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Frequency-Shifting Analysis of Electrostatically Tunable Micro-Mechanical
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Abstract: A numerical approach for eigenvalue anal-
ysis of the electrostatically tunable micro-mechanical
actuators is presented. An efficient algorithm for cal-
culating the natural frequency shifting in the micro-
mechanical actuators due to applied DC turning voltage
is proposed. In the calculations of the coupled field prob-
lem, the three-dimensional FEM/BEM approaches and
iterative staggered algorithm are employed. The numer-
ical examples for actually fabricated actuators are pre-
sented and the numerical analysis results are compared
with experimental data.
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1 Introduction

The micro-mechanical resonators, which are driven by
electrostatic force, are widely used in active micro-
electromechanical systems because of high reliabil-
ity and low power consumption. Electrostatic micro-
actuators are usually operated at their resonant frequen-
cies, which will give the maximum displacement ampli-
tude and the highest operating efficiency [Tang, Nguyen
and Howe (1989); Tang, Lim and Howe (1992)]. The
resonant frequency tuning of the electrostatic micro-
actuator is required for post-fabrication adjustment of
resolution and bandwidth in order to remove the effect
of fabrication error. The resonant frequency of a micro-
actuator can be generally tuned by applying DC bias volt-
age.

Previous works on the numerical analysis of tunable elec-
trostatic actuators used very simplified models in which
micro-mechanical actuators are assumed as single mass-
spring systems [Adams et. al. (1995); Seo, Cho and
Youn (1998); Francais (2000)]. However, actuator sys-
tems must be modeled to continuum structures [Ljung,
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Bachtold and Spasojevic (2000)] because the actuators
assumed as rigid body in previous works are generally
deformable. Moreover, in real actuator situations, the
electrostatic field and the elastic deformation field of the
system are 3-dimensionally coupled. Some advanced nu-
merical approaches, which can treat continuous fields, is
used only in the calculation of the electrostatic force ap-
plied on the device [Lee and Cho (1998); Ye and Mukher-
jee (2000)]. In order to accurately predict the behavior of
the real system, the analysis of the coupled fields in 3-
D continuous system and an algorithm for evaluating the
influences of electrostatic field on natural frequency are
necessary.

In this work, a numerical scheme for eigenvalue anal-
ysis of electrostatically tunable micro-mechanical ac-
tuators is proposed. The finite element method and
the boundary element method [Katsikadelis and Ner-
antzaki (2000), Gaul, Fischer and Nackenhorst (2003),
Han and Atluri(2003)] are very useful methods to ana-
lyze such micro-mechanical continuum systems. We use
the boundary element method (BEM) and the finite ele-
ment method (FEM) for the 3-D analysis of electrostatic
field and deformation of devices respectively. And also
an iterative staggered algorithm is used for coupled anal-
ysis of two fields. In order to consider the effects of elec-
trostatic field on natural frequency, an equivalent stiff-
ness matrix for electrostatic tuning voltage is introduced.
We can perturb the equilibrium structure using a con-
cerned eigenvector of operating mode and then linearize
the corresponding electrostatic force variation in order to
determine the equivalent stiffness. For examples, a sim-
ple beam-shaped structure, a tunable electrostatic micro-
mirror and a repulsive micro comb-structure are analyzed
and the numerical analysis results of frequency shifting
are compared with the experimental data.
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2 Numerical Procedures

2.1 Coupled Field Analysis

Electrostatically driven micro-actuator system is gov-
erned by the electrostatic driving force and the elastic
restoring force. Since the structure deforms due to the
applying electrostatic forces and then the electrostatic
fields are modified by corresponding structural deforma-
tion, this actuator is an electrostatic-elastic coupled sys-
tem. A coupled analysis of the electrostatic and elastic
deformation fields needs to achieve the equilibrium state.
An iterative staggered algorithm is employed in order
to perform the electrostatic-elastic coupled analysis [Shi,
Ramesh and Mukherjee (1996)]. A simple flow chart of
the staggered algorithm for the electrostatic-elastic cou-
pled field analysis is shown in Fig. 1.

