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New high-order integral methods in computational electromagnetism

Oscar P. Bruno1

Abstract: We present a new set of high-order al-
gorithms and methodologies for the numerical solution
of problems of scattering by complex bodies in three-
dimensional space. These methods, which are based
on integral equations, high-order integration and Fast
Fourier Transforms, can be used in the solution of prob-
lems of electromagnetic and acoustic scattering by sur-
faces and penetrable scatterers—even in cases in which
the scatterers contain geometric singularities such as cor-
ners and edges. The solvers presented here exhibit high-
order convergence, they run on low memories and re-
duced operation counts, and they result in solutions with
a high degree of accuracy.

1 Introduction

We present a new set of accurate Fourier methods for
the numerical solution of problems of scattering by com-
plex bodies in three-dimensional space. These meth-
ods, which are based on integral equations, high-order
integration and Fast Fourier Transforms, can be used in
the solution of problems of electromagnetic and acoustic
scattering by surfaces and penetrable scatterers—even in
cases in which the scatterers contain geometric singular-
ities such as corners and edges. The solvers presented in
this text exhibit high-order convergence, they run on low
memories and reduced operation counts, and they result
in solutions with a high degree of accuracy.

With regards to engineering relevance of the accuracy
exhibited by high order numerical methods, it has been
correctly argued that often an accuracy better than 1%-
0.1% is not significant in engineering practice. (An im-
portant class of problems in which significantly higher
accuracies are needed relate to low-observable applica-
tions, where the quantities of interest are small residuals
of large incident fields.) In any case, it is our contention
that high-order accuracy is extremely valuable in all ap-
plications, since, at the very least, it allows one to pro-
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duce accurate estimates of the errors incurred in a given
calculation. Indeed, estimation of the accuracy of a cer-
tain approximation requires, say, the possibility of evalu-
ation of the solution to at least one additional digit of ac-
curacy. With first order convergence (which necessarily
results from a direct integration method or without use of
high-order surface representations) this requires a refine-
ment of a one dimensional mesh by a factor of ten. For
the two-dimensional integrals we consider this translates
into a factor of 102 = 100 in the number of discretiza-
tion points—and thus, in the number of unknowns in the
problem! Clearly, refinement of a first order algorithm is
generally not a viable approach for evaluation of the ac-
curacy of a numerical solution. A high-order algorithm
such as that used to produce Table 1 right, in turn, can
give us an additional digit of accuracy (and, therefore, a
good measure of the accuracy of a numerical solution)
by a small increase in the overall size of the numerical
problem. This is an extremely valuable feature in a nu-
merical method; as indicated throughout the following
text, our approaches produce such high-order accuracy
by exploiting the high-order convergence of both, the in-
tegration through the trapezoidal rule and approximation
via Fourier series for smooth periodic functions. Fast nu-
merics in our algorithms results from use ofO(N log(N)
Fast Fourier Transforms.

This paper is organized as follows: after a brief gen-
eral discussion in Section 2 on integration, interpola-
tion and surface representation we present, in Sections 3
and 4, our direct integral solvers for surface and volumet-
ric scattering, respectively.

2 High-order integration and interpolation of
smooth functions

Many aspects of our methods resulted from considera-
tion of the remarkable properties exhibited by the trape-
zoidal rule for integration of smooth periodic functions
over d-dimensional cubes (d = 1,2, . . .). Of course the
integrals arising in integral equation formulations involve
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surfaces which are much more complex that a square in
2-dimensions or a cube in 3-dimensions, and they require
consideration of highly non-smooth integrands—which
arise from both singularities in the Green functions and
geometric singularities of the scatterer: edges, corners,
etc. As we have shown, in spite of these singularities, ap-
propriate transformations permit one to obtain high-order
integrators for scattering problems from trapezoidal rules
and Fourier series. Further, use of Fast Fourier Trans-
forms for evaluation of Fourier series and convolutions
allows for fast numerics in addition to high order accu-
racy. To demonstrate these facts in simple settings we
preface our discussion with some considerations on the
properties of the trapezoidal rule and Fourier series for
one-dimensional functions under various periodicity and
smoothness assumptions.

