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New high-order integral methodsin computational electromagnetism

Oscar P. Brunot

Abstract:  We present a new set of high-order aduce accurate estimates of the errors incurred in a given
gorithms and methodologies for the numerical solutiaralculation. Indeed, estimation of the accuracy of a cer-
of problems of scattering by complex bodies in thred¢ain approximation requires, say, the possibility of evalu-
dimensional space. These methods, which are baaédn of the solution to at least one additional digit of ac-
on integral equations, high-order integration and Fastracy. With first order convergence (which necessarily
Fourier Transforms, can be used in the solution of prokesults from a direct integration method or without use of
lems of electromagnetic and acoustic scattering by shigh-order surface representations) this requires a refine-
faces and penetrable scatterers—even in cases in whent of a one dimensional mesh by a factor of ten. For
the scatterers contain geometric singularities such as dbe two-dimensional integrals we consider this translates
ners and edges. The solvers presented here exhibit higis a factor of 18 = 100 in the number of discretiza-
order convergence, they run on low memories and t&n points—and thus, in the number of unknowns in the
duced operation counts, and they result in solutions wiglioblem! Clearly, refinement of a first order algorithm is

a high degree of accuracy. generally not a viable approach for evaluation of the ac-
curacy of a numerical solution. A high-order algorithm
1 Introduction such as that used to produce Table 1 right, in turn, can

give us an additional digit of accuracy (and, therefore, a
We present a new set of accurate Fourier methods {@jod measure of the accuracy of a numerical solution)
the numerical solution of problems of scattering by conyy a small increase in the overall size of the numerical
plex bodies in three-dimensional space. These mefitoblem. This is an extremely valuable feature in a nu-
ods, which are based on integral equations, high-ordgérical method; as indicated throughout the following
integration and Fast Fourier Transforms, can be useddit, our approaches produce such high-order accuracy
the solution of problems of electromagnetic and acouskg exploiting the high-order convergence of both, the in-
scattering by surfaces and penetrable scatterers—evegadjtation through the trapezoidal rule and approximation
cases in which the scatterers contain geometric singul@g Fourier series for smooth periodic functions. Fast nu-

ities such as corners and edges. The solvers presentegdfics in our algorithms results from use®fN log(N)
this text exhibit high-order convergence, they run on lowast Fourier Transforms.

_memories a”?' redu_ced operation counts, and they re%%'Fs paper is organized as follows: after a brief gen-
'n_SOIUt'OnSW'th a h'qh degree of accuracy. eral discussion in Section 2 on integration, interpola-
With regards to engineering relevance of the accuragyn and surface representation we present, in Sections 3

exhibited by high order numerical methods, it has be@id 4, our direct integral solvers for surface and volumet-
correctly argued that often an accuracy better than 1ff-scattering, respectively.

0.1% is not significant in engineering practice. (Anim-

portant class of problems in which significantly higher

accuracies are needed relate to low-observable applga-High-order integration and interpolation of
tions, where the quantities of interest are small residuals Smooth functions

of large incident fields.) In any case, it is our contenti
that high-order accuracy is extremely valuable in all
plications, since, at the very least, it allows one to

OIolany aspects of our methods resulted from considera-
aBon of the remarkable properties exhibited by the trape-
PT9%idal rule for integration of smooth periodic functions

1 Applied and Computational Mathematics, Caltech, Pasadena, @X€r d-dimensional cubesd(= 1,2,...). Of course the
91125 integrals arising in integral equation formulations involve
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surfaces which are much more complex that a square
2-dimensions or a cube in 3-dimensions, and they requi
consideration of highly non-smooth integrands—whicl
arise from both singularities in the Green functions an
geometric singularities of the scatterer: edges, corne
etc. As we have shown, in spite of these singularities, a
propriate transformations permit one to obtain high-orde
integrators for scattering problems from trapezoidal rule
and Fourier series. Further, use of Fast Fourier Trar
forms for evaluation of Fourier series and convolution
allows for fast numerics in addition to high order accu
racy. To demonstrate these facts in simple settings v
preface our discussion with some considerations on tl
properties of the trapezoidal rule and Fourier series fi
one-dimensional functions under various periodicity and
smoothness assumptions.

