale scattering and
penetration applications the shortcomings of low order
methods render them impractical. However, understand-
ing the source of the problems also suggest that a high-
order time-domain solution technique may offer the effi-
ciency and accuracy required for future large scale CEM
modeling capabilities. High-order methods, with spec-
tral methods representing the ultimate limit, are charac-
terized by being able to accurately represent wave prop-
agation over very long distances, using only a few points
per wavelength and with an error accumulation rate that
is significantly reduced as compared to 2nd order ac-
curate schemes [Kreiss and Oliger (1972)]. For three-
dimensional large scale computations, this translates into
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dramatic reductions in the required computational re-
sources, i.e., memory and execution time, and promises
to offer the ability to model problems of a realistic com-
plexity and size.

Traditionally, the development of suitable high-order so-
lution techniques has been held back by the difficulties
associated with formulating stable and high-order accu-
rate schemes for solving wave-dominated problems in
geometrically complex domains. The recent develop-
ment of stable discontinuous element/Penalty methods
[Cockburn and Shu (2001); Hesthaven (2000)] and ef-
ficient and accurate ways of representing solutions and
operators on simplices [Hesthaven and Gottlieb (1999);
Hesthaven and Teng (2000); Hesthaven and Warbur-
ton (2002)] has paved the way for overcoming these re-
strictions associated with classical high-order methods.
In contrast to high-order schemes based on classical fi-
nite element techniques, the approach taken here leads to
fully explicit schemes.

As we shall discuss further, the combination of these re-
sults enables us to formulate and implement geometri-
cally flexible, high-order accurate and computationally
efficient and robust methods for the time-domain solu-
tion of Maxwell’s equations. Efforts of a similar fla-
vor, yet with several distinct differences are described
in [Kopriva, Woodruff and Hussaini (2000); Kopriva,
Woodruff, and Hussaini (2002); Warburton (2000)].

2 The Physical Problem

We shall consider the solution of Maxwell’s equations in
the general domain,Ω, in the scattered field formulation

ε
∂Es

∂t
= ∇ ×Hs +σEs +SE , (1)

µ
∂Hs

∂t
= −∇ ×Es +SH , (2)

∇ · εEs = ρ , ∇ ·Hs = 0 , (3)

whereEs andHs signify the scattered electric and mag-
netic fields, respectively,ε andµ represents the local per-
mittivity and permeability, andρ is the space charge. The
source terms take the form

SE = −(
ε−εi) ∂Ei

∂t
+(σ−σi)Ei , (4)

SH = −(
µ−µi) ∂Hi

∂t
, (5)

whereεi(x), µi(x), andσi(x) represent the permittivity,
permeability, and conductivity of the media in which the
incident field,(Ei,Hi), is a solution to Maxwell’s equa-
tions.

In all subsequent computations we assume that Eqs.(1)-
(2) are normalized such that the vacuum speed of light is
unity, i.e.,ε0 = µ0 = 1, all lengths are scaled with respect
to a chosen length scale, and the electric fields are scaled
with the vacuum intrinsic capacitance. We shall also as-
sume that that the incident field is a vacuum solution, i.e.,
εi = µi = 1, andσi = 0.

Along the interface of any two dielectric bodies, en-
dowed with an outward pointing normal vector, ˆn, the
tangential field components remain continuous, i.e.,

n̂× (Es
1−Es

2) = 0 , n̂× (Hs
1−Hs

2) = 0 , (6)

everywhere. At a perfect electric conductor, on the other
hand, the fields are unable to penetrate the body and the
conditions are

n̂×Es = −n̂×Ei , n̂ ·Hs = −n̂ ·Hi , (7)

indicating that the total tangential electric and normal
magnetic field components must vanish to enforce no
penetration.

3 The Computational Scheme

We shall seek approximate solutions to Maxwell’s equa-
tions in a general domain,Ω, containing a collection of
scattering bodies. To facilitate the required geometric
flexibility, we represent the computational domain as the
union ofK non-overlapping body-conforming tetrahedra,
D.

