Reflection in a Level Set Framework for Geometric Optics ${ }^{1}$

Li-Tien Cheng, ${ }^{23}$ Myungjoo Kang, ${ }^{4}$ Stanley Osher, ${ }^{4}$ Hyeseon Shim, ${ }^{4}$ Yen-Hsi Tsai ${ }^{5}$

Abstract

Geometric optics makes its impact both in mathematics and real world applications related to ray tracing, migration, and tomography. Of special importance in these problems are the wavefronts, or points of constant traveltime away from sources, in the medium. Previously in [Osher, Cheng, Kang, Shim, and Tsai (2002)], we initiated a level set approach for the construction of wavefronts in isotropic media that handled the two major algorithmic issues involved with this problem: resolution and multivalued solutions. This approach was quite general and we were able to construct wavefronts in the presence of refraction, reflection, higher dimensions, and, in [Qian, Cheng, and Osher (2003)], anisotropy as well. However, the technique proposed for handling reflections of waves off objects, an important phenomenon involved in all applications of geometric optics, was inefficient and unwieldy to the point of being unusable, especially in the presence of multiple reflections. We introduce here an alternative approach based on the foundation presented in [Osher, Cheng, Kang, Shim, and Tsai (2002)]. This reworking allows the level set method to be considered for realistic applications involving reflecting surfaces in geometric optics.

1 Introduction

Geometric optics consists of an approximation to high frequency wave propagation that reduces the wave equation to a static Hamilton-Jacobi equation, the eikonal equation, for the phase, or traveltime, and transport equations for the amplitude. These two quantities, phase and amplitude, compose the singular parts of the wave

[^0]field and the geometric optics setting provides a simplified framework for characterizing them. Thus this approximation is fundamentally applied to numerous applications such as modern seismic data processing (see, e.g., [Beylkin (1985); Beylkin and Burridge (1990); Burridge, de Hoop, Miller, and Spencer (1998); Bleszynski, Bleszynski, and Jaroszewicz (2004); de Hoop and Bleistein (1997); Symes and Carazzone (1991)]). The alternative and equivalent description of ray tracing is also widely seen and used (see, e.g., [Lax (1957)]).
One quantity of interest with respect to the traveltime is the wavefront. These are simply points, forming hypersurfaces, of constant traveltime away from the sources of the waves. Thus many numerical approaches seek to construct wavefronts to piece together the traveltime if so desired. These approaches will often use instead a time dependent eikonal equation whose solution at time t contains the wavefront of traveltime t away from the sources. Our interest and emphasis will mainly be on the construction of wavefronts in a time dependent setting for isotropic wave propagations. Note in isotropic media, the ray directions considered in ray tracing are equal to the local phase directions and are orthogonal to the wavefronts.
The main difficulty encountered by numerical approaches in the construction of wavefronts in the geometric optics or ray tracing setting lies in a choice of either ease in resolution or generation of multivalued solutions. Multivaluedness in wavefronts occur when wavefronts cross and more than one ray occupies a point in space. The well known phenomenon of the formation of caustics originates from this. Solutions obtained following the Lagrangian representation of ray tracing, which involves using the method of characteristics to track the position and ray direction of points on the wavefronts, can automatically produce multivalued wavefronts but have difficulties in resolving wavefronts, especially when they are diverging. On the other hand, Eulerian approaches applied to the eikonal equation automatically
resolve all wavefronts over an underlying uniform grid in space but encounter difficulties in representing multivalued wavefronts. Much work has been devoted to bypassing these difficulties and the papers [Vinje, Iversen, Astebol, and ystdal (1996a,b); Vinje, Iversen, and ystdal (1993)], for Lagrangian approaches, and [Abgrall and Benamou (1999); Benamou (to appear, 1996, 1999); Brenier and Corrias (1996); Engquist, Fatemi, and Osher (1995); Engquist and Runborg (1995); Engquist, Runborg, and Tornberg (2002); Steinhoff, Fan, and Wang (2000); Fomel and Sethian (2001); Osher, Cheng, Kang, Shim, and Tsai (2002); Ruuth, Merriman, and Osher (2000); Symes (1996)] for Eulerian approaches, can be consulted with respect to this.
However, it was pointed out in [Engquist, Runborg, and Tornberg (2002)] that by viewing wavefronts in phase space instead of spatial space, both difficulties could be avoided at the cost of operating on higher codimensional objects in a higher dimensional space. Phase space consists of the set of (x, p), where $x \in \mathbf{R}^{n}, p \in \mathbf{R}^{n}$. Here, x represents location in space and p the local phase direction. A traveltime t wavefront can be represented in this space as the set of bicharacteristic strips, which form a Lagrangian submanifold of codimension n and hence are smooth (see, e.g., [Arnol'd (1992); Arnol'd, GuseinZade, and Varchenko (1986); Duistermaat (1974); Izumiya (1993)]). Thus operating on bicharacteristic strips has the advantage of operating with a smooth manifold, regardless of whether the projection to spatial space, which gives back the wavefronts, is multivalued or not. Furthermore, an Eulerian approach to the construction of these bicharacteristic strips set in phase space would nicely resolve them and hence the wavefronts down in spatial space. In more detail, the time dependent eikonal equation is replaced by the Liouville equation for this construction. In addition, for two dimensional geometric optics, phase space can be reduced to involve just the phase angle rather than the local phase direction. In [Engquist, Runborg, and Tornberg (2002)], the Eulerian approach that was used involved representing bicharacteristic strips with the segment projection method, leading to a fast and efficient algorithm for the construction of wavefronts.