Figure1: f(x) = e,

2.1 Trapezoidal-ruleintegration

Let us thus consider the problem of integration of gsec$X) which are periodic on the integration domain,
functiony = f(x) over a one-dimensional intervi, b]. and smooth for- < x < c: in this case the integra-
Table 1 displays relative errors and convergence fgn errors decrease exponentially fast: see Table 1 right.
tios exhibited by the trapezoidal rule as applied tpwo basic facts make this extraordinary behavior possi-
three problems—which encapsulate some relevant fige namely

sues under consideratiofy’* /xdx; fg7*e®® dx and

fge°°§<x> dx. From Table 1 we see that integration of 1. The extremely fast convergence of Fourier series
the non-smooth function /X results in errors larger than of smooth periodic functions [Courant and Hilbert
O(h?) for anN interval grid of mesh-siza= (b—a)/N: (1953)], and,

refinement of the mesh by a factor of 2 leads to error re-

ductions by a factor smaller than 4. When applied to in-2. The remarkable fact that, as it can be verified easily,
tegration of the smooth functiof(x) = ec$( over the the trapezoidal rule witiN + 1 points { intervals)
interval [0,11/4], in turn, the trapezoidal rule results in  integrates exactly the Fourier harmon@ for ¢ =
quadratic errors: refinement of the mesh by a factorof 2 —N...N.

leads to error reductions by a factor of 4. In the last case

in which thesmooth and periodic function f (x) = e From Table 1 we thus see that use of 8 integration in-
shown in Fig. 1 is integrated over its period, we seetarvals for integration of the smooth periodic function
much higher, exponential convergence rate. f(x) = o€ in its periodicity interval results in errors

The behavior exhibited by the trapezoidal rule is easy @ the order of 10%°. For the non-periodic integration
explain. As is well known, for a general smooth fund2roblem in Table 1 center, an equivalent accuracy re-
tion, the trapezoidal rule gives rise to quadratic errofglires 8192 intervals. And, use of this highly refined
0(h?) (see Table 1 center) since the error in the apprdResh gives an accuracy of only T0when the integra-
imation of a function by its trapezoidal approximation i§on problem for the non-smooth functiog’x is consid-

of the order ofh3 within each one of th®(1/h) indi- ered.

vidual integration elements. As it can be checked, fés discussed above, the integrands of the type occurring
the non-smooth function f(x) = /X, the overall errors in integral equations of the type (2) below generally are
is of the order ofh®? only, in accordance with the re-neither one dimensional, nor smooth or periodic. The
sults of Table 1 left. A remarkable phenomenon takesethods presented in the rest of this text, however, do
place as the trapezoidal rule is applied to functions sudduce these general integration problems to problems of
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| N [RelEror| Ratio| [ N [ Rel.Eror| Ratio| [ N [ Rel. Error| Ratio |
1 | 4.69(-1) 1 | 4.77(-2) 1| 550(-1)
2 | 2.04(1) | 2.30 2 | 119(-2) | 4.03 2 | 6.03(-2) 9.12
4 | 899(-2) | 2.27 4 | 2.95(-3) | 4.02 4 | 3.10(-4) | 1.95e(+2)
8 | 4.02(2) | 2.24 8 | 7.36(-4) | 401 8 | 7.17(-10) | 4.32e(+5)
8192 | 2.72(-5) 8192 | 7.01(-10) 16 | 2.10(-23) | 3.42e(+13)

Table 1 : Relative errors in trapezoidal-rule approximations ﬁrf (x)dx usingN intervals (N + 1 discretization
points). Left: f(x) = /X, a=0, b= 1/2. Center:f(x) = e°¥® a=0, b= /4. Right: f(x) = ¥ a=0,
b=r1

evaluation of sequences of one-dimensional integralswaith high order accuracy can be produced by means of
smooth periodic functions. Fourier series. Further, as discussed below, a continu-
ation method can be used for efficient high-order treat-
ment of the surface representation problem. Clearly, the
most significant obstacle for use of Fourier series in this
context is presented by the Gibbs phenomenon: Fourier
Clearly, a high-order surface integrator must use higperies of discontinuous functions converge very slowly
order representations of the integration surfaces; as @gd contain unacceptable oscillations.