2.1 Trapezoidal-rule integration

Let us thus consider the problem of integration of a
functiony = f (x) over a one-dimensional interval[a,b].
Table 1 displays relative errors and convergence ra-
tios exhibited by the trapezoidal rule as applied to
three problems—which encapsulate some relevant is-
sues under consideration:

∫ 1/2
0

√
xdx;

∫ π/4
0 ecos2(x) dx and∫ π

0 ecos2(x) dx. From Table 1 we see that integration of
thenon-smooth function

√
x results in errors larger than

O(h2) for anN interval grid of mesh-sizeh = (b−a)/N:
refinement of the mesh by a factor of 2 leads to error re-
ductions by a factor smaller than 4. When applied to in-
tegration of the smooth functionf (x) = ecos2(x) over the
interval [0,π/4], in turn, the trapezoidal rule results in
quadratic errors: refinement of the mesh by a factor of 2
leads to error reductions by a factor of 4. In the last case
in which thesmooth and periodic function f (x) = e cos2(x)

shown in Fig. 1 is integrated over its period, we see a
much higher, exponential convergence rate.

The behavior exhibited by the trapezoidal rule is easy to
explain. As is well known, for a general smooth func-
tion, the trapezoidal rule gives rise to quadratic errors
O(h2) (see Table 1 center) since the error in the approx-
imation of a function by its trapezoidal approximation is
of the order ofh3 within each one of theO(1/h) indi-
vidual integration elements. As it can be checked, for
the non-smooth function f (x) =

√
x, the overall errors

is of the order ofh3/2 only, in accordance with the re-
sults of Table 1 left. A remarkable phenomenon takes
place as the trapezoidal rule is applied to functions such

Figure 1 : f (x) = ecos2(x).

asecos2(x) which are periodic on the integration domain,
and smooth for−∞ < x < ∞: in this case the integra-
tion errors decrease exponentially fast: see Table 1 right.
Two basic facts make this extraordinary behavior possi-
ble, namely

1. The extremely fast convergence of Fourier series
of smooth periodic functions [Courant and Hilbert
(1953)], and,

2. The remarkable fact that, as it can be verified easily,
the trapezoidal rule withN +1 points (N intervals)
integrates exactly the Fourier harmonicsei�x for � =
−N . . .N.

From Table 1 we thus see that use of 8 integration in-
tervals for integration of the smooth periodic function
f (x) = ecos2(x) in its periodicity interval results in errors
of the order of 10−10. For the non-periodic integration
problem in Table 1 center, an equivalent accuracy re-
quires 8192 intervals. And, use of this highly refined
mesh gives an accuracy of only 10−5 when the integra-
tion problem for the non-smooth function

√
x is consid-

ered.

As discussed above, the integrands of the type occurring
in integral equations of the type (2) below generally are
neither one dimensional, nor smooth or periodic. The
methods presented in the rest of this text, however, do
reduce these general integration problems to problems of
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N Rel. Error Ratio

1 4.69(-1)
2 2.04(-1) 2.30
4 8.99(-2) 2.27
8 4.02(-2) 2.24

8192 2.72(-5)

N Rel. Error Ratio

1 4.77(-2)
2 1.19(-2) 4.03
4 2.95(-3) 4.02
8 7.36(-4) 4.01

8192 7.01(-10)

N Rel. Error Ratio

1 5.50(-1)
2 6.03(-2) 9.12
4 3.10(-4) 1.95e(+2)
8 7.17(-10) 4.32e(+5)
16 2.10(-23) 3.42e(+13)

Table 1 : Relative errors in trapezoidal-rule approximations for
∫ b

a f (x)dx usingN intervals (N + 1 discretization
points). Left: f (x) =

√
x, a = 0, b = 1/2. Center: f (x) = ecos2(x), a = 0, b = π/4. Right: f (x) = ecos2(x), a = 0,

b = π.

evaluation of sequences of one-dimensional integrals of
smooth periodic functions.

2.2 High-order representation of functions and sur-
faces

Clearly, a high-order surface integrator must use high-
order representations of the integration surfaces; as dis-
cussed repeatedly in the rest of this paper, further, high-
order interpolation of known data is needed in the in-
tegration algorithms we use. Such high-order repre-
sentations are generally not directly available, however:
usually only triangulations of surfaces are provided, so
that first order derivatives are discontinuous, or, at most,
spline representation with continuous first order deriva-
tives and discontinuous curvatures are provided. Since
the curvature of the surface occurs as part of the double-
layer integrands, a high order integration method requires
several derivativesof the curvature to exist. Finally, high-
order representation of surfaces near corners, edges and
other geometric singularities, which also need to be pro-
vided, present certain special difficulties.