2 Level Set Formulation

In [Osher, Cheng, Kang, Shim, and Tsai (2002)], we followed the lead of [Engquist, Runborg, and Tornberg
(2002)], operating on bicharacteristic strips, but used instead the level set method [Osher and Sethian (1988)] for the Eulerian framework in phase space. The advantage in this was especially in simplicity. This allowed the algorithm to handle complicated wavefront evolutions without additional effort and furthermore nicely generalized to higher dimensions. The level set approach involves representing the higher codimensional bicharacteristic strips at time t by the zero level set at that time of a vector valued time dependent level set function existing in phase space. The Liouville equation on each component, written as

$$
u_{t}+v \cdot \nabla_{x, p} u=0
$$

where u is such a component and v comes from the ray tracing directions or, equivalently, the characteristics of the eikonal equation, can then be used to generate the bicharacteristic strips and, ultimately, the wavefronts of interest. It will be useful to note that for two dimensional geometric optics, where we can operate in reduced phase space, the two components, ϕ and ψ, of the vector valued level set function satisfy the system

$$
\begin{aligned}
\phi_{t}+v \cdot \nabla_{x, \theta} \phi & =0, \\
\psi_{t}+v \cdot \nabla_{x, \theta} \psi & =0,
\end{aligned}
$$

where θ denotes the phase angle, v is given by

$$
v(x, \theta)=\left(\begin{array}{c}
c(x) \cos \theta \\
c(x) \sin \theta \\
c_{x_{1}}(x) \sin \theta-c_{x_{2}}(x) \cos \theta
\end{array}\right),
$$

and $c>0$ is the given local wave velocity permitted in the medium. Also note these two transport equations in ϕ and ψ can be solved separately. As the quantites of interest are now redefined into phase space, or the reduced version, a fixed, uniform grid can be placed there over which lie the numerical solutions. This grid provides the automatic resolution desired.

Thus the steps of the algorithm for constructing the traveltime t wavefront involve producing the vector valued level set function that corresponds to the given initial wavefront, solving the Liouville partial differential equations (PDE's) up to time t, and outputting the projection of the zero level set to spatial space. Herein lies the simplicity of the approach. We note that additional steps are usually taken during the solution step of the PDE's in a process called reinitialization to enforce a stable form for
the vector valued level set function. This, though, is in general not needed for a medium of constant index of refraction, i.e., when c is constant. We refer to [Osher, Cheng, Kang, Shim, and Tsai (2002)] for details of this and the algorithm in general as we are concerned here with other aspects.