cussed repeatedly in the rest of this paper, further, highhumber of methods have been proposed over the years
order interpolation of known data is needed in the invhich eliminate to various extents the inaccuracies asso-
tegration algorithms we use. Such high-order repreiated with the Gibbs phenomenon—and which can thus
sentations are generally not directly available, howevémprove the convergence properties of Fourier series of
usually only triangulations of surfaces are provided, gfiscontinuous functions—, including methods that uti-
that first order derivatives are discontinuous, or, at mokte frequency domain filters, Gegenbauer polynomials,
spline representation with continuous first order derivlasis functions with “built-in” discontinuities, and Rad”
tives and discontinuous curvatures are provided. Singgproximations. Our new method, whose implementa-
the curvature of the surface occurs as part of the doultien is very simple indeed, yields super-algebraic con-
layer integrands, a high order integration method requirgsrgence for Fourier series of discontinuous functions,
several derivativesf the curvatureto exist. Finally, high- it applies in an arbitrary number of dimensions, and it
order representation of surfaces near corners, edges @i be used even when only unevenly spaced data is
other geometric singularities, which also need to be pravailable and in presence of irregular domains of defi-
vided, present certain special difficulties. nition. And, most importantly, it has significantly bet-
Previous approaches to this problem utilize piece-wit® properties of convergence and stability than other
polynomial approximations, and, under certain assunipethods available at present. Our approach is based
tions concerning regularity of a given triangulation, haven a very simple but previously untested idea: contin-
provided representations with continuous derivatives bgtion of each smooth branch of a piecewise-smooth
first order. Higher order differentiability has not beefnction into a new function which, defined on a larger
produced by these means as yet, and the prospects fod@@ain, is both smooth and periodic. These “contin-
feasibility of such extensions do not seem favorable: ygation functions” have Fourier coefficients that decay

appears that piecewise polynomial approximations mayper-algebraically, and thus result in high-order approx-
not be helpful in our context. imations of a given function throughout its domain of

In the interest of brevity we only present a summary dd€finition—even at points of discontinuity. A proof
scription of our approach to high-order representatiGt the super-algebraic convergence of the continuation
(see [Bruno and Pohiman] for details). These metfi€thod is given in [Bruno and Pohlman], together with
ods arose from consideration of the properties of tﬁ‘e\_""_‘”ety of numerlcal gxamples demonstrating the capa-
trapezoidal rule and Fourier series, as described in {ilies of the continuation approach.

previous section, which suggest that representationsRgsults of a number of applications of our algorithm are

2.2 High-order representation of functions and sur-
faces
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Figure 2 : Triangulation of an airplane and color-coded patches, each one of which is given by an explicit Fourier
series.

presented in Figure 2: each one of the shaded surfacesisies ofN; the former, more favorable count is valid for
given by anexplicit finite Fourier series. highly complex surfaces requiring significant amounts of
subwavelength sampling. Further, our approach exhibits

3 Fast, high-order surface scattering solvers super-algebraic convergence, it can be applied to smooth
(Joi n'; work with L. Kunyansky [Bruno and Kunyan- and non-smooth scatterers, and, unlike other accelerated

sky (2001a), Bruno and Kunyansky (2001b), Kurﬁchemes it does not suffer from accuracy breakdown_s of
yansky and Brund] any kind (compare [Dembart and Yip (1998), Rokhlin
(1990)] and [Labreuche (1998), p. 576]). In what fol-
In this section we describe our Fourier-based high-ordews we introduce the main algorithmic components in
algorithms for the numerical solution of problems obur approach, and we demonstrate its performance with
scattering by surfaces in three-dimensional space. Thigariety of numerical results. In particular, we show that
algorithm evaluates scattered fields through fast, highe present algorithm can evaluate accurately in a per-
order solution of the corresponding boundary integrabnal computer scattering from bodies of acoustical sizes
equations. The high-order accuracy of our solver @ several hundreds.
achieved through use gértitionsof unity (thatis, a set
of windowing functions which add up to one through3.1 Fast high-order surfaceintegration algorithm

out the surface), together wigmalytical resolution of g4 gimpjicity we restrict our presentation to the problem
kernel singularities. The accelera'qon, in turn, res_ulg; acoustic scattering by a sound-soft obstacle. (In Sec-
from use of a novel approach which, based on highs, 3 5 however, numerical results for both electromag-
order * two-face” equivalent source approximations, re- aic and acoustic applications of our methods are given.)
duces the evaluation of far interactions to evaluation ¢4 relevant “combined field” integral equation is given
3-D FFTs. This approach is faster, substantially MOgg the appropriate combination of a single- and a double-