Previous approaches to this problem utilize piece-wise
polynomial approximations, and, under certain assump-
tions concerning regularity of a given triangulation, have
provided representations with continuous derivatives of
first order. Higher order differentiability has not been
produced by these means as yet, and the prospects for the
feasibility of such extensions do not seem favorable: it
appears that piecewise polynomial approximations may
not be helpful in our context.

In the interest of brevity we only present a summary de-
scription of our approach to high-order representation
(see [Bruno and Pohlman] for details). These meth-
ods arose from consideration of the properties of the
trapezoidal rule and Fourier series, as described in the
previous section, which suggest that representations of

with high order accuracy can be produced by means of
Fourier series. Further, as discussed below, a continu-
ation method can be used for efficient high-order treat-
ment of the surface representation problem. Clearly, the
most significant obstacle for use of Fourier series in this
context is presented by the Gibbs phenomenon: Fourier
series of discontinuous functions converge very slowly
and contain unacceptable oscillations.

A number of methods have been proposed over the years
which eliminate to various extents the inaccuracies asso-
ciated with the Gibbs phenomenon—and which can thus
improve the convergence properties of Fourier series of
discontinuous functions—, including methods that uti-
lize frequency domain filters, Gegenbauer polynomials,
basis functions with “built-in” discontinuities, and Pad´e
approximations. Our new method, whose implementa-
tion is very simple indeed, yields super-algebraic con-
vergence for Fourier series of discontinuous functions,
it applies in an arbitrary number of dimensions, and it
can be used even when only unevenly spaced data is
available and in presence of irregular domains of defi-
nition. And, most importantly, it has significantly bet-
ter properties of convergence and stability than other
methods available at present. Our approach is based
on a very simple but previously untested idea: contin-
uation of each smooth branch of a piecewise-smooth
function into a new function which, defined on a larger
domain, is both smooth and periodic. These “contin-
uation functions” have Fourier coefficients that decay
super-algebraically, and thus result in high-order approx-
imations of a given function throughout its domain of
definition—even at points of discontinuity. A proof
of the super-algebraic convergence of the continuation
method is given in [Bruno and Pohlman], together with
a variety of numerical examples demonstrating the capa-
bilities of the continuation approach.

Results of a number of applications of our algorithm are
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Figure 2 : Triangulation of an airplane and color-coded patches, each one of which is given by an explicit Fourier
series.

presented in Figure 2: each one of the shaded surfaces is
given by anexplicit finite Fourier series.

3 Fast, high-order surface scattering solvers
(Joint work with L. Kunyansky [Bruno and Kunyan-
sky (2001a), Bruno and Kunyansky (2001b), Kun-
yansky and Bruno])

In this section we describe our Fourier-based high-order
algorithms for the numerical solution of problems of
scattering by surfaces in three-dimensional space. This
algorithm evaluates scattered fields through fast, high-
order solution of the corresponding boundary integral
equations. The high-order accuracy of our solver is
achieved through use ofpartitions of unity (that is, a set
of windowing functions which add up to one through-
out the surface), together withanalytical resolution of
kernel singularities. The acceleration, in turn, results
from use of a novel approach which, based on high-
order “two-face” equivalent source approximations, re-
duces the evaluation of far interactions to evaluation of
3-D FFTs. This approach is faster, substantially more
accurate, and it runs on dramatically lower memories
than other FFT andk-space methods. The present over-
all algorithm computes one matrix-vector multiply in
O

(
N6/5 logN

)
to O(N4/3logN) operations, whereN is

the number of surface discretization points. The latter
estimate applies to smooth surfaces, for which our high
order algorithm provides accurate solutions with small

values ofN; the former, more favorable count is valid for
highly complex surfaces requiring significant amounts of
subwavelength sampling. Further, our approach exhibits
super-algebraic convergence, it can be applied to smooth
and non-smooth scatterers, and, unlike other accelerated
schemes it does not suffer from accuracy breakdowns of
any kind (compare [Dembart and Yip (1998), Rokhlin
(1990)] and [Labreuche (1998), p. 576]). In what fol-
lows we introduce the main algorithmic components in
our approach, and we demonstrate its performance with
a variety of numerical results. In particular, we show that
the present algorithm can evaluate accurately in a per-
sonal computer scattering from bodies of acoustical sizes
of several hundreds.