3 Reflections

In fact, our interest lies in the case where there are geometric objects in the medium that can reflect wavefronts. As an example of the philosophy behind the wavefront point of view and the importance of reflection in geometric optics in recent research, we cite the work of [Bleszynski, Bleszynski, and Jaroszewicz (2004)]. In this paper, light rays are treated as a part of a wavefront surface rather than considered individually. This connectivity information allows for ease in the adding of light rays, both for resolution and to enforce reflection, near the surfaces of reflecting objects. We note that the goal of [Bleszynski, Bleszynski, and Jaroszewicz (2004)] goes beyond this, demonstrating the uses of wavefront construction and the geometric optics approximation. Diffraction is added, surface currents considered, and approximate solutions generated for a more complete picture of electromagnetic scattering. We on the other hand concentrate solely on wavefront evolution and reflection, considering the numerical aspects of resolution and multivaluedness both near and away from reflecting objects.
Reflection was considered in [Osher, Cheng, Kang, Shim, and Tsai (2002)] but the approach introduced there could become unreasonably inefficient when multiple reflections occur. This is because the approach consists of creating more vector valued level set functions to represent wavefronts each time they are reflected. Further details include interface boundary conditions on the object surface to enforce Newton's law of reflection. Needless to say, dealing with all these level set functions, which can add up without bound, can be unwieldy. This is a major drawback as reflections of waves occur all the time in the real world and serve an important role in numerous applications such as ray tracing and scattering (see, e.g., [Bleszynski, Bleszynski, and Jaroszewicz (2004); Bruno (2002)]). Thus, our goal here is, building upon the established level set framework for geometric optics, to introduce and implement a technique that handles reflections in a more realistic and efficient way.
We consider the model problem where the objects are
given and no waves can exist in their interiors. As opposed to our previous work, this time our approach is to use one vector valued level set function to represent all wavefronts, reflected or not. The reflecting objects, which can be given in spatial space through a level set function $\tilde{\rho}(x)$ as $\{\tilde{\rho} \leq 0\}$, are extended to phase space and represented by $\{\rho \leq 0\}$, where $\rho(x, p)=\tilde{\rho}(x)$. We can in fact require that $\tilde{\rho}$ and ρ are distance functions with respect to their zero level sets in their respective spaces. Furthermore, we will frequently refer to both $\{\tilde{\rho}=0\}$ in spatial space and $\{\rho=0\}$ in phase space, or reduced phase space, as object boundaries. Away from the objects, wavefront evolution is as before, satisfying the relevant Liouville equations. The interesting behavior happens, of course, near the objects. At the boundary, we wish to pose boundary conditions that will enforce reflection.

For simplicity, we first consider the case of geometric optics in two dimensions in a medium of constant index of refraction and discuss generalizations later. This means the Liouville PDE's take the abbreviated form

$$
\begin{aligned}
\phi_{t}+(c \cos \theta) \phi_{x_{1}}+(c \sin \theta) \phi_{x_{2}} & =0 \\
\psi_{t}+(c \cos \theta) \psi_{x_{1}}+(c \sin \theta) \psi_{x_{2}} & =0
\end{aligned}
$$

and derivatives in the θ-direction are absent. We will use a formula that relates an incoming ray that strikes the object to the subsequent reflected ray. Let θ_{I} be the angle of the ray that strikes the object. Also let θ_{B} denote the outward normal of the object boundaries, which are curves, at the point of striking. Then the angle, going counterclockwise, from the incoming ray to the normal at the interface, denoted by β_{I}, is equal to $\theta_{B}-\theta_{I}$. Newton's law for reflection says that if β_{R} furthermore denotes the angle from the reflected ray to the normal at the interface, then $\beta_{I}=\pi-\beta_{R}$. Thus we get that β_{R} should equal to $\pi-\left(\theta_{B}-\theta_{I}\right)$. In terms of the angle θ_{R} of the reflected ray, we have $\beta_{R}=\theta_{B}-\theta_{R}$ and so $\theta_{R}=2 \theta_{B}-\theta_{I}-\pi$. Note this condition was also used in [Osher, Cheng, Kang, Shim, and Tsai (2002)] to link together the different vector valued level set functions.
To use this in our level set framework, we notice that since we are considering isotropic media, the values of θ on bicharacteristic strips give the angles of the normals to the corresponding wavefronts, which are exactly the angles of the ray directions. According to our analysis, given x in spatial space lying on the object boundaries and any θ, the value of our vector valued level set func-
tion at (x, θ) for any time t should equal to the value at $\left(x, 2 \theta_{B}-\theta-\pi\right)$, where θ_{B} is the angle of the normal of the object boundaries at x. Note that one of these points has an incoming ray, in terms of the characteristics of the Liouville PDE's, and the other has a reflected ray. The one with the incoming ray will get its value from the Li ouville PDE, which should then be copied to the other point to enforce reflection. Thus especially, if the bicharacteristic strips of interest, which are a part of the vector valued level set function, hit the object boundaries, reflected bicharacteristic strips will be created in the function moving in the correct direction and manner. We will later write down a criterion for determining which points get their information from incoming rays, i.e., from the Liouville PDE, and which from reflected rays, i.e., from reflection boundary conditions. So the evolution step of the algorithm consists of solving the Liouville PDE's in the region in reduced phase space exterior to the objects, i.e., $\{\rho>0\}$, which we term the computational region, with the above serving as boundary conditions on the object boundaries, i.e., $\{\rho=0\}$.

