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Abstract: In this article, we present a computational
framework for solving problems arising in electromag-
netism. The framework is derived from a modern geo-
metrical approach and is based on differential forms (or
p-forms). These geometrical entities provide a natural
framework for modeling of physical quantities such as
electric potentials, electric and magnetic fields, electric
and magnetic fluxes, etc. We have implemented an ob-
ject oriented class library, called FEMSTER. The library
is designed for high order finite element approximations.
In addition, it can be expanded by including user-defined
data types or by deriving new classes. Finally, the versa-
tility of the software is shown through different simula-
tions.

keyword: High order finite element, H (div) and
H (curl) - conforming methods, Computational electro-
magnetism, Object oriented programming.

1 Introduction

The finite element method is the most popular numeri-
cal method for structural mechanics and is increasingly
popular for numerous other disciplines such as fluid dy-
namics, particle and radiation transport, thermodynam-
ics, and electromagnetism. The popularity is due to the
ease in which complex geometries can be modeled via
unstructured computational meshes, the ability to incor-
porate complex material properties and boundary condi-
tions into the discretization, and the robust foundation
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of functional analysis. In electromagnetics engineering
the most interesting and challenging problems involve
either smoothly curved surfaces (radar cross section of
aircraft, linear accelerator components), intricate geo-
metric details (microwave integrated circuits, broadband
antennas), or material inhomogeneities (electromagnetic
fields in the earth, the human body, or man-made meta-
materials). The finite element method is well suited to
these types of problems. There are many open areas
of research in finite element electromagnetics such as
mesh generation, fast linear solvers, and efficient and ac-
curate radiation boundary conditions. In this paper we
focus our attention on discretization, specifically the re-
cently proposed differential forms based approach for
constructing curl-conforming (also known as H (curl)
or ”edge”) elements and divergence-conforming (also
known as H (div) or ”face”) elements.

The equations of electromagnetics can be simply and
elegantly cast in the language of differential forms
Deschamps (1981), Baldomir (1986), Burke (1985),
Bossavit (1998). In this approach the scalar electrostatic
potential is a 0-form, the electric and magnetic fields are
1-forms, the electric and magnetic fluxes are 2-forms,
and the scalar charge density is a 3-form. The basic
operators are the exterior derivative, the wedge product,
and the Hodge star. Precise rules (i.e. a calculus) pre-
scribe how these forms and operators can be combined.
In this modern geometrical approach to electromagnetics
the fundamental conservation laws are not obscured by
the details of coordinate system dependent notation.

In the context of the Galerkin procedure applied to
the vector Helmholtz equation or to the time-dependent
Maxwell’s equations, there are significant advantages to
curl-conforming finite element basis functions. These
basis functions were first proposed by Nédélec (1980),
and excellent overviews can be found in the textbooks
by Jin (1993) and Bossavit (1998). These advantages
include the proper modeling of the jump discontinu-
ity of electric fields across material discontinuities, the
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elimination of spurious modes in eigenvalue computa-
tions, and the conservation of charge in time-dependent
simulations Rodrigue and White (2001). Originally the
development of these basis functions was presented in
an ad-hoc manner, with many different variations with-
out a common theme. Recently, a connection between
differential forms and the curl-conforming basis func-
tions has been established Hiptmair (1999). In Hipt-
mair (1999) the theory of differential forms is used to
show that the properties of curl-conforming basis func-
tions can be derived from first principles, and that the
curl-conforming basis is one member of a family of ba-
sis functions that includes the standard scalar C 0 basis
and the divergence-conforming basis used in the mixed
method for the Stokes problem. In our terminology, a
discrete differential p-form is a finite element basis func-
tion used to discretize a p-form field. Given a physical
law expressed in the language of differential forms, it is
quite straightforward to discretize the problem using our
class library of discrete differential forms.

It should be noted that for a Cartesian grid, and with
appropriate quadrature rules for bilinear forms, our fi-
nite element approach is equivalent to the classic FDTD
scheme. The FDTD scheme is known to be very efficient
and it has the important properties of being stable, con-
serving energy, conserving charge, and correctly model-
ing the jump discontinuity of fields across material inter-
faces. A state-of-the-art parallel FDTD code is described
in this Special Issue Namburu, Mark, and Clarke (2004).

The second focus of this paper in on high-order dis-
cretization. In many electromagnetic design and analy-
sis problems there is little modeling error; the equations
are known, the geometry is known, the material proper-
ties are known. The only approximation is the numerical
method, hence there can be significant benefit to high-
order approximations. A high-order discretization can
reduce the mesh size, memory usage, and CPU time re-
quired to achieve a prescribed error. This is particularly
true for electrically large problems due to numerical dis-
persion. The Galerkin procedure applied to wave equa-
tions suffers from numerical dispersion, which means
that the computed phase velocity differs from the physi-
cal phase velocity and phase error builds up linearly with
respect to distance and time. For the popular lowest or-
der edge elements, it is known that the numerical disper-
sion relation is second order accurate Warren and Scott
(1994), Warren and Scott (1995), White (2000). Second

order accuracy may seem adequate, but for an electrically
large problem the phase error may be such that the global
error is 100 percent, although the local truncation error
is quite small. The phenomena of the global error be-
ing significantly greater than the local (or optimal) error
for a Galerkin solution of wave equations is sometimes
referred to as the pollution effect. This has been more
precisely explained in Babuska, Strouboulis, Upadhyay,
and Gangaraj (1995), Babuska, Ihlenburg, Strouboulis,
and Gangaraj (1997). The differential forms based ap-
proach is not the only approach for deriving higher-order
methods. For example, in this Special Issue a higher-
order discontinuous Galerkin (DG) method is described
Hesthaven and Warburton (2004). The higher-order DG
method also has the ability to model complex geometry
and also has significantly reduced numerical dispersion
compared to standard low-order methods.