3.1 Fast high-order surface integration algorithm

For simplicity we restrict our presentation to the problem
of acoustic scattering by a sound-soft obstacle. (In Sec-
tion 3.2, however, numerical results for both electromag-
netic and acoustic applications of our methods are given.)
The relevant “combined field” integral equation is given
by the appropriate combination of a single- and a double-
layer potential (see e.g. [Colton and Kress (1998)])

(Sϕ)(r′) =
∫

∂D

Φ(r′,r)ϕ(r)ds(r) and

(Kϕ)(r′) =
∫

∂D

∂Φ(r′,r)
∂ν(r)

ϕ(r)ds(r), (1)
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HereΦ(r′,r) = eik|r′−r|/4π|r′ −r| is the Green function
for the Helmholtz equation, andν(r) is the external nor-
mal to the surface∂D at pointr. Explicitly, given the
values of the incoming waveψi(r) on ∂D, the scattered
field can be obtained easily once the integral equation for
the unknown densityϕ(r)

1
2

ϕ(r)+(Kϕ) (r)− iη (Sϕ) (r) = ψi(r), r ∈ ∂D (2)

has been solved. Naturally, the possibility of produc-
ing fast and accurate solutions for our problems hinges
on our ability to evaluate the integrals (1) accurately
and efficiently. In attempting to develop such accurate
and efficient integrators one faces two main problems,
namely, accurate evaluation of the singularadjacent in-
teractions—without undue compromise of speed—and
fast evaluation of the voluminous number ofnonadjacent
interactions —without compromise in accuracy. In what
follows we present a solution to these problems.

Partitions of unity. In order to deal with topologi-
cal characteristics of closed surfaces, which are given
in terms of the local parametrizations discussed in Sec-
tion 2, we utilize partitions of unity. In detail, we use a
covering of the surface∂D by a numberK of overlapping
two-dimensional patchesP j, j = 1, · · · ,K, (called local
charts in differential geometry) together with smooth
mappings to coordinate setsH j in two-dimensional
space, where actual integrations are performed. Further,
we utilize a partition of unity subordinated to this cover-
ing of ∂D, i.e. we introduce a set of non-negative smooth
functions{w j, j = 1, . . .,K}, such that (i)w j is defined,
smooth and non-negative in∂D, and it vanishes outside
P j, and (ii) ∑K

j=1wj = 1 throughout∂D. This allows us
to reduce the problem of integration of the densityϕ(r)
over the surface to a calculation of integrals of smooth
functionsϕ j compactly supported in the planar setsH j.

Adjacent integration. Substantial difficulties in the
high-order evaluation of adjacent interactions are
caused by the singular nature of the integral kernels.
While, certainly, the well-known strategy of “singularity
subtraction” gives rise to bounded integrands, integration
of such bounded functions by means of classical high-
order methods does not exhibit high-order accuracy—
since the subsequent derivatives of the integrand are
themselves unbounded. The new basic high-order in-
tegrator we present is based on analytical resolution of
singularities. The resolution is achieved by integration
in polar coordinates centered around each singular point.

The Jacobian of the corresponding change of variables
has the effect of canceling the singularity, so that high
order integration in the both radial and angular directions
can be performed using the trapezoidal rule. Since the
corresponding radial quadrature points do not lie on the
Cartesian grid, a high-order, fast interpolation technique
has been developed for evaluation of the necessary func-
tion values at the radial integrations points. Efficiency is
of utmost importance here, since we use one such polar
coordinate transformationat each target point. Our high
order integrator exhibits super-algebraic convergence for
smooth and non-smooth scattering surfaces [Bruno and
Kunyansky (2001a), Kunyansky and Bruno].