4 Numerical Discretization

In the implementation of this approach, since we are building upon the framework of [Osher, Cheng, Kang, Shim, and Tsai (2002)], we employ the same numerical setting. Thus, we operate on a uniform grid in three dimensional reduced phase space. As mentioned before, this grid, along with the properties of self interpolation afforded by a PDE approach, allows for automatic resolution of wavefronts.
Before we consider the technique for numerically solving the relevant Liouville PDE's, we first clarify some points and present the discretization of certain basic quantities that will be used later. First, an initial vector valued level set function is chosen that not only represents the initial given wavefronts but also satisfies the boundary conditions on the object boundaries. These boundary conditions will be preserved under the evolution of the level set function. For the second point, we note that the computation of the quantity θ_{B} can be determined from the well known formula for outward normals in a level set framework, $\frac{\nabla \tilde{\rho}}{|\nabla \tilde{\rho}|}$, giving

$$
\theta_{B}=\arctan \frac{\tilde{\rho}_{x_{2}}}{\tilde{\rho}_{x_{1}}}
$$

The actual value for this expression can be computed
through finite differencing for the derivatives and interpolation over the grid. Note also that the formula for normals, and thus also θ_{B}, exists at all points x in space. In fact, this expression produces the normal of the particular level set surface passing through the point x. Finally, the location of the object boundaries can be accurately computed through interpolation to find the zeros of ρ and the interior and exterior of the objects are determined by the sign of ρ.
This leads us to the discretization of the Liouville PDE's to arrive at the vector valued level set function at a desired time. The spatial discretization involved needs to adapt the correct boundary conditions at the object boundaries. The time discretization, however, may be the same everywhere and Total Variation Diminishing Runge-Kutta methods [Shu and Osher (1988)] (TVD-RK), or even Strong Stability Preserving Runge-Kutta methods [Spiteri and Ruuth (2002)] (SSP-RK), of high order can be used. In our simulations, we simply employ Forward Euler since our current spatial discretization, which is discussed below, is first order accurate anyway. For the spatial discretization in reduced phase space, away from object boundaries, we may use high order upwind methods such as Essentially Non Oscillatory [Shu and Osher (1988)] (ENO) and Weighted Essentially Non Oscillatory [Jiang and Peng (2000)] (WENO) schemes, as in [Osher, Cheng, Kang, Shim, and Tsai (2002)]. However, since we will, for simplicity, be modifying first order upwinding near the object boundaries, we use first order upwinding away from object boundaries as well. Though this only allows first order accuracy, the advantage is in simplicity and fast computations. We do note that we are currently working on achieving higher order accuracy.

For grid points next to object boundaries, first order upwinding is attempted but needs to be modified according to the availability of information. We illustrate the discretization in an example with a one dimensional spatial space $[0, \infty)$ with a reflecting wall occupying $[0, a]$, for some $a>0$. Notice there can only be two phase angles, $\theta=0, \pi$. Given a uniform grid over spatial space denoted by the collection of $0=x_{0}<x_{1}<x_{2}<\ldots$ with stepsize Δx, the grid over reduced phase space consists of $\left(x_{i}, \theta_{j}\right), i=0,1,2, \ldots$ and $j=0,1$, where $\theta_{0}=0$ and $\theta_{1}=\pi$. This is a slight abuse of notation as x_{i} was previously used to denote coordinates of a spatial point x, however, there is no confusion for this example. Let x_{k} denote the grid point in spatial space closest to but greater
than or equal to a. Furthermore, consider the nontrivial case where a does not lie on the grid, $x_{k} \neq a$. Thus there exists $0<\mu<1$ such that $x_{k}-a=\mu \Delta x$. See Figures 1 and 2 for clarification. We start with a function u_{0} defined in reduced phase space in the computational region, $x \in(a, \infty)$, and consider the model equation

$$
u_{t}+(c \cos \theta) u_{x}=0
$$

with $u=u_{0}$ at $t=0$. Thus the function will travel to the left for $\theta=\pi$ and when it hits the wall, it will reflect, reappearing at $\theta=0$ and moving to the right. Note u and the model equation take the place of ϕ or ψ and its corresponding Liouville equation.