To conclude the Introduction, in this paper we review
an object oriented class library of discrete differential
forms. This library consists of geometric elements, p-
form bases of degree 0,1,2 and 3, integration rules, and
bilinear forms. All of these classes are of arbitrary order,
although due to finite precision effects the maximum or-
der used in practice is limited. We present problems in
electrostatics, driven time-harmonic problems, time har-
monic eigenvalue problems, and time-domain transient
problems expressed in the language of differential forms,
and show computed solutions to these problems using
our class library of discrete differential forms.

2 Mathematical preliminaries

We begin with the generic boundary value problem
stated in the language of differential forms from Hipt-
mair (2001). We assume a 3-dimensional domain Ω with
piecewise smooth boundary ∂Ω partitioned into Γ D, ΓN ,
and ΓM. The problem statement is

du = (−1)pσ, d j = −Ψ+Φ in Ω (1)

TDu = 0 on ΓD, TN j = 0 on ΓN (2)

j = �α σ, Ψ = �γ u in Ω (3)
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TM j = (−1)p �β TMu on ΓM. (4)

Here u is a (p− 1)-form, σ is a p-form, j is a (3− p)-
form, and both Ψ and Φ are (3− p + 1)-forms, where
1 ≤ p ≤ 3. The variable Φ is a source term. In (1) the
operator d is the exterior derivative which maps p-forms
to (p + 1)-forms. In the boundary conditions (2) and (4)
the symbol T denotes the trace operator, where the trace
of a p-form is an integral over a p-dimensional mani-
fold. In (3) and (4) the � symbol denotes the Hodge-star
operator, which converts p-forms to (3− p)-forms and
typically involves material constitutive properties. Equa-
tions (1) and (3) can be combined to yield the general
second-order elliptic equation

(−1)pd �α du = −�γ u+Φ. (5)

We are also concerned with time dependent phenom-
ena. The time derivative does not effect the degree of a
form. In the diagram below we show the time-dependent
Maxwell’s equations, where d denotes the spatial deriva-
tive and dt denotes the time derivative and converging
arrows denote summation. In these diagrams φ is the
scalar potential 0-form, the 1-forms A, E, and H are
the magnetic vector potential, the electric field, and the
magnetic field, respectively; the 2-forms B, D, and J are
the magnetic flux density, the electric flux density, and
the electric current density, respectively; and ρ is the
scalar charge density 3-form. The left diagram encom-
passes Faraday’s law dE − dB/dt = 0, Coulomb’s law
for the magnetic field dB = 0, and the fact that the elec-
tric field E can be written in terms of potentials as E =
dφ− dA/dt. The right diagram encompasses Ampere’s
law dH−dD/dt = J, Coulomb’s law for the electric field
dD = ρ, and the continuity equation dJ−dρ/dt = 0. The
two diagrams are connected by the constitutive relations
D = �ε E and B = �µ H.

0-forms : φ�d

1-forms : A
−dt−−−−→ E H�d

�d

�d

2-forms : B
−dt−−−−→ 0 D

−dt−−−−→ J�d

�d

�d

3-forms : 0 ρ −dt−−−−→ 0

In the Galerkin finite element procedure we require bi-
linear forms. These are easily generated from the general
second-order equation (5) by taking the wedge product
with an (l − 1)-form v and integrating over the volume
Ω,

∫
Ω

(−1)ld �α du∧v = −
∫

Ω
�γ u∧v +

∫
Ω

Φ∧v. (6)

Using the integration-by-parts formula

∫
Ω

dω∧η +(−1)l
∫

Ω
ω∧dη =

∫
∂Ω

ω∧η (7)

yields the two key symmetric bilinear forms

a(u,v) =
∫

Ω
�α (du)∧dv, (8)

b(u,v) =
∫

Ω
�γ u∧v. (9)

With these bilinear forms we can construct a great variety
of model equations that can be solved via the finite ele-
ment method. While above we discussed the standard
elliptic boundary value problem, it is a simple matter
to introduce temporal derivatives into the model prob-
lem and perform temporal evolution using the method-
of-lines approach. The key point is that in order for the
finite procedure to work, it is necessary to use the proper
p-form basis functions when discretizing the above bi-
linear forms. The essential properties of the p-form ba-
sis functions are discussed in Nédélec (1980), Hiptmair
(1998), Hiptmair (2001).
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3 FEMSTER : a finite element class library

FEMSTER is a modular finite element class library for
solving three-dimensional problems arising in electro-
magnetism using high order approximations. The library
is easy to use and provides a framework in which the
user is able to add new schemes by reusing the existing
classes and is able to expand the library by incorporating
new user-defined data types.