accurate, and it runs on dramatically lower memoriqz(%,er potential (see e.g. [Colton and Kress (1998)])
than other FFT an#-space methods. The present over-

all algorithm computes one matrix-vector multiply i ¢ :/q) ' 1é(r)ds(r) and
O (N®5logN) to O(N*3logN) operations, wher#l is (s)(r) (5 )e(r)ds(r)

the number of surface discretization points. The latter oD 0(r

estimate applies to smooth surfaces, for which our higi¢)(r’) = ﬁd)(r)ds(r), (1)

order algorithm provides accurate solutions with small b ov(r)
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Here®(r’,r) = &K' ~Tl /4mt|r’ —r| is the Green function The Jacobian of the corresponding change of variables
for the Helmholtz equation, andr) is the external nor- has the effect of canceling the singularity, so that high
mal to the surfac@D at pointr. Explicitly, given the order integration in the both radial and angular directions
values of the incoming waw' (r) on dD, the scattered can be performed using the trapezoidal rule. Since the
field can be obtained easily once the integral equation fmrresponding radial quadrature points do not lie on the
the unknown densitg(r) Cartesian grid, a high-order, fast interpolation technique
1 _ has been developed for evaluation of the necessary func-
SO +(Ko) (r)—in(Sp) (r) =y'(r),  readD (2) tionvalues at the radial integrations points. Efficiency is
. of utmost importance here, since we use one such polar
has been solved. Naturall_y, the possibility of pro_du%'oordinate transformatiaat each target point. Our high
ing fast an_o! accurate solutlons.for our problems hmgSPder integrator exhibits super-algebraic convergence for
on our ability to evaluate the integrals (1) accuratelymooth and non-smooth scattering surfaces [Bruno and

and efficiently. In attempting to develop such accur%nyansky (2001a), Kunyansky and Bruno]
and efficient integrators one faces two main problems, ’ '

namely, accurate evaluation of the singutijacent in- 'Non-adjacent integration and acceleration. Our ac-

teractions—without undue compromise of speed—anﬁelerator is closely related to two of the most_ advanced
fast evaluation of the voluminous numbemmhadjacent FF T methods developed recently [Bleszynski, Bleszyn-
interactions—uwithout compromise in accuracy. In what: @nd Jaroszewicz (1996), Phillips and White (1997)].

follows we present a solution to these problems. An important common element between these two meth-

- . . . ods and our technique is a concept of equivalent (or aux-
Partitions of -un_lty. In order to deal W'th, tOpOIOg'f iliary) sources, located on a subset of a 3-D Cartesian
Fal characteristics of closed §urf_aces, .Wh'Ch are giveid. In all three cases, the intensities of these sources are
n terms of th.e local pgrametnzgtlons dlscgssed n'S thosen to approximate the field radiated by the scatterer,
tion 2, we utilize partitions of unity. In detail, we use

. fih t2caD b beK of . hich allows for fast computation of the “non-adjacent
covering of the surfa y:anumber ot overiappiIng :qactions” through the use of 3-D FFTs. Surface prob-
two-dimensional patched !, j = 1, --- K, (called local

harts in diff tial ) togeth ith tems like the ones we consider are treated in [Bleszynski,
charts In diflerential geome y) ogether with smoo leszynski, and Jaroszewicz (1996), Phillips and White
mappings to coordinate setd! in two-dimensional

h wal int i ; 4 F t|41997)] by means of equivalent sources locatednla
Space, where actual integrations are pertormed. Furtly ric grid—in such a way that equivalent sources with

we utilize a partition of unity subordinated to this cover- on-zero intensities occugayl Cartesian nodes adjacent
:cng OTaD’ |.ej. \{veilztrodice a se:] ?Ln?n-n?gagvi_smé)q the scatterer. Since the spacing of this Cartesian grid
unctions{w’, j = T }, suc a (')N. IS deNN€d, - annot be coarsened beyond some threshold for surface
smooth and r}lon-r_legatlve @D, and it vanishes ou'[3|deIoroblems such a scheme requird@%2) FFT. There-

i i sK wi = i . _ . _
P, and (i) - w 1thr_oughou_6D. This aIIow_s US fore, previous FFT surface scattering solvers require
to reduce the problem of mteg_ratlon_of the densgity) (N®/2) units of RAM and they run i) (N3/2IogN) op-
over the surface to a calculation of integrals of Smoog}ations. Our algorithm, in contrast, subdivides the vol-