Non-adjacent integration and acceleration. Our ac-
celerator is closely related to two of the most advanced
FFT methods developed recently [Bleszynski, Bleszyn-
ski, and Jaroszewicz (1996), Phillips and White (1997)].
An important common element between these two meth-
ods and our technique is a concept of equivalent (or aux-
iliary) sources, located on a subset of a 3-D Cartesian
grid. In all three cases, the intensities of these sources are
chosen to approximate the field radiated by the scatterer,
which allows for fast computation of the “non-adjacent
interactions” through the use of 3-D FFTs. Surface prob-
lems like the ones we consider are treated in [Bleszynski,
Bleszynski, and Jaroszewicz (1996), Phillips and White
(1997)] by means of equivalent sources located in avol-
umetric grid—in such a way that equivalent sources with
non-zero intensities occupyall Cartesian nodes adjacent
to the scatterer. Since the spacing of this Cartesian grid
cannot be coarsened beyond some threshold for surface
problems such a scheme requires aO(N3/2) FFT. There-
fore, previous FFT surface scattering solvers require
O(N3/2) units of RAM and they run inO

(
N3/2 logN

)
op-

erations. Our algorithm, in contrast, subdivides the vol-
ume occupied by the scatterer into a number of (relatively
large) cubic cells, and it places equivalent sourceson the
faces of those cells. As we have shown, such a design
reduces significantly the sizes of the required FFTs—to
as little asO

(
N6/5

)
to O

(
N4/3

)
points—with propor-

tional improvement in storage requirements and opera-
tion count. Further, it results in super-algebraic conver-
gence of the equivalent source approximationsas the size
of the scatterer is increased.

Resolution of singularities. To obtain resolution of the
singular integrands around the ogive’s conical singulari-
ties, for example, a combination of two changes of vari-
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Type Size Unknowns Iterations Time/It. ε∞ ε2

Non Accelerated 1λ 1568 20 69s 2.5×10−3 1.4·10−3

Non Accelerated 1λ 6336 17 12m 45s 3.8×10−5 2.2·10−5

Non Accelerated 1λ 25472 17 3h 27m 9.8×10−7 4.8·10−7

Accelerated 10λ 34112 13 26m 3.8×10−4 2.1·10−4

Accelerated 20λ 34112 14 14m 6.0×10−3 2.4·10−3

Accelerated 20λ 72320 19 67m 5.4×10−5 2.1·10−5

Table 2 : Scattering by an ogive. Results produced on a single processor 400MHz PC with 1Gb of RAM.

ables were used: a polar change of variables similar
to that described in the section “Adjacent integration”
above, followed by a polynomial change of variables
which regularizes the H¨older-type singularity of the un-
derlying density.

3.2 Surface Scattering: Numerical Results

We present results for well known and widely used
test geometries: large spheres, ellipsoids, cubes and
ogives; solutions with analogous accuracies and com-
puting times for non-exact geometries have been pre-
sented elsewhere. In particular, we present compar-
isons with the FMM solver FISC [Song, Lu, Chew, and
Lee (1998)]. The following caveat should be taken into
account when considering these comparisons: our re-
sults for large spheres correspond to solutions of three-
dimensional acoustic scattering problems—solutions of
the Helmholtz equation— whereas the FISC data cor-
responds to solutions of the Maxwell equations. There
are of course some differences between the Helmholtz
and Maxwell problems; in particular the unknowns in
the Maxwell integral equations are two-dimensional vec-
tors, as opposed to the single scalar unknown arising in
the Helmholtz integral equation. However, our methods
apply to the full Maxwell problem—although our im-
plementations do not yet include Maxwell solvers with
equivalent source acceleration. Results provided by our
non-accelerated Maxwell solver have already been ob-
tained: for example, results for an electromagnetic cube
of about one wavelength in diagonal were obtained with
errors of the order of 10−4. Implementations of our fully
accelerated EM solvers for general, possiblysingular sur-
faces are currently being produced.

Results for problems of scattering by large spheres are
presented in Table 3. We see that the performance of the

present methods compares very well with that of leading
solvers.

Figure 3 : Ogive geometry presented in reference [Woo,
Wang, Schuh, and Sanders (1993)].

Table 3 presents results for problems of scattering by
very large spheres; note the excellent accuracies provided
by the algorithm in competitive running times. Table 2
displays a set of results obtained for scattering from a sin-
gular surface: the ogive depicted in Figure 3, for acousti-
cal sizes (distances between tips) equal to 1λ, 10λ and
20λ. For the larger sizes we used the accelerator de-
scribed above; note the substantial improvements in com-
puting times resulting from the acceleration algorithm.