An object-oriented programming (OOP) paradigm pro-
vides a natural and straightforward way of achieving our
goals in a single computational framework. Our imple-
mentation benefits from three OOP concepts: abstract
data types, inheritance, and data encapsulation. We use
abstract base classes as computational devices to repre-
sent general mathematical objects such as elements, in-
tegration rules, polynomial bases, etc. The definition of
abstract interfaces models the functionality of the class at
the highest level of abstraction, keeping implementation
details to the concrete derived classes. Typical methods
included in the interface are evaluation of basis functions
and their derivatives, local and global coordinate trans-
formations, and generation of mass and stiffness matri-
ces.

The concept of inheritance avoids the redevelopment and
testing of existing code, by reusing base class members
(data and methods). Moreover it allows the possibility of
extending the library by including user-defined data types
which can be derived from the existing base classes. Fi-
nally, by hiding internal details while providing a public
interface, data encapsulation prevents unexpected modi-
fications of data, making the code more robust and mod-
ular.

The philosophy of the FEMSTER library is derived from
the formulation of an abstract conforming finite element
method, see Ciarlet (1978). From the implementation
point of view, such a formulation is uniquely determined
by the 4−tuple (Σ,P ,A ,Q ) where:

• Σ is a reference element.

• P is a polynomial space defined on Σ .

• A is the set of degrees of freedom.

• Q is a quadrature rule defined on Σ .

This abstract formulation can be easily translated into a
practical modular code by using an Object-Oriented Pro-

gramming (OOP) paradigm. The C++ programming lan-
guage, Stroustrup (1991), was used in the current imple-
mentation. In the following subsections we describe the
classes that form the core of the FEMSTER library.

3.1 The class Element3D

This abstract class provides a common interface among
various reference elements of different shapes. Currently
the library supports three types of 3D elements: tetra-
hedron, hexahedron, and prism. The class inheritance is
shown in Figure 1.

Element3D

Hexahedron Prism Tetrahedron

Figure 1 : Element3D class inheritance

The interface, although minimal, provides sufficient ge-
ometrical information to compute the local matrices and
load vectors of a conforming finite element method. The
interface is shown in Table 1.

Table 1 : Interface of the Element3D class

Method Description

getOrder() get the order of geometry
getNodes() get the coordinates of the nodes
setNodes() set the coordinates of the nodes
jacobian() get the Jacobian matrix at a point
localToGlobal() get global coordinates
globalToLocal() get local coordinates

The geometry of an arbitrary element is uniquely defined
by the physical coordinates of its nodes, its geometrical
order and a local mapping that transforms the reference
element onto the actual element. These are commonly
known in the finite element literature as iso-parametric
elements, see for example Ciarlet (1978). A block of ele-
ments of the same type can be represented by a single ref-
erence element. This is more natural from the mathemat-
ical point of view since all the elements in that block are
topologically equivalent to a single reference element.
Geometrical information of a particular element in that
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block can then be obtained by setting the physical coordi-
nates of the nodes in the reference element and querying
the reference element for the desired information.

3.2 The class IntRule3D

Local integrals are computed numerically by using nu-
merical integration rules. These should be exact for
arbitrary high order polynomials and different element
shapes. The inheritance diagram for this abstract class is
shown in Figure 2.

IntRule3D

IntRules

HexahedronIntRule PrismIntRule TetrahedronIntRule

Figure 2 : IntRule3D class inheritance

The library provides integration rules of arbitrary order
for all the element shapes. These are based on weighted
Gauss-Jacobi quadrature rules. Our low order integra-
tion rules are optimal, the higher order rules are based on
a tensor product of Gaussian quadratures which while ac-
curate may not be optimal. However, the class has been
designed to be extensible, the user can provide their own
integration rules if desired. The global interface of the
IntRule3D class is shown in Table 2 below.

Table 2 : Interface of the IntRule3D class

Method Description

getNumPts() get number of quadrature points
getOrder() get order of exactness
getPoints() get array of integration points
getWeights() get array of integration weights
getRegion() get region tag
getIntegral() get approximation of the integral

3.3 The class p-form

3.3.1 Polynomial spaces

The first step in a finite element approximation is to
choose the appropriate finite element space P from which
the basis will be constructed. Usually this space consists
of a particular set of polynomials. Typical examples are
the nodal or Lagrangian polynomial space for the stan-
dard H1 conforming method, Ciarlet (1978); the edge el-
ements proposed by Nédélec for H (curl) - conforming
methods, Nédélec (1980, 1986); and, the face elements
proposed by P.A Raviart and J.M Thomas for H (div) -
conforming methods, Raviart and Thomas (1977)

When implementing the finite element space P in the
context of differential forms, the explicit formulation of
the space depends on the p-form and the topology of the
reference element Σ . The construction of the finite el-
ement space P is not unique, we choose a construction
that leads to a simple and efficient implementation. We
use polynomials similar to those described in Graglia,
Wilton, and Peterson (1997) and Graglia, Wilton, Peter-
son, and Gheorma (1998) as a primitive basis. How-
ever these are constructed on the reference element Σ
rather than in the physical coordinate system. The actual
bases used in the finite element procedure are written as
a linear combination of the primitive basis. For exam-
ple, non-uniform interpolatory functions, moment-based
functions, orthogonal functions, etc. can all be expressed
in terms of the primitive basis.