This decomposition introduces two issues that will need
attention, i.e., how to represent the fields and in which
way these approximate fields are required to satisfy
Maxwell’s equations. In the following we shall discuss
this in more some detail, albeit in the reverse order.
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3.1 The Penalty Formulation

As is common, we assume that Eq.(3) is satisfied by
the initial conditions and only consider the solution of
Eqs.(1)-(2). In Sec. 3.1.1 we shall, however, return to
this issue.

Let us express Maxwell’s equations, Eqs.(1)-(2), in con-
servation form

Q(x)
∂q
∂t

+ ∇ ·F(q) = S(qi,x) , (8)

where we have introduced the state vector,q, and the flux
F(q) = [F1(q),F2(q),F3(q)]T , as

q =
[

E
H

]
, Fi(q) =

[ −êi ×H
êi ×E

]
.

respectively. Here ˆei signifies the three Cartesian unit
vectors. We also have the material coefficient matrix,
Q = diag(ε,ε,ε,µ,µ,µ), and the source,S = [SE,SH ]T ,
depending on the incident field,qi = [Ei,Hi]T .

To formulate the scheme, let us assume that there exists
an approximate solution,qN ∈ Pn, on the form

∀x ∈ D : q(x, t)� qN(x, t) =
N

∑
i=1

q̂i(t)ψi(x) , (9)

within each tetrahedron. Similarly, we assume thatF N

andSN are polynomial representations of the flux and of
the source, respectively.

Throughout, we usePn to signify the minimal polyno-
mial space for approximation on the tetrahedron, i.e.,
Pn = span{xα1yα2zα3}|α| ≤ n = span{ψi}N

i=1 with α =
(α1,α2,α3) being a multi-index, and

dimPn = N =
(n+1)(n+2)(n+3)

6
,

are the number of unknowns on each element.

To seek equations for these N unknowns, we require the
approximate solution to Maxwell’s equations,q N , to sat-
isfy

∫
D

(
Q

∂qN

∂t
+ ∇ ·FN − SN

)
Φi(x)dx

=
∮

δD
Ψi(x)n̂ · [FN −F∗] dx . (10)

HereΦi andΨi represent sequences of N test functions,
F∗ signifies a numerical flux and ˆn is an outward point-
ing unit vector defined at the boundary of the element.
If the numerical flux is consistent, the scheme is clearly
consistent. On the other hand, boundary/interface condi-
tions are not imposed exactly but rather weakly through
the penalizing surface integral. Within this multi-element
context, the formulation is inherently discontinuous and
yields, through its very construction, a highly parallel lo-
cal scheme.

Let us for simplicity assume that the materials can be
taken to be constant on each element, i.e., Q is constant,
and also that all sides of the tetrahedron are planar. In-
troducing the operators

M̂i j =
∫
D

ψ jΦi dx , Ŝi j =
∫
D

∇ψ jΦi dx , (11)

F̂i j =
∮

δD
Ψiψ j dx , (12)

transforms Eq.(10) into the explicit scheme

QM̂
dq̂
dt

+ Ŝ· F̂ − M̂Ŝ = F̂n̂ · [F̂ − F̂
∗] . (13)

whereq̂ represents the 6N-vector of coefficients forqN ,
and similarly for F̂ , Ŝ, andF̂

∗
for the flux, the source,

and the numerical flux, respectively.

In choosingΦi, Ψi and the numerical flux,F∗, one has
a large degree of freedom in designing schemes suit-
able for solving conservation laws. Here we focus on
the Galerkin formulation in which caseΨi(x) = Φi(x) =
ψi(x). It is worth noting that after integration by parts in
Eq.(10) this scheme becomes the much studied discontin-
uous Galerkin method [Cockburn and Shu (2001)]. This
is, however, only one among numerous formulations in
the same family of discontinuous element/Penalty meth-
ods. We refer to [Hesthaven (2000); Hesthaven and Got-
tlieb (1999); Hesthaven and Teng (2000)] for examples
and further references.