Figure 1 : This diagram shows the $\theta=\pi$ slice and labels the reflecting wall, ray direction, and grid points near the wall.

As we mentioned before, at grid points away from a, first order upwinding can be applied without difficulty to the discretization of u_{x}. However, at x_{k}, care must be taken since x_{k-1} is in the interior of the reflecting wall and thus u has no real value there. The value at x_{k-1}, though, is possibly not used depending on the what the correct upwinding direction is. Note, at $\theta=\pi$, first order upwinding uses $u\left(x_{k}, \pi, t\right)$ and $u\left(x_{k+1}, \pi, t\right)$, which are defined. However, at $\theta=0$, first order upwinding over the grid attempts to use $u\left(x_{k}, 0, t\right)$ and, unfortunately, $u\left(x_{k-1}, 0, t\right)$.

Figure 2: This diagram shows the $\theta=0$ slice with grid points and ray direction.

In this case, instead of $u\left(x_{k-1}, 0, t\right)$, we can use $u(a, 0, t)$, which should be derivable from the reflection boundary condition. In an alternate description, this is because for $\theta=\pi$, the ray at x_{k}, and also a, is an incoming ray and so information passed from the region should be used. But for $\theta=0$, the rays at x_{k} and a come from reflected rays and so information passed from the boundary should be used. Note at $a, \theta_{B}=0$ and so, as expected, an incoming ray with angle π reflects to the angle -2π, which is the same as 0 . Thus $u(a, 0, t)$ can be obtained from the value of u at $x=a$ and $\theta=\pi$. This information is provided by the incoming ray from within the region. The value of u at this boundary location can be obtained from extrapolation on the values at the nearby points $\left(x_{k}, \pi\right)$ and $\left(x_{k+1}, \pi\right)$.
A final note in this example is in terms of efficiency. If u_{x} at $\theta=0$ and $x=x_{k}$ is discretized using first order upwind differencing and the information at a, the resulting algorithm will be restricted by the stability condition $\Delta t<\mu \Delta x$ when using Forward Euler in time, where Δt denotes the time step. This can be unduly restrictive if μ is small. Thus we modify the approach so that when $\mu \geq \frac{1}{2}$, we keep this discretization, but when $\mu<\frac{1}{2}$, we skip x_{k} and compute u at x_{k+1} with a first order upwind method using x_{k+1} and the point on the wall, a, which are separated by more than Δx. Note this is still a first order accurate approximation of the derivative. Then if a value for u is actually needed at x_{k}, it can be computed from interpolation or extrapolation once the value of u has been determined elsewhere, for example, from the values at x_{k+1} and a. The CFL condition is thus $\Delta t<\frac{\Delta x}{2}$, which does not depend on μ and is not overly stringent.
For two dimensional spatial space, we follow the same philosophy. For grid points next to the object boundaries, if first order upwind differencing does not involve differencing across the object boundaries, then this approximation is used since the information at that point comes from an incoming ray. On the other hand, at grid points where differencing is attempted across the object boundaries, boundary points are used instead in the approximation, as in the one dimensional case. However, in this case, the boundary points involved may get their values from incoming rays rather than only from the reflection boundary condition (see Figure 3). We may use the direction of the outward normal vector, $\nabla \tilde{\rho}$, and the ray direction considered, which has angle θ, at the boundary point to determine where it gets its value. The condition

ray direction

reflecting wall
of interest. See [Burchard, Cheng, Merriman, and Osher (2001)] and [Osher, Cheng, Kang, Shim, and Tsai (2002)] for more details on this.