3.3.2 Degrees of freedom

The set A of degrees of freedom is a finite subset of P ′,
(i.e. the set of linear functionals from P onto ℜ Ciarlet
(1978)), and satisfies three important properties; namely

• Unisolvence: {α i} is dual to the finite element space
P ; i.e. there exists a set {w j} ⊂ P such that
αi(wj) = δi, j .

• Invariance: degrees of freedom remain unisolvent
upon a change of variables; this implies they are not
affected by the pullback operation; i.e. α̂i ◦Φ∗ = αi

(see section 3.4).

• Locality: the trace of a basis function on a sub-
simplex is determined by degrees of freedom asso-
ciated only with that sub-simplex.
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The set A is defined in terms of moment integrals
over sub-simplices of the reference element Σ Hiptmair
(1999). If we denote a sub-simplex of the reference ele-
ment Σ of dimension n as Σn, then the generalized form
for the linear mapping is given by

{αi} = {w 	→
∫

Σn

w∧qn}, (10)

where p ≤ n ≤ 3 and qn is an (n− p)-form weighting
polynomial of n-variables defined over the sub-simplex
Σn.

As an example, consider the degrees of freedom for 1-
forms. For this case, p = 1 and we have the follow-
ing three sets of moments which will require line inte-
grals over edges weighted by 1-dimensional 0-forms (i.e.
1-dimensional scalar functions), surface integrals over
faces weighted by 2 dimensional 1-forms (i.e. vector
functions defined in a plane) and volume integrals over
the element weighted by 3-dimensional 2-forms (i.e. vec-
tor functions defined in a volume).

α(w) =
∫

ê
(w◦Φ) ·∂ΦT (�tq),

α(w) =
∫∫

f̂
(w◦Φ) ·∂ΦT (�n×q),

α(w) =
∫∫∫

�v
(w◦Φ) ·∂ΦT q,

where�t denotes the unit tangent vector for each of the
edges of Σ and �n denotes the unit normal vector for
each of the faces of Σ . By appropriately using the
iso-parametric mapping Φ and its derivative ∂Φ, we can
perform the integrals over the reference element, while
maintaining generality of the function w (i.e. w can be
defined over an arbitrary element).

While this formal definition is sufficiently general to de-
fine degrees of freedom of arbitrary type, we find that
in practice there are simplifications that can be made
to this definition for the particular case of interpolatory
bases that can significantly improve computational per-
formance. In this case, the integral forms of the degrees
of freedom are replaced with simple point evaluation op-
erations. For example, the scalar valued 0-form interpo-
latory bases can have their degrees of freedom reduced
to the familiar form

{αi(w)}= w(Φ(xi)), (11)

where xi is a particular interpolation point in the refer-
ence coordinate system. Similarly, the vector valued 1-
form interpolatory bases can have their degrees of free-
dom reduced to the form

{αi(w)}= w(Φ(xi)) ·∂ΦT (�ti), (12)

where xi is a particular interpolation point in the refer-
ence coordinate system and�ti is an “interpolation vector”
associated with the point xi. Table 3 summarizes these
simplified linear functionals for interpolatory degrees of
freedom.

Table 3 : Simplified Degrees of Freedom for Interpola-
tory Bases

Form Linear Functional

0-forms {α i(w)} = w(Φ(xi))
1-forms {α i(w)}= w(Φ(xi)) ·∂ΦT (�ti)
2-forms {α i(w)}= w(Φ(xi)) · |∂Φ|∂Φ−1(�ni)
3-forms {α i(w)}= |∂Φ|w(Φ(xi))

Using this general approach, we can construct a discrete
differential p-form basis of order k in the following man-
ner. We begin by generating a primitive basis W = {w j}.
This primitive basis can be made in a number of different
ways depending on the degree of the form and topology
of the element. For example, a primitive basis on a refer-
ence hexahedron, we can form a primitive basis by taking
tensor direct products of 1-dimensional Lagrange inter-
polatory polynomials. In order to construct a new basis
(non-uniform interpolation, hierarchical, etc.) from the
primitive basis we first formulate the linear functionals
for A using the appropriate weighting polynomials. The
choice of weighting polynomials in the formal definition
of the degrees of freedom will determine the type of the
new basis. For example, by choosing orthogonal weight-
ing polynomials, the new basis will be hierarchical. We
then apply the change-of-basis operation to the primitive
basis; i.e. we construct the matrix

Vi, j = αi(wj); w j ∈ W (13)

This system, which is similar to a Vandermonde matrix,
is a linear mapping which expresses the new basis in
terms of the primitive basis and will have a rank equal
to the dimension of the primitive basis. We know from
the definition of the degrees of freedom that the unisol-
vence property must hold for the new basis; so in order to
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satisfy this requirement, we must find the inverse of the
Vandermonde matrix. The newly defined basis, which
we will denote as F will then have the form:

F = V−1W (14)

Therefore, the newly defined basis will be a linear com-
bination of the primitive basis that spans the space P (i.e.
satisfies the unisolvence property). While it may seem
computationally expensive to invert a matrix in order to
get the new basis, it should be noted that this is a one
time cost as the inverse of the Vandermonde matrix can
be stored and used over and over as necessary.

p0FormBase

Hex0FormBase Pri0FormBase Tet0FormBase

Hex0FormSL Hex0FormSpectral Pri0FormSL Pri0FormSpectral Tet0FormSL Tet0FormSpectral