4 Fast, high-order volumetric scattering solvers
(Joint work with McKay Hyde [Bruno and Hyde
(a), Bruno and Hyde (b), Hyde and Bruno ]and A.
Sei [Bruno and Sei (1997), Bruno and Sei (2000),
Bruno and Sei (2003)])

Our approach to the problem of scattering by large volu-
metric scatterers is based, in part, on a concept of can-
cellation of errors: certain large errors in integrands
arising by approximation of discontinuous functions by
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Algorithm Diameter Time RAM Unknowns RMS Error Computer

FISC 120λ 32×14.5h 26.7Gb 9,633,792 4.6% SGI Origin 2000
(32 proc.)

Present 80λ 55h 2.5Gb 1,500,000 0.005% AMD 1.4GHz
(1 proc.)

Present 100λ 68h 2.5Gb 1,500,000 0.03% AMD 1.4GHz
(1 proc.)

Table 3 : Scattering from large spheres.

their Fourier series can result in small errors in values
of integrals—provided integrands and integrals are setup
appropriately; see Section 4 below and references therein
for details. Since the ideas of error cancellation have
proven somewhat controversial we preface our discus-
sion on volumetric scattering by a one dimensional ex-
ample (given in the following paragraph), which illus-
trates this phenomenon in a simple setting. Then in Sec-
tion 4 we present our volumetric scattering solver.

The proposed concept of error cancellation may be read-
ily illustrated by means of an elementary numerical
example: use of Fourier expansions to produce high-
order numerical evaluations of an integral of the form∫ 1

0 f (θ)g(θ)dθ, where (i) f is a discontinuous periodic
function, and where (ii)g is a function which is continu-
ous together with its derivative, but whose second deriva-
tive is discontinuous. For this example we use the func-
tions

f (θ) =




1 0≤ θ < 1/4
−1 1/4≤ θ < 3/4

1 3/4≤ θ≤ 1

and

g(θ) =




θ2/2 0≤ θ < 1/4
−θ2/2+θ/2−0.0625 1/4≤ θ < 3/4

(θ−1)2/2 3/4≤ θ≤ 1

see Figure 4; we have
∫ 1

0 f (θ)g(θ)dθ= −1/48. The dis-
continuities of f and the degree of smoothness ofg cor-
respond, respectively, to those of the refractive indexn
and the scattered fieldu for a soft acoustic scatterer with
a discontinuous refractive index.

In analogy with some aspects of our method, here we
proceed to evaluate the integral off g by replacing f
andg by their respective Fourier series truncated to order
F—including modes between−F andF only—, evaluat-
ing theirpointwise product, and integrating the result by

means of the trapezoidal rule—withNθ points and mesh-
sizeh = 1/(Nθ−1). [We emphasize here that the Fourier
coefficients of the discontinuous functionf should be ac-
curate, and could not therefore be produced by a simple
integration rule. Fortunately, it is not hard to produce
accurate Fourier coefficients forf , as it is generally the
case for the Fourier coefficients of a given distributionn
of refractive indexes: either closed expressions or simple
one-dimensional high-order integration rules “by-pieces”
can be used.] The accuracies resulting from these oper-
ations are displayed in Table 4. We see that the error in
the approximate integral is of the orderh3, in spite of the
Gibbs phenomenon and the low order convergence of the
series for the discontinuous functionf . This cancellation
of errors can be explained through consideration of the
error arising in the zero-th order coefficient of the func-
tion f g as a result of the truncations used, [Bruno and
Hyde (a)]. Naturally, even higher order convergence re-
sults for smoother functionsf andg (or n andu). We

F Nθ Absolute Error Ratio
2 4 3.0 (-4)
4 8 4.8 (-5) 6.3
8 16 6.5 (-6) 7.4
16 32 8.3 (-7) 7.8
32 64 1.0 (-7) 8.3

Table 4 : Convergence test for the evaluation of∫ 1
0 f (θ)g(θ)dθas a function the number of modesN used

for f andg.

point out, however, that, even in the most singular case
considered here, it suffices to use 64 points to produce
results with an accuracy better than full single precision.
Tight error estimates for the numerical method presented
in this paper are given in [Bruno and Hyde (a)].
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Figure 4 : The functionsf andg.