To finalize the formulation of the scheme, we need
to specify the numerical flux,F ∗, which is responsi-
ble for passing information between the elements and
imposing the boundary conditions. Given the linear-
ity of Maxwell’s equations, it is natural to use upwind-
ing through characteristics to obtain [Mohammadian,
Shankar and Hall (1991)]
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n̂ · [F −F ∗] =

{
Z−1n× (n× [E]−Z+[H])
Y
−1

n× (n× [H ]+Y +[E])
, (14)

where[q] = q−−q+ measures the jump in the field val-
ues across an interface. Superscript ’+’ refers to field
values from the neighbor element while superscript ’-’
refers to field values local to the element. To account for
the potential differences in material properties in the two
elements, we have introduced the local impedance,Z±,
and conductance,Y±, defined as

Z± =
1

Y± =

√
µ±

ε±
,

and the sums

Z = Z+ +Z− , Y = Y+ +Y− ,

of the local impedance and conductance, respectively.

The simplicity of the scheme, Eq.(13), allows a full semi-
discrete convergence analysis with the central result

‖q(t)−qN(t)‖L2(Ω) ≤C
hσ

np

[
1+C(T )

n3/2

h
t

]
‖q(0)‖H p(Ω)

where 0≤ t ≤ T andp ≥ 3/2. Hereh signifies the max-
imum edge length,σ = max(n +1, p) and‖ · ‖L2(Ω) and
‖ · ‖H p(Ω) represent the brokenL2 and Sobolev-p norm,
respectively.

This result confirms convergence in anhp-sense, i.e.,
one can resolve the solution by refining the grid,h-
convergence, and/or increasing the order of the scheme,
p-convergence, provided the solution is sufficiently
smooth. Furthermore, the error can grow at most lin-
early with the growth rate controlled by the resolution.
The details of the analysis can be found in [Hesthaven
and Warburton (2002)].

3.1.1 A Locally Divergence Free Formulation

When deriving the scheme, Eq.(13), we neglected the di-
vergence conditions on the fields, Eq.(3), relying on the
observation that Eq.(3) is a condition on the initial con-
ditions to Eqs.(1)-(2). The scheme in Eq.(13) does not

solve Eqs.(1)-(2), however, but rather an approximation
to it. Hence, one needs to consider the question of how
well Eq.(13) conserves the divergence.

Simply using the convergence result given above, one
easily shows [Hesthaven and Warburton (2002)]

‖∇ ·qN(t)‖L2(Ω) ≤
hσ−1

np−1

[
1+C(T )

n5/2

h
t

]
‖q(0)‖H p(Ω)

providedq ∈ H p(D), p ≥ 7/2. Thus, one still have con-
trol over the divergence error by the resolution, provided
the solution is sufficiently smooth. However, for some
applications, in particular when computing at low order,
this may not be acceptable.

It is, however, possible to reformulate the scheme to re-
cover a formulation that locally conserves the divergence
of the initial conditions to machine accuracy. In doing so,
we will need to assume that all tetrahedra have straight
faces only. While this may not be true in some compu-
tations, the number of elements with curved faces will
be a small fraction of the total number of the elements.
Hence, the impact of violating this assumption will be
small if any.

To recover a locally divergence free formulation, we
must first recognize that a discrete divergence operator,
D, can be given as

q̂′ = M̂−1Ŝ· q̂ = D̂ · q̂ .

This follows directly from the definition of the operators
in Eqs.(11)-(12), the fact that we are working with poly-
nomials and assuming that all integrations are done ex-
actly.

Now recall that Eq.(13) is a linear problem which, for
simple elements, has no mechanism for generating alias-
ing errors. Taking the divergence of Eq.(13) yields

Q
dD̂ · q̂

dt
+ D̂ · M̂−1Ŝ· F̂ − D̂ · Ŝ = D̂ · M̂−1F̂n · [F̂ − F̂

∗] .

Recall that,D̂ · F̂ = D̂× q̂, is the discrete representation
of the rotation operator. Thus, forF N ∈Pn, which is true
under the assumption of linearity, straight faced tetrahe-
dra and piecewise constant materials, we recover that
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D̂ · D̂× q̂ = 0 ,

to machine precision as in the continuous case. Further-
more, from Eqs.(4)-(5) we see that D· Ŝ = 0 provided
only that the initial conditions, or rather its polynomial
representation, is divergence free and thatρ = 0.

This implies that we can isolate the source of generation
of divergence since

Q
dD̂ · q̂

dt
= D̂ · M̂−1F̂n · [F̂ − F̂

∗] ,

i.e., it is originating from the weakly imposed fluxes at
the interfaces and boundaries.