Figure 3 : 0-Form class inheritance

3.3.3 p-Form class interface

We have a class hierarchy for each of the p-form bases,
the hierarchy for the 0-form class is shown in Figure
3. Concrete classes are presented in the lowest level of
the tree. The other p-forms have a similar inheritance
diagram. Our Silvester-Lagrange (SL) bases are simi-
lar to the bases defined in Graglia, Wilton, and Peterson
(1997) which use equidistant and shifted equidistant in-
terpolation points. The difference between our SL bases
and the bases proposed in Graglia, Wilton, and Peter-
son (1997) is that ours satisfy the properties in Table 3.
These are suitable for low order approximations, i.e., k
= 1 to 4. It is well known that this particular choice
of interpolation points produce badly conditioned mass
and stiffness matrices when high order approximations
are used. For this reason we have implemented spectral
classes that use arbitrary sets of interpolation points, typi-
cally Gauss-Lobatto or Chebyshev points Rieben, White,
and Rodrigue (2004b). As an example, figure 4 shows
the number of iterations required for a conjugate gra-
dient algorithm to solve the linear system (with an er-
ror tolerance of 10−10) arising from the discretization of
Poisson’s equation using a 0-form basis on a hexahedral

mesh (see section 4.1). In this example we show the re-
sults for two different types of interpolatory bases. Note
that the results for the uniform SL basis show exponen-
tial growth of iteration count as the approximation order
is increased while the spectral (or Extended Chebyshev)
basis shows polynomial growth. The user can also ex-
periment by passing their own set of interpolation points
into the constructor.
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Figure 4 : Iteration count for diagonally scaled conjugate
gradient solution of Poisson’s equation using two differ-
ent interpolatory bases.

The interface of a p-form includes methods that can be
used in the computation of the local matrices and vec-
tors, such as methods to evaluate basis functions and their
derivatives at an arbitrary point, to evaluate the interpo-
late and its derivative and to compute the expansion of
the interpolate of a given function. In Table 4 we show
part of the interface of a p-form class.

The method localEvaluateD() computes the action of a
differential operator on the basis functions at a given
point. This operator is the exterior derivative and is
uniquely determined by the p-form, see Abraham, Mars-
den, and Ratiu (1996), Burke (1985) for a classical ge-
ometrical approach. In particular, this operator refers to
the gradient for 0-forms; the curl for the 1-forms; and
finally, the divergence for the 2-forms.

To facilitate the assembly of global mass and stiffness
matrices, the basis functions are locally sorted in the fol-
lowing order : nodal basis functions, edge basis func-
tions, face basis functions, and interior basis functions.
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Table 4 : Interface of a p-form class

Method Description

getOrder() get the order of the p-form
getDim() get the dimension of the p-form
setElement() set the element pointer
clearElement() clear the element pointer
getConnectivity() get the connectivity
localEvaluate() φi(x), i = 1, . . .,n
localEvaluateD() dφi(x), i = 1, . . .,n
localInterp() Π( f )(x)
localInterpD() dΠ( f )(x)
project() α i where Π( f ) = Σαiφi

The getConnectivity() method returns the number of ba-
sis functions per node, per edge, per face, and per cell.

3.4 Bilinear forms

The purpose of this class is to provide an interface to
compute mass and stiffness matrices as well as load vec-
tors. We present the derivation of the global stiffness ma-
trix in the context of differential forms. In this setting,
several elliptic problems such as div-grad, curl-curl and
grad-div can be formulated in a single theoretical frame-
work.

Let Th be a triangulation of a physical domain Ω using
tetrahedral, hexahedral, or prismatic elements. We con-
sider the general bilinear form a(·, ·) defined by

a(u,v) =
∫

Ω
∗α(du)∧dv, (15)

where ∗α is the Hodge operator associated to a symmetric
definite positive tensor α, which typically represents ma-
terial properties such as electric and magnetic permeabil-
ities and conductivities; and, u and v are both p-forms.
Then by using the properties of the Hodge operator and
the local change of variables given by the iso-parametric
mapping Φ(T̂) = T , we re-write the bilinear a(·, ·) from

equation (15) as follows

a(u,v) =
∫

Ω
∗α(du)∧dv (16)

= ∑
T∈Th

∫
T =Φ(T̂ )

∗α(du)∧dv (17)

= ∑
T∈Th

∫
T̂

Φ∗ (∗α(du)∧dv) |Φ| (18)

= ∑
T∈Th

∫
T̂
∗α·Φ (Φ∗(du))∧Φ∗(dv)|Φ|. (19)

Similarly the mass matrix can be obtained using the fol-
lowing bilinear form

b(u,v) =
∫

Ω
∗(u)∧v, (20)

and after some manipulations, we have

b(u,v) = ∑
T∈Th

∫
T̂
∗(Φ∗(u))∧Φ∗(v)|Φ|. (21)

Equations (19) and (21) show that all calculations for the
mass and stiffness matrices are performed on a standard
reference element T̂ (i.e. the unit cube, tetrahedron, or
prism). Results are then transformed to physical mesh
elements (of arbitrary curvature) via a set of well de-
fined transformation rules based on the properties of dif-
ferential forms. These rules are summarized in Table 5
where u denotes a function defined with respect to the
global coordinate system and û is the same function de-
fined with respect to the local (or reference) coordinate
system. Given these transformations the bases need only
be evaluated on the reference element and transformed
accordingly. This gives rise to a very computationally
efficient algorithm for computing finite element approx-
imations. For a given element topology and basis order,
the basis functions only need to be computed once. Then,
for every element of the same topology in the mesh, the
results from the reference element can simply be mapped
according to the transformation rules. This can signifi-
cantly reduce computational time for a typical finite ele-
ment computation. In addition, integration over the ref-
erence element is much simpler and can be done exactly
using Gaussian quadrature of the appropriate order.