. J . 1 )

fun.ct|ons¢. compz?\ctly supported.ln th.e .plan.ar S_HS]' ume occupied by the scatterer into a number of (relatively
Adjacent integration. Substantial difficulties in the jarge) cubic cells, and it places equivalent souroeshe
high-order evaluation of adjacent interactions are faces of those cells. As we have shown, such a design
caused by the singular nature of the integral kernejaduces significantly the sizes of the required FFTs—to
While, certainly, the well-known strategy of “singularityys [ittle asO (N6/5) to O (N4/3) points—with propor-
subtraction” gives rise to bounded integrands, integratigBnal improvement in storage requirements and opera-
of such bounded functions by means of classical higlion count. Further, it results in super-algebraic conver-
order methods does not exhibit high-order accuracygence of the equivalent source approximatiasibe size
since the subsequent derivatives of the integrand @f8he scatterer isincreased.
themselves unbounqled. The new bas_lc hlgh-ord-er Rasolution of singularities. To obtain resolution of the
tegrator we present is based on analytical resolution e EZO

nqulariti Th lution i hieved by int " ular integrands around the ogive’s conical singulari-
singufarities. 1he resolution Is achieved Dy Integraliqilg ¢q example, a combination of two changes of vari-

in polar coordinates centered around each singular point.
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\ Type | Size | Unknowns| Iterations| Time/It. | €., | &2
Non Accelerated 1A | 1568 20 69s 25x10°°|1.4.10°°
Non Accelerated 1A | 6336 17 12m 45s|38x10°° | 2.2.10°°
Non Accelerated 1A | 25472 17 3h27m |9.8x10° 7| 48-107
Accelerated | 10n | 34112 13 26m 38x10°%]21.-10%
Accelerated | 20A | 34112 14 14m 6.0x107° | 2.4.10°°
Accelerated | 20\ | 72320 19 67m 54x10°|21.10°

Table 2 : Scattering by an ogive. Results produced on a single processor 400MHz PC with 1Gb of RAM.

ables were used: a polar change of variables simifesent methods compares very well with that of leading
to that described in the section “Adjacent integratiorsolvers.

above, followed by a polynomial change of variables

which regularizes the élder-type singularity of the un-
derlying density.

3.2 Surface Scattering: Numerical Results

We present results for well known and widely usec
test geometries: large spheres, ellipsoids, cubes a
ogives; solutions with analogous accuracies and con
puting times for non-exact geometries have been pre-
sented elsewhere. In particular, we present compay- A ,
isons with the FMM solver FISC [Song, Lu, Chew, anelglrjl;e g(}ﬁ%‘vzr?;grgﬁégrgrazzgtﬁd in reference [Woo,
Lee (1998)]. The following caveat should be taken into ~ =~ ' '

account when considering these comparisons: our re-

sults for large spheres correspond to solutions of threie'ble 3 presents results for problems of scattering by
dimensional acoustic scattering problems—solutions

_ ry large spheres; note the excellent accuracies provided
the Helmholtz equation— whereas the FISC data cofs algorithm in competitive running times. Table 2

respofnds to solutlonsd_(])c;‘ the Maxl\[/)veill eque}[trllonli' IThhe isplays a set of results obtained for scattering from a sin-
are ot course some ditrerences between the Feim o[ﬁar surface: the ogive depicted in Figure 3, for acousti-

and Maxwell problems; in particular the unknowns i al sizes (distances between tips) equal X 10 and

the Maxwell integral equations are two-dimensional VeSHL. For the larger sizes we used the accelerator de-

tors, as opposed to the single scalar unknown arising

the Helmholtz int I i ¥ h Lribed above; note the substantial improvements in com-
€ reimnollz integral equation. HOWever, our met O%%ting times resulting from the acceleration algorithm.
apply to the full Maxwell problem—although our im-

plementations do not yet include Maxwell solvers with
equivalent source acceleration. Results provided by our ® 7 ,
non-accelerated Maxwell solver have already been ob- (Joint work with McKay Hyde [Bruno and Hyde
tained: for example, results for an electromagnetic cube (a?, Bruno and Hyd_e (b), Hyde and Brun(a_r}d A.