This also suggests that a locally divergence free solution
can be recovered by considering the following problem

QM̂
dq̂
dt

+ Ŝ· F̂ − M̂Ŝ = F̂n · [F̂ − F̂
∗] ,

QM̂
d p̂
dt

+ Ŝ· F̂ − M̂Ŝ = 0 , (15)

where p̂ is a solution, evolved in tandem with the origi-
nal solution and at no additional computational expense,
with the divergence of the initial conditions.

In the special case ofρ = 0, one can usepN = [EN ,HN ]T

to recover divergence free approximations to both fields.
In the general case,pN = HN , provides a locally diver-
gence free approximation toH. This is, however, gener-
ally less accurate that ˆq due to the missing boundary term
in the equation for ˆp.

3.2 The Nodal Element

To complete the description of the scheme, Eq.(13) or
Eq.(15), we need to specify the polynomial basis,ψ i(x),
and define the expansion coefficients, ˆq.

We limit the complexity by introducing a standard tetra-
hedron,

I =
{
(ξ,η,ζ) ∈ R3|(ξ,η,ζ)≥ −1;ξ +η +ζ ≤ 1

}
.

We assume that a smooth mapping,Π : I → D, exists be-
tweenI and any general tetrahedron,D. Let J(ξ) signify

the non-singular transformation Jacobian which enables
us to compute all operators, Eqs.(11)-(12), by integration
on I. It is worth recalling that for any straight faced tetra-
hedron,J will be constant, i.e., one needs only compute
and store the discrete operators onI as all others follow
by linear scaling.

In this setting, we begin by considering the appropri-
ate choice of the basis. An immediate candidate is the
monomial basis,ψi(x) = xα1yα2zα3 with |α| ≤ n. As is
well known, however, this will lead to extremely illcon-
ditioned operators as the basis becomes almost linearly
dependent for high polynomial order and prohibits the
stable and accurate computation at high order.

The way to overcome such conditioning problems is to
seek an orthonormal basis onI. Such a basis has been
known for a long time [Proriol (1957); Koornwinder
(1975)]

ψ̃i(ξ) = P(0,0)
α1 (r)

(
1− s

2

)α1

×P(2α1+1,0)
α2 (s)

(
1− t

2

)α1+α2

P(2α1+2α2+2,0)
α3 (t) ,

γi =
2

2α1 +1
2

2(α1+α2)+2
2

2(α1+α2 +α3)+3
,

ψi(ξ) =
ψ̃i(ξ)√γi

, (16)

where

r = −2(1+ξ)
η +ζ

−1 , s =
2(1+η)

1−ζ
−1 , t = ζ ,

andP(α,β)
n (x) represents the classical Jacobi polynomial

of ordern [Szegö (1939)].

This leaves the question of how to compute the expan-
sion coefficients, ˆq. Clearly, with an orthonormal basis at
hand, it may seem natural to exploit the orthonormality
to defineq̂. The impact of doing so is that all modes are
needed to evaluateqN pointwise. This lack of separation
between inner modes and boundary modes is not optimal
for the current formulation where the flux term in Eq.(13)
depends on the fluxes at the boundary ofD only. To over-
come this issue, which can impact the performance as
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discussed shortly, one could seek to give up the strict or-
thonormality of the basis to achieve a separation between
inner and boundary modes. Such a basis, which share a
number of similarities with Eq.(16), is discussed in [Kar-
niadakis and Sherwin (1999)] and provides an approach,
albeit rather complex, to achieve arbitrarily high order
accuracy.

Here we take a different approach and define ˆq such that
qN is an interpolating polynomial, i.e., we require that

∀i : qN(ξi, t) =
N

∑
j=1

q̂ j(t)ψ j(ξi) ,

whereψ j(ξ) is the orthonormal basis in Eq.(16) andξ i
are N predefined grid-points inI. On vector form this
becomes

qN = Vq̂ , V i j = ψ j(ξi) , (17)

where V is a multidimensional Vandermonde matrix.
This allows us to define a genuine multivariate La-
grangian basis as

qN(ξ, t) =
N

∑
i=1

qN(ξi, t)Li(ξ) , VT L = ψ ,

where the latter expression for evaluation of the La-
grange polynomials follows from the interpolation prop-
erty. HereL = [L1(ξ), ..,LN(ξ)]T and the basis is given
asψ = [ψ1(ξ), ..,ψN(ξ)]T .