In addition, several levels of efficiency have been added
in the implementation of this class. The local mass and
stiffness matrices are symmetric therefore only one tri-
angular block is actually computed and the rest of the
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Table 5 : Transformation rules Φ∗

Φ∗(u) Φ∗(du)
0-forms û ∂Φ−1(dû)
1-forms ∂Φ−1û 1

|∂Φ|∂ΦT (dû)
2-forms 1

|∂Φ|∂ΦT û 1
|∂Φ| (dû)

Figure 5 : Visual examples of a 1-form transformation
(left) and a 2-form transformation (right)

entries are copied. For tetrahedrons of order 1, the Jaco-
bian is constant so there is no need to compute it at each
integration point.

Below, in Table 6, we show the common interface of a
bilinear p-form.

Table 6 : Interface of the Bilinear-pForm class

Method Description

setpForm() set a specific 0-form
setIntRule() set the integration rule
setElement() set a specific element3D
initialize() initialize internal data
getMassMatrix() get the local mass matrix
getStiffnessMatrix() get the local stiffness matrix
getLoadVector() get local load vector
getUError() get the local error
getQError() get local error of derivative

The getUError() and getQError() methods are provided
as testing tools. These can be used to compute the ac-
curacy of the finite element approximation whenever the
exact solution of the problem is known.

4 Simulations

4.1 Poisson Equation

The Poisson equation corresponds to the case p = 1 in
(1)-(4). Here u is a 0-form potential-like quantity and j
is a 2-form flux-like quantity. The operator �α can be in-
terpreted as the dielectric constant in the case of electro-
statics, permeability in the case of magnetostatics, ther-
mal conductivity in the case of heat transfer, etc. The
boundary conditions on Γ D, ΓN , and ΓM correspond to
the standard Dirichlet, Neumann, and Robbins boundary
conditions, respectively.

−∇ · (∇φ ) = f in Ω,

φ = s on ∂ΩD,
∇φ · n̂ = n on ∂ΩN .

(22)

In this numerical example we solve the above problem
on a cubic domain using hexahedral elements subject to
the Dirichlet boundary condition. We choose an exact
solution

φ= cos(x) sin(y)exp(z) (23)

and insert this into (22) to form the corresponding source
function f . We use Bilinear0Form methods getStiffness-
Matrix() and getLoadVector() to form the local stiffness
matrix and the local load vector for every element in the
mesh. Given these local matrices and local vectors, the
standard finite element procedure is used to assemble a
global system of the form

Ax = b, (24)

where A is the global stiffness matrix, b is the global
load vector, and x is the unknown vector of finite element
coefficients. The linear system is solved via a conjugate
gradient algorithm.

In Figure 6 we show the computed L2 error versus ele-
ment size h on a log− log scale for 0-form basis func-
tions of degree 1 through 4. The slopes of the lines
(based on a least-squares fit of the data points) are
(2.0000,2.9939,3.9914,4.9692) indicating the optimal
convergence rate of k +1.

4.2 Vector Helmholtz

The vector Helmholtz equation corresponds to the case
p = 2 in (1)-(4) with the exception that we add a −ω2
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Figure 6 : Polynomial convergence of h-refined solu-
tions of the Poisson equation using finite element 0-form
basis functions of degree 1 through 4.

term so that the problem corresponds to a hyperbolic
wave equation. Here both u and j are 1-form field-like
quantities and σ, ψ, and Φ are 2-form flux-like quanti-
ties. In the case of Maxwell’s equations u and j are the
electric and magnetic fields, Ψ and σ are the electric and
magnetic flux densities, the source term Φ is the current
density, and the star operators �α and �γ correspond to
1/µ and ε, respectively. The boundary conditions on Γ D

and ΓN correspond to n̂×u = 0 and n̂× ∇ ×u = 0, and
the boundary condition on Γ M is an impedance boundary
condition. In standard form we have

∇ × 1
µ

∇ ×�E −εω2�E = �f (25)

where f is a source term consisting of electric or mag-
netic currents, and �E is the time-harmonic complex-
valued electric field. In practice we use a prescribed
voltage boundary condition n̂× �E = v(t) or a radiation
boundary condition n̂× ∇ × �E = P(E) where P(E) is cho-
sen to approximate the Sommerfeld radiation boundary
condition.

In this computational experiment we validate the ex-
pected rates of convergence for h-refinement by choosing
a simple problem with a known, smooth solution. The
computational domain is a unit cube, discretized via a
series of unstructured tetrahedral meshes. We choose an
exact solution

�E =
(

0,0,
(
x−x2)2 (

y−y2)2 (
z− z2)2

)
(26)

and insert this into (25) to form the corresponding source
function �f . We use Bilinear1Form methods getStiffness-
Matrix(), getMassMatrix(), and getLoadVector() to form
the local matrices and the local load vector for every el-
ement in the mesh. Given these local matrices and local
vectors, the standard finite element procedure is used to
assemble a global system of the form
(
A−ω2B

)
x = b (27)

where A is the global stiffness matrix, B is the global
mass matrix, b is the global load vector, and x is the un-
known vector of finite element coefficients. The linear
system is solved via an ILU preconditioned GMRES al-
gorithm.