of about one wavelength in diagonal were obtained with Sa [Bruno ar_ld Sei (1997), Bruno and Sei (2000),
errors of the order of 10%. Implementations of our fully Bruno and Sei (2003)])

accelerated EM solvers for general, possibly singular sgiyr approach to the problem of scattering by large volu-
faces are currently being produced. metric scatterers is based, in part, on a concept of can-
Results for problems of scattering by large spheres amdlation of errors: certain large errors in integrands
presented in Table 3. We see that the performance of #nising by approximation of discontinuous functions by

Fast, high-order volumetric scattering solvers
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| Algorithm | Diameter| Time | RAM | Unknowns| RMS Error|  Computer |

FISC 120\ 32x 14.5h | 26.7Gb | 9,633,792 4.6% SGI Origin 2000
(32 proc.)
Present 80\ 55h 2.5Gb | 1,500,000 0.005% AMD 1.4GHz
(1 proc.)
Present 100\ 68h 2.5Gb | 1,500,000 0.03% AMD 1.4GHz
(1 proc.)

Table 3: Scattering from large spheres.

their Fourier series can result in small errors in valueseans of the trapezoidal rule—willy points and mesh-

of integrals—provided integrands and integrals are setsigeh=1/(Ng—1). [We emphasize here that the Fourier
appropriately; see Section 4 below and references theredefficients of the discontinuous functiérshould be ac-

for details. Since the ideas of error cancellation hagerate, and could not therefore be produced by a simple
proven somewhat controversial we preface our discuistegration rule. Fortunately, it is not hard to produce
sion on volumetric scattering by a one dimensional e&aecurate Fourier coefficients fdr, as it is generally the
ample (given in the following paragraph), which illusease for the Fourier coefficients of a given distribution
trates this phenomenon in a simple setting. Then in Sex+refractive indexes: either closed expressions or simple
tion 4 we present our volumetric scattering solver. one-dimensional high-orderintegration rules “by-pieces”

The proposed concept of error cancellation may be re&@0 be used.] The accuracies resulting from these oper-
ily illustrated by means of an elementary numerications are displayed in Table 4. We see that the error in
example: use of Fourier expansions to produce highe approximate integral is of the ordet, in spite of the
order numerical evaluations of an integral of the forf@ibbs phenomenon and the low order convergence of the
fol f(6)g(8)de, where (i) f is a discontinuous periodicseries for the discontinuous functiénThis cancellation
function, and where (iily is a function which is continu- of errors can be explained through consideration of the
ous together with its derivative, but whose second deriv@or arising in the zero-th order coefficient of the func-

tive is discontinuous. For this example we use the funton fg as a result of the truncations used, [Bruno and
tions Hyde (a)]. Naturally, even higher order convergence re-

sults for smoother functions andg (or n andu). We
1  0<6<1/4

f@)={ -1 1/4<e8<3/4

1 3/4<06<1 F | Ng | Absolute Error| Ratio
and 2 | 4 3.0 (-4)
, 418 4.8(-5) 6.3
67/2 0<6<1/4 8 | 16 6.5 (-6) 7.4
g(6) =q —6?/2+6/2-0.0625  Y4<0<3/4 16| 32| 83(7) 7.8
(6-1)%/2 3/4<8<1 3264] 1.0(7) 8.3

. . 1 . .

see Flg_u.re 4; we havfy f(8)g(8)d0 = —1/48. The dis- Table 4 : Convergence test for the evaluation of
continuities of f apd the degree of smoothnes_sgccf_or- 01 £(8)g(8)d0 as a function the number of modesised
respond, respectively, to those of the refractive inde or f andg

and the scattered fieldfor a soft acoustic scatterer with '

a discontinuousrefractive index.

In analogy with some aspects of our method, here \weint out, however, that, even in the most singular case
proceed to evaluate the integral 6f by replacingf considered here, it suffices to use 64 points to produce
andg by their respective Fourier series truncated to ordegsults with an accuracy better than full single precision.

F—including modes betweenF andF only—, evaluat- Tight error estimates for the numerical method presented
ing their pointwise product, and integrating the result byin this paper are given in [Bruno and Hyde (a)].
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Figure 4 : The functionsf andg.