In what follows we consider scattering of an incident
field by an inhomogeneous medium, according to the
Helmholtz equation: The total fieldu = u i + us solves
both the Helmholtz equation [Colton and Kress (1998),
p. 2],

∆u+κ2n2(x)u = 0, x ∈ R
3,

and the Lippmann-Schwinger integral equation [Colton
and Kress (1998), p. 214]

u(x) = ui(x)−κ2
∫

Ω
g(x−y)m(y)u(y)dy, (3)

where g(x) = 1
4π

eiκ|x|
|x| is the Green’s function for the

Helmholtz equation in three dimensions andm = 1−n 2.

As is well known, the complexity of the integration as-
sociated with this integral equation can be reduced to
O(N logN) operations through use of the fast Fourier
transform (FFT). Perhaps the most familiar such method
is the k-space or conjugate-gradient FFT method (CG-
FFT) [Bojarski (1982), Xu and Liu (2001), Zwamborn
and Van den Berg (1992)], in which the convolution with
the Green’s function is computed via a Fourier transform
(computed with an FFT) and multiplication in Fourier
space. Although this method provides a reduced com-
plexity, it is only first-order accurate. This low-order ac-
curacy arises because the FFT provides a poor approxi-
mation to the Fourier transform when, as in this case, the
function is not smooth and periodic.

Although our methods also use FFTs to achieve a re-
duced complexity, they yield, in addition,high-order ac-
curacy. To our knowledge, only limited attempts have

been made at devising high-order methods for this prob-
lem. Liu and Gedney [Liu and Gedney (2000)] proposed
a O(N2) locally corrected Nystr¨om scheme for scatter-
ing in two dimensions. This method provides high-order
convergence rates that are not limited by the regularity of
the scatterer, but it does not possess the desirable low
operation counts of Fourier based methods. Vainikko
[Vainikko], on the other hand, proposed a method for
smooth scatterers that is related to our approach. In this
method, the integral equation is modified to produce a
periodic solution by cutting off the Green’s function (ei-
ther smoothly or discontinuously) outside a cube that is
at least twice as large as the scatterer. The solution to
the modified integral equation is smooth and periodic on
this larger cube and, furthermore, agrees with the true so-
lution on the support of the scatterer. Thus, for smooth
scatterers, the solution is smooth and periodic and can,
therefore, be approximated to high-order with a truncated
Fourier series. However, the convergence rates of this ap-
proach lag significantly behind those of our approach—
producing only first-order convergence in the case of dis-
continuous scatterers. Vainikko introduces a completely
different approach for piecewise-smooth scatterers that
producesO(h2(1+ logh)) convergence in both the near
and far fields, whereh is the discretization spacing in
each direction. This approach requires that for each level
of discretization, one must approximate the volume frac-
tion of each cell that lies on each side of a discontinuity in
the refractive index. This seems rather difficult to obtain,
especially for complicated scatterers in three dimensions.
This contrasts with the limited geometrical requirements
of our method, in which various portions of a scatterer
can be treated separately to finally assemble the Fourier
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series of the overall refractive index distribution as a sum
of the Fourier series for the refractive indexes of the com-
ponents.

Our goal is to obtain an FFT-based method (thereby
yielding O(N logN) complexity) that is also high-order
accurate. As is well known, the trapezoidal rule can be
used to evaluate convolution integrals and Fourier co-
efficients and, in these cases, is algorithmically equiv-
alent to the FFT. Also, FFTs can efficiently evaluate a
truncated Fourier series on a set of equally-spaced grid
points. However, the trapezoidal rule yields high-order
convergence only forsmooth and periodic integrands and
similarly, truncated Fourier series exhibit high-order con-
vergence only when approximatingsmooth and periodic
functions.

For these reasons, a primary obstacle to the development
of a high-order, FFT-based method is the lack of regu-
larity in the scatterer. Hence, perhaps the most impor-
tant aspect of our approach is the substitution of the scat-
terer by an appropriate Fourier-smoothed approximation.
This approach counters conventional wisdom: a Fourier
approximation of a discontinuous function necessarily
yields low-order convergence. However, as shown in the
example of Section 4 above, through our computational
examples and as we have proven rigorously [Bruno and
Hyde (a)], anappropriate numerical integration of such
a Fourier approximated function does indeed yield high-
order accuracy.