In Figure 7 we show the computed L2 error versus ele-
ment size h on a log− log scale for 1-form basis func-
tions of degree 1 through 6. The slopes of the lines
(based on least-squares fit of the last three data points)
are (0.98,1.97,2.97,3.97,4.97,5.98) indicating the op-
timal convergence. It is interesting to note that for this
particular problem using a 6th order basis on a 1440 el-
ement mesh yields a solution accurate to 10 significant
digits, where a comparable solution using a 1st order ba-
sis would require a mesh consisting of billions of ele-
ments. Naturally, we cannot expect this type of accuracy
for problems with re-entrant corners and associated field
singularities, but high-order approximation can be com-
bined with adaptive h-refinement for such problems.

−0.2 0 0.2 0.4 0.6 0.8 1
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−log
10

( h )

lo
g

10
( 

|| 
E

 −
 E

h
 ||

0 )

degree = 1
degree = 2
degree = 3
degree = 4
degree = 5
degree = 6

Figure 7 : Polynomial convergence of h-refined solu-
tions of the vector Helmholtz equation using finite ele-
ment 1-Form basis functions of degree 1 through 6.
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4.3 Acoustic Eigenvalues

The acoustic problem corresponds to case p = 3 (1)-(4)
with the exception that the source term Φ is zero and we
are seeking the fundamental eigensolutions of the oper-
ator. Here u is a 2-form flux-like quantity and j is a 0-
form potential-like quantity. In the case of acoustics the
operator �α is density, in elasticity it corresponds to a
combination of the Lamé constants; λ + 2µ. The bound-
ary condition on ΓD is a zero-flux condition, while the
condition on ΓN is a zero-pressure condition. In standard
notation we have

−∇
(

∇ ·�U
)

= ω2�U in Ω
�U · n̂ = 0 on ∂ΩD

∇ ·�U = 0 on ∂ΩN

(28)

where �U is the velocity and ω is the resonant frequency.

In this computational example we compute the eigenval-
ues of the above equation on a fixed mesh for various
values of polynomial degree k. We choose a problem
in which the eigenmodes are known to be smooth, and
thus we achieve the expected exponential convergence.
The computational domain is a unit cube with the exact
eigenvalues given by

ω2 = π2 (
l2 +m2 +n2) (29)

with l,m,n �= 0. The domain is discretized using a 6 el-
ement tetrahedral mesh, and equation (28) is discretized
using 2-form basis functions, with the required discrete
bilinear forms computed by the Bilinear2Form methods
getMassMatrix() and getStiffnessMatrix(). This results
in a generalized linear eigenvalue problem

Ax = ωh
2Bx (30)

where A and B are the global 2-form stiffness and mass
matrices, respectively. The vector x represents the un-
known coefficients of the basis function expansion of
the eigenmode �U , and ωh is the computed resonant fre-
quency of the eigenmode.

In this example we use Matlab to compute the entire set
of eigenvalues of (30). The model equation (28) has
an infinite set of zero-valued eigenvalues, corresponding
to solenoidal solutions. The discrete spectrum therefore
has a large number of zero-valued (to machine precision)
eigenvalues. While this is evidence that our discretiza-
tion correctly models the kernel of the grad-div operator,

these eigenvalues are of no interest to us, so we search
the computed spectrum for the first non-zero eigenvalue
which according to (29) should have the value 3π2. In
Figure 8 we plot the log of the error |ω−ωh| of the first
non-zero eigenvalue versus k, the degree of the finite el-
ement approximation. We see the expected exponential
convergence. The plateaus in the convergence are due
to the symmetry of the fundamental mode. For very
large problems in which it is not feasible to use Mat-
lab, it is possible to develop iterative eigenvalue solvers
that quickly converge to the smallest non-zero eigenval-
ues White and Koning (2002).
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Figure 8 : Exponential p-convergence of the 2-form dis-
cretization of the acoustic equation.

4.4 Maxwell’s Equations

The main use of the FEMSTER framework is time-
domain computational electromagnetics. Typically the
second order wave equation for the electric field is
solved:

ε
∂2

∂t2
�E = −∇ ×µ−1∇ ×�E − ∂

∂t
�J −σ

∂
∂t

�E in Ω (31)

where ε and µ are the tensor electric permittivity and
magnetic permeability respectively, and σ is the electri-
cal conductivity. The boundary conditions on �E are typ-
ically a combination of perfect conducting, impedance,
or radiation boundary conditions. The discretized wave
equation is

Bẍ = −Ax−Cẋ− ẏ (32)
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where A is the stiffness matrix and B and C are mass
matrices involving the permittivity and conductivity, re-
spectively. These matrices are similar to those used
in the frequency domain Helmholtz equation in Section
4.2. In this paper, equation (32) is is discretized using
the second-order accurate leap-frog method, the stabil-
ity and conservation properties are discussed in Rodrigue
and White (2001). An alternative higher order time dis-
cretization designed specifically for wave equations is
described in Rieben, White, and Rodrigue (2004a) The

Figure 9 : Coplanar waveguide geometry (not to scale).