In what follows we consider scattering of an inciderieen made at devising high-order methods for this prob-

field by an inhomogeneous medium, according to them. Liu and Gedney [Liu and Gedney (2000)] proposed
Helmholtz equation: The total field = u' + u® solves a O(N?) locally corrected Nystin scheme for scatter-
both the Helmholtz equation [Colton and Kress (1998)g in two dimensions. This method provides high-order

p. 2],

Au+k%n(x)u=0, xeR3,

convergence rates that are not limited by the regularity of
the scatterer, but it does not possess the desirable low
operation counts of Fourier based methods. Vainikko
[Vainikko], on the other hand, proposed a method for

and the Lippmann-Schwinger integral equation [Coltasmooth scatterers that is related to our approach. In this

and Kress (1998), p. 214]

U = 49— [ gix-ymyuiy)dy.
where g(x) = %%

method, the integral equation is modified to produce a
periodic solution by cutting off the Green’s function (ei-
ther smoothly or discontinuously) outside a cube that is
at least twice as large as the scatterer. The solution to
the modified integral equation is smooth and periodic on

is the Green's function for thethis jarger cube and, furthermore, agrees with the true so-

Helmholtz equation in three dimensions and= 1—n2. |ution on the support of the scatterer. Thus, for smooth

As is well known, the complexity of the integration asscatterers, the solution is smooth and periodic and can,
sociated with this integral equation can be reduced terefore, be approximated to high-order with a truncated
O(NlogN) operations through use of the fast Fouridrourier series. However, the convergence rates of this ap-
transform (FFT). Perhaps the most familiar such methBtpach lag significantly behind those of our approach—
is the k-space or conjugate-gradient FFT method (C®roducing only first-order convergence in the case of dis-
FFT) [Bojarski (1982), Xu and Liu (2001), Zwamborreontinuous scatterers. Vainikko introduces a completely
and Van den Berg (1992)], in which the convolution witlifferent approach for piecewise-smooth scatterers that
the Green’s function is computed via a Fourier transforioducesO (h?(1 +logh)) convergence in both the near
(computed with an FFT) and multiplication in Fourieend far fields, wheré is the discretization spacing in
space. Although this method provides a reduced coffch direction. This approach requires that for each level
plexity, it is only first-order accurate. This low-order acof discretization, one must approximate the volume frac-
curacy arises because the FFT pro\/ides a poor appré%n of each cell that lies on each side of a diSCOﬂtinUityin

mation to the Fourier transform when, as in this case, tﬂi@ refractive index. This seems rather difficult to obtain,
function is not smooth and periodic. especially for complicated scatterers in three dimensions.

Although our methods also use FFTs to achieve a I.'Ehls contrasts with the limited geometrical requirements

duced complexity, they yield, in additiohigh-order ac- of our method, in which various portions of a scatterer
curacy. To our knowledge, only limited attempts hav&an be treated separately to finally assemble the Fourier
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series of the overall refractive index distribution as a suwelution with the singular part is computed to high-order
of the Fourier series for the refractive indexes of the cofay approximating the (now smooth and periodic) opera-
ponents. tor by a truncated Fourier series. Each one of these con-

Our goal is to obtain an FFT-based method (thereM@!utionsis computed using FFTs yielding high-order ac-
yielding O(NlogN) complexity) that is also high-ordercuracy and a total complexity &f(NlogN). We thereby
accurate. As is well known, the trapezoidal rule can §tain a method thatis as simple and efficient as the CG-
used to evaluate convolution integrals and Fourier c6FT method, but, which, unlike the CG-FFT, yields high-
efficients and, in these cases, is algorithmically equi9tder accuracy.

alent to the FFT. Also, FFTs can efficiently evaluate a . .

truncated Fourier series on a set of equally-spaced gl}iai Large penetrable bodies: Numerical Results

points. However, the trapezoidal rule yields high-ordgthe numerical results of this section demonstrate both,
convergence only fosmoothand periodic integrands and theO (NlogN) complexity as well as the high-order con-
similarly, truncated Fourier series exhibit high-order conergence rate of our method. We first consider the two-
vergence only when approximatisgiooth and periodic  dimensinonal scatterer containing the refractive index
functions. distribution indicated in Figure 5. Next, we present a
For these reasons, a primary obstacle to the developnieblem of scattering for a piecewise-constant (discon-
of a high-order, FFT-based method is the lack of regtinuous) layered sphere in three dimensions, for which
larity in the scatterer. Hence, perhaps the most impdhe analytical solution is known. Finally, we consider in
tant aspect of our approach is the substitution of the schigure 7 a 5< 5x 5 array of scattering potentials. Except
terer by an appropriate Fourier-smoothed approximati(ﬂﬂ]_'[he case in which the exact solution is known, errors
This approach counters conventional wisdom: a Fourigfe evaluated through comparison of the computed so-
approximation of a discontinuous function necessarﬂytion with the solution obtained for a significantly finer
yields low-order convergence. However, as shown in tléscretization.