Figure 1 : Flow chart of the electrostatic-elastic coupled
field analysis

The electrostatic field induced by the electric potential
applied on the electrodes is analyzed by BEM. When
conductors are surrounded with homogeneous dielectric
medium, the electric potential of each conductor is con-
stant. The charge density on the conductor surface can
be calculated as follow:

q(xxx) = −ε
∂φ(xxx)
∂xi

ni(xxx) (1)

where q(xxx) is the charge density at a point xxx on the con-
ductor surface, φ(xxx) the electric potential of conductor, ε
the dielectric permittivity of media and nnn(xxx) the normal
vector to the inside of conductor. And then the electro-
static forces on the conductor surface can be obtained as
follow:

fff (xxx) = − 1
2

q(xxx)2

ε
nnn(xxx) (2)

The deformation of the structure caused by electrostatic
force is calculated with FEM. Then the electrostatic field
is modified due to the structural deformation and then
the electrostatic forces are updated again. The iterative
process continues until the equilibrium is achieved.

2.2 Frequency Shifting Analysis

When the dynamic deformation of a structure is consid-
ered, the equation of motion can be written as follows.

MÜMÜMÜ +KUKUKU = FFF (3)

where KKK, MMM, and FFF are, respectively, the stiffness ma-
trix, the mass matrix, and the load vector of the system
and made by finite element approximation of the struc-
ture. Above equation of motion can be uncoupled to
single degree-of-freedom equations by the linear coordi-
nate transformation defined by eigenvectors [Meirovitch,
(1980)]. Each uncoupled equation is related to only
one eigenmode and can be regarded as single-degree-of-
freedom system. Thus after uncoupling of the motion, we
can easily separate the effects of the electrostatic field on
each mode.

Let us consider one resonant frequency of the structure.
Only one single-degree-of freedom governing equation
can be obtained instead of whole system of motion. The
equation of motion can be expressed as follow:

mq̈+kq = f (4)

where q denotes the generalized coordinate for a con-
cerned eigenmode, k is the lumped stiffness, m is the
lumped mass, and f is the lumped force. Each lumped
parameter is defined as follow:

m = QQQTMQMQMQ (5)

k = QQQTKQKQKQ (6)
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f = QQQTFFF (7)

where QQQ is the concerned eigenvector. Simply the eigen-
value of equation (4) is k/m. For an example, Fig. 2
shows a simple beam structure and its concerned eigen-
mode shape.

Figure 2 : A simple beam structure and its mode shape

The generalized coordinate and the applied force can be
decomposed into a static equilibrium part and a deviation
part from the static equilibrium. The equation of motion
can be written as follows:

m∆q̈+k(q0 +∆q) = f0 +∆ f (8)

where q0 and f0 are, respectively, the generalized coor-
dinate value and the static force at the equilibrium. And
then ∆q is the perturbed increment of the generalized co-
ordinate from the equilibrium, and ∆ f is the correspond-
ing deviation of static force.

Because the electrostatic force balances with the restor-
ing force by elastic deformation at the static equilibrium,
the equation of motion can be described in terms of in-
cremental variables.

m∆q̈+k∆q = ∆ f (9)

The total force increment in above equation can be ex-
plained as a sum of the external force increment, ∆ fext ,
and the electrostatic tuning force increment, ∆ f tuning. The
electrostatic tuning force increment comes from the de-
viation of the electrostatic field due to ∆q. ∆ f tuning can
be approximated by first derivative of electrostatic force,
for a small ∆q.

∆ f = ∆ fext +∆ ftuning = ∆ fext +
∂ fe

∂q
∆q (10)

where fe is the electrostatic force applied to the structure
for static equilibrium. From equation (9) and (10), the
equation of motion can be modified as follow:

m∆q̈+
(

k− ∂ fe

∂q

)
∆q = ∆ fext (11)

The lumped stiffness of the system is modified as much
as (−∂ fe/∂q). Thus the modified eigenvalue can be ex-
pressed as follow:

λ =
k− ∂ fe

∂q

m
=

k−ktun

m
(12)

The electrostatic tuning stiffness, ktun, can be calculated
by finite difference method. At first, system configura-
tion is modified by ∆U = ∆qQ. Fig. 3 shows the equilib-
rium states and a small perturbation of the system. Then
the variation of electrostatic forces is evaluated at the
perturbed configuration. Finally, the approximate tuning
stiffness is calculated as follow:

ktun =
∆ fe

∆q
=

QQQT ∆FFFe

∆q
(13)

Figure 3 : Equilibrium state and perturbation

where ∆Fe is electrostatic force increment vector. Using
equation (12) and equation (13), the eigenvalue tuned by
electrostatic field, can be obtained.