5 Numerical Simulations

Currently, we have mainly applied our algorithm to the case of reflecting walls at square boundaries. Thus if we are working in the domain $[-1,1] \times[-1,1]$ in spatial space, then the reflecting walls are located at a choice of $x_{1}= \pm 1$ and $x_{2}= \pm 1$. This simplifies many of our previous calculations. Figure 4 shows an expanding circle in a medium of index of refraction 1 in such a setting with four reflecting walls using our algorithm. As time increases, more and more reflections take place, leading to wavefronts that almost fill up spatial space. Note our approach not only handles the multiple reflections, which lead to complicated multivalued solutions, but resolves the wavefronts which have grown tremendously in length. Figure 5 shows the continuation of the previous simulation up to even larger time. Multiple reflections, multivalued solutions, and resolution are handled with ease. Figures 6,7, and 8 show the bicharacteristic strips in reduced phase space computed at different times. Notably, the simple curve of Figure 6 shows the bicharacteristic strips that form the initial circle and Figures 6 and 7 show them for wavefronts that have undergone reflection after reflection. Note though there are many curve segments in the pictures, they are all smooth, even when their projection contains many intersections. Also, the figures are plotted with the phase angle $[-\pi, \pi]$ mapped into $[-1,1]$ for simplification. Finally, for illustration, we show the level set functions involved in Figures 6, 7, and 8 in Figures 9, 10, and 11, respectively.
Figure 12 shows an initially small growing ellipse in a domain with a single reflecting wall at $x_{1}=1$. The ellipse expands and reflects off the wall while passing through the boundary at $x_{2}=-1$. Note a sharp reflection wavefront is generated and resolved without problems.
Finally, Figure 13 considers a single reflecting wall at the left slanting from top left to bottom right that does not align with the grid. The original wavefront, moving downwards, is the horizontal straight line at the top, linking up with the corresponding reflected line at the wall. These are drawn into the reflecting wall but those portions can be ignored in the plot. In this case, we performed a simplification as the incoming and reflected wavefronts will always be straight lines with slopes pre-

Figure 4 : This figure shows an initially growing circular wavefront that subsequently reflects multiple times off four walls forming a box.

Figure 5 : This figure continues that of Figure 4, showing even more reflections with a final wavefront taking up much of the computational region.
served throughout the evolution. Thus, we consider just two phase angles in reduced phase space, the ones corresponding to the incoming and reflected wavefronts. Furthermore, we just need one level set function and plot the projection into spatial space of the zero level sets at each of the two phase angles to arrive at the wavefronts of interest. As seen from the figure, our algorithm is able to capture these wavefronts as they evolve and reflect. This example still serves as a verification of our approach even though it has been simplified since many fundamental elements, such as the discretization of the Liouville PDE, are preserved in the simplification.

We are currently working on simulations involving more complicated object boundaries in a general setting. However, the ones we have so far already show a vast improvement over the previous approach found in [Osher, Cheng, Kang, Shim, and Tsai (2002)].

6 Generalizations

We would of course like to generalize our approach to anisotropic wave propagations, which were handled under a level set approach in [Qian, Cheng, and Osher (2003)], as well as variable indices of refraction, and

Figure 6: This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular wavefront.

Figure 7: This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular wavefront at a later time, after reflections have occurred.

Figure 8: This figure shows the bicharacteristic strips in reduced phase space associated to the initial circular wavefront at a later time. Note the bicharacteristic strips are smooth even after the multiple reflections involved.

Figure 9: This figure shows the zero level sets of the two components of the vector valued level set function involved in Figure 6. The intersection of the two surfaces gives the bicharacteristic strips.

Figure 10 : This figure shows the zero level sets of the two components of the vector valued level set function involved in Figure 7.

Figure 11 : This figure shows the zero level sets of the two components of the vector valued level set function involved in Figure 8.

Figure 12 : This figure shows an initially small growing ellipse reflecting off a wall at $x_{1}=1$.