example of Section 4 above, through our computationethese examples demonstrate both @@l logN) com-
examples and as we have proven rigorously [Bruno apixity as well as the high-order convergence rate of the
Hyde (a)], anappropriate numerical integration of suchmethod. In particular, the method seems to yield signif-
a Fourier approximated function does indeed yield higltantly more than second-order convergence in the near
order accuracy. field and third-order convergence in the far field for the
Another obstacle to the development of a high-ordéiscontinuous scatterers. Furthermore, the method al-
method concerns the Green'’s function. There are tigvs one to construct quite complicated scatterers with
ways to evaluate the convolution by means of FFT-baséited effort.

method. First, one could evaluate the convolution by

means of the trapezoidal rule. However, even with the

Fourier-smoothed scatterer, the polar singularity in the

Green’s function produces first-order convergence. Al-

ternatively, one could approximate the convolution op-

eratorK[u](x) (see (3)) itself by means of a truncated

Fourier series. However, althoudu] (x) is smooth, be-

cause of the slowly decaying tail of the Green'’s function,

it is not periodic. Hence, the Fourier series converges to

first-order only.

To overcome these difficulties, we decompose the
Green’s function by means of a smooth partition of unity
into 1) a smooth part with infinite support and 2) a singu-
lar part with compact support. The convolution with the
smooth part of the Green’s function is computed to high-
order by means of the trapezoidal rule. Finally, the con-
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(a) Scatterer (g = —m =n? —1) (b) Near Field Intensity (|u|?)

M N, N Memory | Iter. | Time | Near Error | Ratio | Far Error | Ratio

60 | 102 | 12K 19M 54 36s 2.16e-5 7.33e-9
120 | 102 | 25K 39M 54 72s 4.81e-7 44.91 | 1.06e-11 | 691.51
240 | 102 | 50K 75M 54 160s 1.05e-8 45.81 | 4.50e-12 | Conv.
480 | 102 | 99K 150M 54 | 331s 4.76e-10 22.06 | 4.52e-12 | Conv.
960 | 102 | 198K | 305M 54 561s 1.36e-11 35.0 | 4.61e-12 | Conv.
1920 | 102 | 396K | 609M 54 | 1172s | 1.94e-12 | Conv. | 4.72e-12 | Conv.

(c¢) Convergence Results

Figure5: Two-dimensional scatterer. DiameterlOA

(a) Scatterer (¢ =n? —1) (b) Far Field Intensity (Jus|?) (c) Near Field Intensity (|u|?)

Discretization | Time (s) x #CPUs | Max. Far Field Error
10 x 10 x 10 215 x1 0.146
20 x 20 x 20 15.6 x 1 4.56(-3)
40 x 40 x 40 125 x 1 9.55(-4)
80 x 80 x 80 1119 x 1 5.43(-5)
160 x 160 x 160 475 x 32 7.11(-6)

(d) Convergence Results

Figure 6: Layered Sphere ka=4
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(a) Scatterer (g =n? —1) (b) Far Field Intensity (Juso|?) (c) Near Field Intensity (|u|?)

N Time (s) x #CPUs el Ratio el Ratio
10 x 10 x 10 2.15 x 32 3.70 43.0
20 x 20 x 20 15.6 x 32 1.35 2.73 10.6 4.05
40 x 40 x 40 125 x 32 180(2) | 282 | 8.66(-2) | 122
80 x 80 x 80 1119 x 32 8.28(:3) | 579 | 4.47(-2) | 1.94
160 x 160 x 160 475 % 32 6.48(-5) | 128 | 7.76(-5) | 576

(d) Convergence Results

Figure7: Array of Smooth Scatterers (PotentialSh>66A x 6A
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