λ =
k−ktun

m
=

(
k− QQQT ∆FFFe

∆q

)
/m (14)

3 Numerical Examples

3.1 Beam type Resonator

The natural frequency shifting of a simple beam-type
structure is computed to present the reasonability of the



282 Copyright c© 2004 Tech Science Press CMES, vol.5, no.3, pp.279-286, 2004

proposed numerical approach. This resonator structure
is composed of two conductors, a doubly clamped beam
and a substrate, and its schematic diagram is shown in
Fig. 4. The beam is assumed as Silicon and its density
and elastic modulus are, respectively, 2330 kg/m3 and
130 GPa.

Figure 4 : Structure of beam type resonator

The beam is deformed by the electrostatic force, which is
induced by the voltage difference between the electrodes.
The original natural frequency of the beam is 620kHz and
then the natural frequency can be tuned by changing the
intensity of electrostatic field as explained in the previous
sections. In the present approach, the boundary element
method is used for the analysis of electrostatic field be-
tween two electrodes and the finite element method is
used for the structural analysis of beam. From the results
of coupled field analysis and perturbation analysis, the
tuned natural frequency can be calculated using equation
(14).

Fig. 5 shows the first mode shape of the structure, which
is calculated by the finite element method, and this mode
may be primarily concerned with actuator operation. The
configuration at the equilibrium state is superposed by
the scaled eigenmode profile whose maximum displace-
ment is 0.1% of the maximum displacement at equilib-
rium to calculate the increment of the external electro-
static force.

Figure 5 : Concerned mode shape of the beam structure

Applying the DC bias voltage of 10V, the charge density

distribution on the conductor surface at the equilibrium
state, can be calculated by the boundary element method
and are shown in Fig. 6. From this distribution, the elec-
trostatic force can be obtained by equation (2). Fig. 7
shows the distribution of the electrostatic force on the
beam at the equilibrium state. The increment of elec-
trostatic force, the effective stiffness and then the shifted
natural frequency is calculated with the eigenmode per-
turbation on the equilibrium configuration. Fig. 8 shows
the tuned frequency for the tuning voltages. It is observed
that the natural frequency decreases with the increase of
DC bias voltage and the original frequency of 620kHz
is shifted down to the 546kHz for the DC bias voltage
of 60V. It is noted that the proposed approach can effec-
tively analyze the frequency shifting by electrostatic field
change.

Figure 6 : Charge density distribution on the conductor
surface at equilibrium (10V)

Figure 7 : Electrostatic force at equilibrium (10V)

3.2 Tunable Micromirror System

The electrostatic tunable micromirror is applicable to a
wide variety of static and dynamic opto-mechanical mi-
cro devices, including optical micro-switches, optical
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Figure 8 : Computed resonant frequency of the beam
structure for tuning voltages

shutters, laser beam choppers, optical filters and opti-
cal couplers. In order to verify the validity of proposed
method, we analyze the frequency shifting of a micro-
mirror actually devised, fabricated, and tested. In Fig.
9, a SEM photograph of the micromirror fabricated by
an anisotropic etching of (110) silicon wafer is presented
[Seo, Cho and Youn (1998)]. Two pairs of boron-diffused
micro-beams suspend a bulk-micro machined electro-
static micromirror. Fig. 10 shows the schematic diagram
of structure with a counter electrode. The density and the
elastic modulus of Silicon are, respectively, 2330 kg/m 3

and 130 GPa.

Figure 9 : SEM Photograph of micromirror structure

Figure 10 : Top view of the silicon micromirror with a
counter electrode

The vertical micromirror can be driven parallel to the sil-
icon substrate by the electrostatic actuating force. The
electric potential difference between two electrodes gen-
erates the electrostatic field and then the corresponding
electrostatic forces are applied on the vertical micromir-
ror surface. The net force on the micromirror may be
attractive in the x-direction, i.e. parallel to the substrate.
The frequency tuning must be accomplished within the
allowable range because, at a large voltage over the al-
lowable limit, the movable part will become unstable and
be stuck to the fixed conductor. In a static performance
test, stable operation of micromirror has been observed
up to the threshold voltage of 330V.

The movable part is actuated by applying the driving AC
voltage at usually natural frequency and that natural fre-
quency of the micromirror can be tuned by changing the
DC bias voltage. In the experiment, the resonant fre-
quency of the fabricated micromirror can be found as the
frequency at which the amplitude of displacement has the
maximum value for various actuating frequencies. In nu-
merical analysis, the tuned natural frequency can be cal-
culated by equation (14). Fig. 11 shows the concerned
mode shape of the micromirror, calculated by finite ele-
ment analysis. In this case, since the first mode of the ver-
tical direction is not concerned with the operating mode
of actuator, the second mode of the horizontal direction
must be considered. The resonant frequency tuning is
analyzed by perturbing with this concerned mode shape
profile. The 0.1% perturbation of the maximum displace-
ment is used in the calculation.