Figure 13 : This figure shows an initial downward moving horizontal wavefront with the corresponding reflected portion in a medium with a slanted reflecting wall not aligned with the grid.
three dimensional spatial space. Variable index of refraction would not seem to present too many problems since this would only include the term with the θ-derivative in the Liouville equations. These derivatives should not be hard to discretize since the interior and exterior of the objects are determined by the spatial location only. Some details need to be handled with respect to reinitialization though and we plan to discuss this in future work.
As for three dimensional spatial space, in [Osher, Cheng, Kang, Shim, and Tsai (2002)], we wrote down a relationship between incoming rays and reflected rays, namely that

$$
C=-B+2 \frac{(B \cdot A) A}{|A|^{2}}
$$

where A is the normal vector to the interface at the point of reflection, B is the incoming ray, and C is the reflected ray. Incorporating this would form the first steps for an algorithm for three dimensions. Care, however, would need to be taken in terms of efficiency, possibly with local level set methods (see, e.g., [Adalsteinsson and Sethian (1995); Burchard, Cheng, Merriman, and Osher (2001); Osher, Cheng, Kang, Shim, and Tsai (2002); Peng, Merriman, Osher, Zhao, and Kang (1999)]), since phase space in this case is six dimensional.

7 Conclusion

Building upon the setting of [Osher, Cheng, Kang, Shim, and Tsai (2002)], we are able to introduce an approach that can handle reflections of waves in a reasonable and efficient manner while preserving the benefits afforded by the previous work, notably with respect to resolution and multivalued solutions. This is a great improvement over the previous attempt found in [Osher, Cheng, Kang, Shim, and Tsai (2002)] and is needed if realistic cases of wave propagation are to be considered. We are currently working on further generalizing our algorithm to handle more complicated geometric reflecting surfaces, anisotropy, variable indices of refraction, and a three dimensional spatial space.

References

Abgrall, R.; Benamou, J.-D. (1999): Big Ray Tracing and Eikonal Solver on Unstructured Grids: Application to the Computation of a Multivalued Travel-Time Field in the Marmousi Model. Geophysics, vol. 64, pp. 230 239.

Adalsteinsson, D.; Sethian, J. (1995): A Fast Level Set Method for Propagating Interfaces. J. Comput. Phys., vol. 118, pp. 269-277.

Arnol'd, V. (1992): Catastrophe Theory. SpringerVerlag.

Arnol'd, V.; Gusein-Zade, S.; Varchenko, A. (1986): Singularities of Differential Maps. Birkhauser.

Benamou, J.-B. (to appear): An Eulerian Numerical Method for Geometric Optics. To appear in COCV Proc., ??.

Benamou, J.-D. (1996): Big Ray Tracing: MultiValued Travel Time Field Computation Using Viscosity Solutions of the Eikonal Equation. J. Comput. Phys., vol. 128, pp. 463-474.

Benamou, J.-D. (1999): Direct Solution of MultiValued Phase-Space Solutions for Hamilton-Jacobi Equations. Comm. Pure Appl. Math., vol. 52.
Beylkin, G. (1985): Imaging of Discontinuities in the Inverse Scattering Problem by Inversion of a Causal Generalized Radon Transform. J. Math. Phys., vol. 26, pp. 99-108.

Beylkin, G.; Burridge, R. (1990): Linearized Inverse Scattering Problem of Acoustics and Elasticity. Wave Motion, vol. 12, pp. 15-22.

Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T. (2004): Development of New Algorithms for High Frequency Electromagnetic Scattering. CMES: Computer Modeling in Engineering \& Sciences, vol. 5, no. 4, pp. 295-318.

Brenier, Y.; Corrias, L. (1996): A Kinetic Formulation for Multi-Branch Entropy Solutions of Scalar Conservation Laws. Ann. IHP Analyse non-lineaire.

Bruno, O. (2002): New high-order, high-frequency integral methods in computational electromagnetism.
Burchard, P.; Cheng, L.-T.; Merriman, B.; Osher, S. (2001): Motion of Curves in Three Spatial Dimensions Using a Level Set Approach. J. Comput. Phys., vol. 170, no. 2, pp. 720-741.

Burridge, R.; de Hoop, M.; Miller, D.; Spencer, C. (1998): Multiparameter Inversion in Anisotropic Media. Geophys. J. Internat., vol. 134, pp. 757-777.
de Hoop, M.; Bleistein, N. (1997): Generalized Radon Transform Inversions for Reflectivity in Anisotropic Elastic Media. Inverse Problems, vol. 13, pp. 669-690.

Duistermaat, J. (1974): Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities. Comm. Pure Appl. Math., vol. 27, pp. 207-281.

Engquist, B.; Fatemi, E.; Osher, S. (1995): Numerical Resolution of the High Frequency Asymptotic Expansion of the Scalar Wave Equation. J. Comput. Phys., vol. 120, pp. 145-155.