Another obstacle to the development of a high-order
method concerns the Green’s function. There are two
ways to evaluate the convolution by means of FFT-based
method. First, one could evaluate the convolution by
means of the trapezoidal rule. However, even with the
Fourier-smoothed scatterer, the polar singularity in the
Green’s function produces first-order convergence. Al-
ternatively, one could approximate the convolution op-
eratorK[u](x) (see (3)) itself by means of a truncated
Fourier series. However, althoughK[u](x) is smooth, be-
cause of the slowly decaying tail of the Green’s function,
it is not periodic. Hence, the Fourier series converges to
first-order only.

To overcome these difficulties, we decompose the
Green’s function by means of a smooth partition of unity
into 1) a smooth part with infinite support and 2) a singu-
lar part with compact support. The convolution with the
smooth part of the Green’s function is computed to high-
order by means of the trapezoidal rule. Finally, the con-

volution with the singular part is computed to high-order
by approximating the (now smooth and periodic) opera-
tor by a truncated Fourier series. Each one of these con-
volutions is computed using FFTs yielding high-order ac-
curacy and a total complexity ofO(N logN). We thereby
obtain a method that is as simple and efficient as the CG-
FFT method, but, which, unlike the CG-FFT, yields high-
order accuracy.

4.1 Large penetrable bodies: Numerical Results

The numerical results of this section demonstrate both,
theO(N logN) complexity as well as the high-order con-
vergence rate of our method. We first consider the two-
dimensinonal scatterer containing the refractive index
distribution indicated in Figure 5. Next, we present a
problem of scattering for a piecewise-constant (discon-
tinuous) layered sphere in three dimensions, for which
the analytical solution is known. Finally, we consider in
Figure 7 a 5×5×5 array of scattering potentials. Except
in the case in which the exact solution is known, errors
are evaluated through comparison of the computed so-
lution with the solution obtained for a significantly finer
discretization.

These examples demonstrate both theO(N logN) com-
plexity as well as the high-order convergence rate of the
method. In particular, the method seems to yield signif-
icantly more than second-order convergence in the near
field and third-order convergence in the far field for the
discontinuous scatterers. Furthermore, the method al-
lows one to construct quite complicated scatterers with
limited effort.
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(a) Scatterer (q = −m = n2 − 1) (b) Near Field Intensity (|u|2)
M Nr N Memory Iter. Time Near Error Ratio Far Error Ratio
60 102 12K 19M 54 36s 2.16e-5 7.33e-9
120 102 25K 39M 54 72s 4.81e-7 44.91 1.06e-11 691.51
240 102 50K 75M 54 160s 1.05e-8 45.81 4.50e-12 Conv.
480 102 99K 150M 54 331s 4.76e-10 22.06 4.52e-12 Conv.
960 102 198K 305M 54 561s 1.36e-11 35.0 4.61e-12 Conv.
1920 102 396K 609M 54 1172s 1.94e-12 Conv. 4.72e-12 Conv.

(c) Convergence Results

Figure 5 : Two-dimensional scatterer. Diameter= 10λ

(a) Scatterer (q = n2 − 1) (b) Far Field Intensity (|u∞|2) (c) Near Field Intensity (|u|2)
Discretization Time (s) × #CPUs Max. Far Field Error
10 × 10 × 10 2.15 × 1 0.146
20 × 20 × 20 15.6 × 1 4.56(-3)
40 × 40 × 40 125 × 1 9.55(-4)
80 × 80 × 80 1119 × 1 5.43(-5)

160 × 160 × 160 475 × 32 7.11(-6)

(d) Convergence Results

Figure 6 : Layered Sphere –κa = 4
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(a) Scatterer (q = n2 − 1) (b) Far Field Intensity (|u∞|2) (c) Near Field Intensity (|u|2)

N Time (s) × #CPUs εnf
u Ratio εff

u Ratio
10 × 10 × 10 2.15 × 32 3.70 43.0
20 × 20 × 20 15.6 × 32 1.35 2.73 10.6 4.05
40 × 40 × 40 125 × 32 4.80(-2) 28.2 8.66(-2) 122
80 × 80 × 80 1119 × 32 8.28(-3) 5.79 4.47(-2) 1.94

160 × 160 × 160 475 × 32 6.48(-5) 128 7.76(-5) 576

(d) Convergence Results

Figure 7 : Array of Smooth Scatterers (Potentials)– 6λ×6λ×6λ
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