The final issue in need of attention is the choice of the
nodal points,ξ i, within I. As is well known, the suc-
cess of high-order Lagrangian interpolation is critically
dependent on the correct distribution of the nodes. This
is a problem that has received some attention recently and
nodal distributions, allowing for the construction of well
behaved unique Lagrange polynomials up to order 10,
can be found in [Chen and Babuˇska (1996); Hesthaven
and Teng (2000)].

The nodal distributions are characterized by having ex-
actly N nodes. Furthermore, the nodal set includes the
vertices, the edges, and the faces of the tetrahedron. The
number of nodes on each face is exactly that is required to
support a two-dimensional multivariate polynomial, i.e.,
N2d = (n+1)(n+2)/2 nodes on each face.

In this framework, it is more natural to recast the scheme
in physical space rather than in modal space as given in
Eq.(13). Using the identity in Eq.(17) and multiplying
Eq.(13) with(V−1)T from the left yields

QM
dqN

dt
+S·F N −MSN = Fn · [FN −F ∗] . (18)

Here we haveqN , FN , SN , andF∗ representing the 6N-
vector of nodal values in physical space of the solution,
the flux, the source, and the numerical flux, respectively.

The discrete, pointwise operators, are given as

Mi j =
∫
D

LiL j dx , M =
(
VV T )−1

, (19)

Si j =
∫
D

Li∇ Lj dx , S= (V−1)T ŜV−1 , (20)

where the modal operators are given in Eqs.(11).

The form of the boundary operator,F , is simplified as a
consequence of the uniqueness of the Lagrange polyno-
mial and the structure of the nodal points, i.e., integration
of the three-dimensionalLi over the surface is equivalent
to the sum of the integration of the two-dimensional La-
grange polynomials defined by the nodal distribution on
the faces. This implies that

Fface
i j =

∮
face

l2D
i l2D

j dx , (21)

F = ∑
faces

RT
f ace(V

−1
2D)T FfaceV−1

2DRf ace .

Herel2D
i represents the two-dimensional Lagrange poly-

nomials defined by the nodes on each of the 4 faces,
V2D is the associated Vandermonde matrix similar to the
three-dimensional form, Eq.(17), and Rf ace is anN2d ×N
which serves to extract those nodes situated at each face
of the element. This reflects the natural separation be-
tween internal and boundary nodes.

To reiterate the importance of the separation between in-
ternal and boundary nodes, which is immediate when us-
ing the nodal element, we note that the operation count
for evaluating the scheme, Eq.(13), assuming no separa-
tion, isO(6N2) for each variable. For the nodal scheme,
or a modal scheme with a similar separation, the work
scales likeO(2N2 +4NN2d). Hence, the relative saving
in operations scales as
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Work with Nodal Basis
Work with Simple Modal Basis

=
1
3

+
2

n+3
.

This clearly becomes increasingly important as the order
of the approximation,n, increases, although even forn =
3 do we find a 1/3 reduction.

Another important advantage of the nodal element is the
ease by which one can relax the restriction on tetrahedra
having straight faces only. Clearly, this will impact the
evaluation of the discrete operators, Eqs.(11)-(12) and
Eqs.(19)-(21), in a similar way by requiring specific op-
erators for each element and sufficient accuracy in the
integration to evaluate entries in the operators. However,
the evaluation of the boundary fluxes, Eq.(14), is straight-
forward in a nodal representation even in the normal vec-
tors, n̂, have variation along the faces. In a modal rep-
resentation, this will require convolutions and additional
work when setting up the boundary terms.

Number of Processors 64 128 256 512
Relative time 1.00 0.48 0.24 0.14

Table 1 : Relative time for a 245.000 element grid with
6’th order elements as a function of number of proces-
sors. All computations performed at IBM SP located at
SRC NAVO. One unit time, representing one complete
flux evaluation, corresponds to 8.1 sec wall clock time.