Engquist, B.; Runborg, O. (1995): Multi-Phase Computation in Geometrical Optics. Tech Report, Nada KTH, 1995.

Engquist, B.; Runborg, O.; Tornberg, A.-K. (2002): High Frequency Wave Propagation by the Segment Projection Method. J. Comput. Phys., vol. 178, no. 2, pp. 373-390.

Fomel, S.; Sethian, J. (2001): Fast Phase Space Computation of Multiple Arrivals. Technical Report LBNL48976, LBL, 2001.

Izumiya, S. (1993): The Theory of Legendrian Unfoldings and First Order Differential Equations. Proc. Royal Soc. Edinburgh, vol. 123A, pp. 517-532.

Jiang, G.; Peng, D. (2000): Weighted ENO Schemes for Hamilton Jacobi Equations. SIAM J. Scient. Comput., vol. 21, no. 6, pp. 2126-2143.

Lax, P. D. (1957): Asymptotic solutions of oscillatory initial value problems. Duke Math. J., vol. 24, pp. 627646.

Lorenson, W.; Cline, H. (1987): Marching cubes: A high resolution 3D surface reconstruction algorithm. Comp. Graphics, vol. 21, no. 4, pp. 163-169.

Osher, S.; Cheng, L.-T.; Kang, M.; Shim, H.; Tsai, Y.-H. (2002): Geometric Optics in a Phase Space Based Level Set and Eulerian Framework. J. Comput. Phys., vol. 179, no. 2, pp. 622-648.

Osher, S.; Sethian, J. (1988): Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comput. Phys., vol. 169, no. 1, pp. 12-49.

Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M. (1999): A PDE-Based Fast Local Level Set Method. J. Comput. Phys., vol. 155, no. 2, pp. 410-438.

Qian, J.; Cheng, L.-T.; Osher, S. (2003): A Level Set Based Eulerian Approach for Anisotropic Wave Propagations. Wave Motion, vol. 37, no. 4, pp. 365-379.

Ruuth, S.; Merriman, B.; Osher, S. (2000): Fixed Grid Method for Capturing the Motion of SelfIntersecting Interfaces and Related PDEs. J. Comput. Phys., vol. 163, pp. 1-21.
Shu, C.-W.; Osher, S. (1988): Efficient Implementation of Essentially Nonoscillatory Shock-Capturing Schemes. J. Comput. Phys., vol. 77, no. 2, pp. 439-471.

Spiteri, R.; Ruuth, S. (2002): A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods. SIAM J. Numer. Anal., vol. 40, no. 2, pp. 469-491.
Steinhoff, J.; Fan, M.; Wang, L. (2000): A New Eulerian Method for the Computation of Propagating Short Acoustic and Electromagnetic Pulses. J. Comput. Phys., vol. 157, no. 2, pp. 683-706.

Symes, W. (1996): A Slowness Matching Finite Difference Method for Traveltimes Beyond Transmission Caustics. The Rice Inversion Project Annual Report, Rice University, 1996.
Symes, W.; Carazzone, J. (1991): Velocity Inversion by Differential Semblance Optimization. Geophysics, vol. 56, pp. 654-663.
Vinje, V.; Iversen, E.; Astebol, K.; ystdal, H. G. (1996): Estimation of Multivalued Arrivals in 3D Models using Wavefront Construction-Part I. Geophysical Prospecting, vol. 44, pp. 819-842.
Vinje, V.; Iversen, E.; Astebol, K.; ystdal, H. G. (1996): Part II: Tracing and Interpolation. Geophysical Prospecting, vol. 44, pp. 843-858.
Vinje, V.; Iversen, E.; ystdal, H. G. (1993): Traveltime and Amplitude Estimation using Wavefront Construction. Geophysics, vol. 58, no. 8, pp. 1157-1166.

[^0]: ${ }^{1}$ Research supported by AFOSR Grant \#F49620-01-1-0189
 ${ }^{2}$ Department of Mathematics, University of California San Diego, La Jolla, California 92093
 ${ }^{3}$ Research supported by NSF Grant \#0112413 and NSF Grant \#0208449
 ${ }^{4}$ Level Set Systems Inc., 1058 Embury St., Pacific Palisades, CA 90272
 ${ }^{5}$ Department of Mathematics, Princeton University, Princeton, New Jersey 08544