Fig. 12 and Fig. 13, respectively, show the charge density
and electrostatic force on the micromirror surface when
the system is in the equilibrium for the tuning voltage
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Figure 11 : Concerned mode shape of the micromirror

of 150V. From the distribution of electrostatic force, we
can see that the operation mode of mirror is in the hor-
izontal direction. Fig. 14 compares the computed and
measured frequency of the frequency tunable micromir-
ror for the tuning voltages. From Fig. 14, 23% reduction
of the resonant frequency is measured by test, and 25.3%
reduction of resonant frequency is calculated for the tun-
ing voltage increase of 300V. Considering the fact that
the geometrical irregularities in the fabricated structure
are not exactly reflected in the computational model, the
differences seem to be moderated. It is noted that the nu-
merical results are very close to the experimental results
and the proposed numerical scheme is reasonable.

Figure 12 : Charge density on mirror surface at equilib-
rium (150V)

3.3 Repulsive Micro Comb-Structure

As another example, the repulsive micro comb-structure
[Lee and Cho (1998)] as shown in Fig. 15(a) and Fig.
15(b) have been analyzed. In this micro-system, there
are 32 sets of comb-teeth and each set has three types of
electrode, two negative electrodes (electrode I and II) and
a positive electrode (electrode III). This micro actuator
uses the repulsive force between two electrodes that have

Figure 13 : Electrostatic force on mirror surface at equi-
librium (150V)

Figure 14 : Computed and measured resonant frequency
of the micromirror for tuning voltages

the same negative electric potentials. The movable part
can be driven parallel to the silicon substrate by the repul-
sive electrostatic force. In this case, there is no sticking
between electrodes by large tuning voltage. However fre-
quency tuning will be saturated by force equilibrium due
to two surrounding electrodes (electrode II).

The first vibration mode of this system has the mode
shape of vertical direction that is independent of the actu-
ator driving mode. The second mode of the horizontal di-
rection must be considered. The resonant frequency tun-
ing is analyzed by perturbing with the concerned mode
shape profile. The 0.1% perturbation of the maximum
displacement is used in the calculation.

Fig. 16 and Fig. 17, respectively, show the electrostatic
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(a) The whole structure

(b) Three types of electrodes

Figure 15 : SEM photographs of the micro com-
structure

force on the movable micro comb-structure surface and
the corresponding system configuration when the system
is in the equilibrium for the tuning voltage of 100V.

Fig. 18 compares the computed and measured frequency
of the frequency tunable micromirror for the tuning volt-
ages. From Fig. 18, there is 13% error of the reso-
nant frequency between the experiment and the numer-
ical analysis at 80 Volt and there are very small errors
in other cases. It is noted that the numerical results are
very close to the experimental results and the proposed
numerical scheme is reasonable.

4 Conclusions

A numerical approach for natural frequency (eigenvalue)
shifting analysis of electrostatically tunable micro-

Figure 16 : Electrostatic force on the structure surface at
equilibrium (100V)

Figure 17 : System configuration at equilibrium (100V)

mechanical actuators is presented. The electrostatic
micro-actuators are modeled as 3-dimensional contin-
uum structures and then the electrostatic forces and cor-
responding elastic deformations are calculated by BEM
and FEM respectively. An iterative staggered algorithm
for the electrostatic-elastic coupled field analysis is ap-
plied in order to attain the force equilibrium. The natural
frequency shifting of the actuator is computed through
the linearization of the relation between the electrostatic
force and the displacement at the equilibrium. The stiff-
ness matrix of the actuator can be modified into equiv-
alent lumped stiffness at this equilibrium state. The
displacement field can be perturbed using a concerned
eigenmode profile of the actuator and then the corre-
sponding configuration change of the actuator modifies
the electrostatic field and thus the electrostatic force. The
equivalent stiffness corresponding to the change of the
electrostatic force is then added to lumped elastic stiff-
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Figure 18 : Computed and measured natural frequency
of the structure for tuning voltages

ness of the system in order to consider the natural fre-
quency shifting. The numerical examples, a simple struc-
ture and two actual micro actuator systems, are presented
and the computed results are compared with the experi-
mental results of the literatures. From the comparison,
the results of the proposed numerical method are very
close to the experimental ones.
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