3.3 Parallel Performance

The discontinuous element formulation discussed above
enables a highly efficient parallel implementation on con-
temporary large scale distributed memory machines. As
a verification of this, we list in Table 1 the relative par-
allel speedup for a single large scale application, and ob-
serve superlinear scaling. Similar and more extensive
studies, given in [Hesthaven and Warburton (2002)],
confirm this high parallel efficiency for a variety of ap-
plications.

4 Verification and Beyond

In the following we shall present some computational re-
sults to verify the performance and high-order accuracy
of the given in Eq.(18). We advance the semi-discrete
scheme in time using a low-storage 4th order explicit

Runge-Kutta method [Carpenter and Kennedy (1994)]
and terminate the computational domain with a combina-
tion of stretching of the grid and characteristic boundary
conditions at the outer boundaries.
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Figure 1 : On top we show the temporal evolution of
maximum error for different orders of approximation,n,
for a wave captured in a metallic cavity. The bottom fig-
ure illustrates the ability to compute a fully divergence
free solution, using the divergence free scheme with the
extra variable,p. This result is obtained with n=6.

4.1 Sanity Checks

As a test of the analysis and basic properties of the
scheme, we consider a two-dimensional, 2λ long cav-
ity with metallic end plates and assumed periodicity in
y. The cavity is tiled with 8 triangles and a wave is used
as initial conditions.
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In Fig. 1 we show the temporal evolution of error for dif-
ferent orders of approximation, confirming the expected
exponential convergence as control of the growth rate.
Also in Fig. 1 we confirm the validity of the divergence
free formulation in Eq.(15). While the additional vari-
able,p, provides a divergence free approximation to the
solution, it is generally about an order of magnitude less
accurate.

X Y

Z

Figure 2 : Example of a body conforming grid of aka =
10 sphere. The open circles signify the vertices of the
triangles on the surface and the full dots the local nodes
for 6th order elements.

As a first verification of the general three-dimensional
framework, let us consider plane wave scattering by a
ka = 10 perfectly conducting sphere, the analytic solu-
tion of which is given by a Mie-series. The surface of the
fully bodyconforming grid is illustrated in Fig. 2. The
grid has a total of 3000 elements, with an average edge
length at the sphere of 4λ/5.

In Fig. 3 we illustrate the convergence of the scheme with
a fixed grid when increasing the order of the approxima-
tion within each tetrahedron. Even forn = 3, i.e., a third
order scheme with about 5 points per wavelength, do we
compute a reasonable solution while increasing the order
yields a rapidly converging solution as one would expect.

4.2 Benchmarks

As an example of a problem, involving penetration, we
consider plane wave scattering by a dielectric cylinder,
5λ long, radius of 1λ and made of a non-magnetic ma-
terial with a permittivity ofεr = 2.25, similar to that of

θ

R
C

S
(d

B
m

)

0 30 60 90 120 150 180
-10

-5

0

5

10

15

20

25

30

a)

n=1

n=2n=3

n=4
Exact

Figure 3 : Plane wave scattering by aka = 10 metal-
lic sphere for a fixed grid and increasing order,n, of the
polynomial approximation. We show the convergence of
RCS(θ,0) for vertical polarization (TM)
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Figure 4 : Scattering by a finite length di-electric cylin-
der with εr = 2.25. We show the RCS(θ,0) for vertical
polarization (·) of the illuminating field and RCS(θ,90)
for horizontal polarization (·) compared with results ob-
tained using a pseudospectral axi-symmetric code (full
line) [Yang and Hesthaven (1999)]

glass. We find that using a total of approximately 67.000
elements, supporting a 4th order approximation and with
an average vacuum edge length at the cylinder ofλ/3,
suffices to accurately predict the far field scattering.