first computational example is of a three conductor copla-
nar waveguide which consists of a 2 micrometer thick
metal deposited on silicon. The outer conductors can be
considered ground, and the inner conductor is the sig-
nal conductor. For high frequency signals, the copla-
nar waveguide configuration is superior to the traditional
micro-strip, as the fields are confined to the small region
between the conductors. The domain is discretized using
prism element mesh in which the x-y planes are triangle
meshes extruded in the z-direction to form the prisms.
Figure 9 shows the x-y plane containing the metal. We
excite the problem with a time-varying voltage source at
the left end of the waveguide. We are interested in how
the voltage pulse travels down the guide. We run the sim-
ulation for 6000 time steps. The induced currents on the
conductors can be measured, and this data can be post-
processed to yield input impedance, S-parameters, and
other useful characteristics of the waveguide. The volt-
age input and output for the transmission line is shown in
Figure 10.

As a second example, we illustrate the computed elec-
tromagnetic fields in a bent single mode optical fiber. A
3-dimensional hexahedral mesh is used for the simula-
tion, with approximately 1.8 million elements with 5.5
million degrees of freedom. Due to the very fine mesh
used to resolve the fiber core, 1st order basis functions
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Figure 10 : Input and output voltage for the coplanar
waveguide. The solid line is the voltage at the input port,
the dashed line is the voltage at the output port. Note the
reflections due to the imperfectly matched loads.

are used. A TE01 wave pulse is launched at one end of
the 5 micrometer radius fiber core, and the other end is
terminated with a Maxwellian perfectly matched layer.
The fiber is designed to support a 1.55 micrometer wave-
length mode and is 52 micrometers long with a bend ra-
dius of 55.13 micrometers. The purpose of the simulation
is to determine how much, if any, of the electric field es-
capes the fiber due to the sharp bend. The simulation is
run for 17,000 time steps with dt = 3.3e−16 s. This is
a full-wave, explicit time-domain simulation. The elec-
tric field intensity for a straight and bent optical fiber are
shown in Figures 11 and 12.

Figure 11 : Slice of three-dimensional straight optical
fiber electric field magnitude. This is a snapshot of the
field half way through the simulation.

As a final example, we compute the wake fields in a
generic accelerator. The accelerator consists of a series of
induction cells approximately one meter in diameter. An
electron bunch travels down the center of the accelerator,
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Figure 12 : Slice of three-dimensional bent optical fiber
electric field magnitude. This is a snapshot of the field
half way through the simulation. Note the electric field
leakage into the cladding.

receiving a 1 MEV boost as it passes by each induction
cell. The traveling electron bunch generates electromag-
netic waves which may resonate within the induction cell
for a very long time. These waves are referred to as the
wake field. This wake field can interfere with the next
electron bunch causing a beam instability. In this simu-
lation we model the electron bunch as a rigid Gaussian
beam, i.e. we are simply interested in the wake field and
not in the precise motion of the electrons. The accelerator
is modeled by a 3-dimensional hexahedral mesh with ap-
proximately 500,000 elements, with perfectly conducting
walls and a Maxwellian perfectly matched layer at each
end. In this simulation we solve for both the electric and
magnetic fields in a leapfrog manner similar to the FDTD
method, except that we solve a finite element mass ma-
trix at every time step. We do this simply because the
magnetic field is the more intuitive field to visualize for
this problem. The magnetic current is illustrated in Fig-
ure 13.

5 Concluding remarks

In this article we review a software class library of high-
order finite element basis functions that is based on the
language of differential forms. In our library the basis
functions are specified by the form p, by the element type
which at present is either a tetrahedron, hexahedron, or
prism, and by the order k of the polynomial space. For
each p-form we have a separate class hierarchy in which
the abstract base class defines the common interface for
the derived classes. We have implemented a variety of
different degrees of freedom including uniformly spaced
interpolation, non-uniform interpolation, and hierarchi-
cal moment-based degrees of freedom. The classes were
designed to be extensible, users can easily experiment

Figure 13 : Snapshot of the magnetic current induced on
the walls of a linear accelerator due to a Gaussian elec-
tron bunch. At this instant the bunch, traveling from right
to left, is approximately 90 percent of the way down the
accelerator. Note that the induction cells resonate for a
long time after the electron bunch has passed by.

with alternative degrees of freedom by deriving a new
class and implementing a single new method.

The language of differential forms is well suited for ex-
pressing the laws of electromagnetism. We designed the
application program interface of our library to mimic the
language of differential forms. This way, given a physi-
cal law expressed in differential forms, it is a straightfor-
ward process to correctly discretize and solve the prob-
lem. The discrete differential forms approach preserves
the important symmetry, conservation, and spectral prop-
erties of the original continuous operators. We demon-
strate how our approach can be applied to electrostatics,
eigenvalue problems, the frequency domain Helmholtz
equations, and the time-dependent Maxwell equations.
The frequency domain solutions are free of spurious
modes. The time domain solutions are stable, charge
conserving, and energy conserving.

Current research issues in the area of discrete differential
forms include fast linear solvers that take advantage of
the unique properties of p-forms Hiptmair (1998), Schin-
nerl, Schoberl, and Kaltenbacher (2000), adaptive hp-
refinement Rachowicz and Demkowicz (2002), and ap-
plications to nonlinear and multi-physics problems.
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