In Fig. 4 we show a direct comparison between the full
bistatic RCS for a plane wave impinging directly at the
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end of the cylinder as computed using the current frame-
work as well as an independently verified pseudospectral
multidomain axisymmetric code [Yang and Hesthaven
(1999)]. As expected we find an almost perfect agree-
ment between the results of the two schemes over ap-
proximately 50 dB dynamical range.
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Figure 5 : Details of the body conforming grid used to
compute scattering by a large PEC cone-sphere. The
surfaces are triangulated for visualization based on the
nodes of the high-order elements

As a considerably more challenging benchmark problem,
we consider plane wave scattering by a perfectly con-
ducting conesphere, consisting of a 60.5 cm long cone
with half angle of 7 deg, capped smoothly with a spheri-
cal cap of radius 7.49 cm [Volakis (1992)]. Illuminated
by a 9 GHz plane wave, the object is approximately 21
wavelengths long. What makes the problem challenging,
though, is not only its electric size but also the very sharp
apex and the long shadow region in which surface waves
are excited and travel to focus at the apex. Details of

the bodyconforming grid, shown in Fig. 5 illustrated the
geometry of the problem.
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Figure 6 : Plane wave scattering by a metallic cone-
sphere illuminated axially by a plane wave. On top we
show RCS(θ,0) for incidence on the spherical cap, while
the bottom figure shows similar results for RCS(θ,0) for
incidence directly at the apex. Both results are for verti-
cal (TM) polarization of the incident wave and compared
to results obtained by a CFIE frequency domain solver
[Shore (2000)].

In Fig. 6 we show a detailed comparison of the full
bistatic cross-section for axial plane wave illumination of
the conesphere, showing excellent agreement with high
fidelity results obtained using a CFIE integral equation
solver with a very high surface resolution. The compu-
tation utilizes about 270.000 elements at 3rd order with
a resolution at the surface of up to 20 points/wavelength.
We note the excellent agreement and a dynamic range ex-
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Z

Figure 7 : Details of the surface grid used to compute
scattering by a PEC military aircraft. The triangulated
surface corresponds to the finite element grid, i.e., each
triangle supports a high-order element.

ceeding 50 dB. Similar results and agreement have been
found for TE polarized illumination.

4.3 Applications

As a final example of realistic complexity, we consider
plane wave scattering by a military aircraft at 600MHz, at
which point the aircraft is approximately 50 wavelengths
long. The grid consists of 245.000 tetrahedra. A section
of the surface grid is shown in Fig. 7.

The aircraft is assumed to be a perfectly conducting
metallic shell, and the wave illuminates the aircraft
broadside in the plane of the wings. While no compu-
tational results or measurements are available for vali-
dation of the results, the ability to compute at different
orders at the same grid provides a way of establishing
convergence of the results. In Fig. 8 we show the bistatic
RCS computed a 3 different orders of approximation,
n = 1−3. The results confirm convergence, at least for
the 2nd and 3rd order schemes.

An illustration of the surface fields are given in Fig.9
where we show the distribution over the full aircraft.

5 Concluding Remarks

In the paper we have discussed the formulation and
validation of a fully unstructured, high-order accurate
scheme for the time-domain solution of Maxwell’s equa-
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Figure 8 : 600 MHz plane wave scattering by a PEC
military aircraft, illuminated broadside by a plane wave.
On top we show RCS(θ,0) for and measured in the plane
of the wings, while the bottom figure shows equivalent
results for RCS(θ,90). Both results are for TE- polariza-
tion. Both graphs have results obtained for approxima-
tion orders ofn = 1− 3, illustrating that the results are
converged.

tions. The discussion has focused on the formulation of
the scheme and how choices have been made with per-
formance in mind. We have also presented a formulation
which enables the strict conservation of the divergence
and illustrated the very high parallel performance of the
scheme. The evaluations include both standard bench-
marks for scattering and penetration as well as nontrivial
test cases and confirms the expected accuracy. It should
be emphasized that while we have focused on the use
of tetrahedra to fill the volume, everything said carries
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Figure 9 : Field distribution on PEC military aircraft at 600 MHz broadside plane wave illumination.

over to methods based on hexahedra, mixed elements and
even custom-designed nodal elements.

While the current framework provides an accurate, ge-
ometrically flexible, efficient, and robust computation-
ally kernel for the solution of Maxwell’s equations much
work is still needed to further expand the capabili-
ties. Particular areas of interest include improved ab-
sorbing boundary conditions to increase the dynamic
range, mixed implicit/explicit and/or local time-stepping
scheme to enable modeling of geometrically small fea-
tures such as coatings and embedded antennas, and the
use of impedance boundary conditions where possible.
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