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On the application of MQ-RBF to the valuation of derivative securities

S. Choi1 and M.D. Marcozzi1

Abstract: The general intractability of derivative se-
curity pricing models to numerical techniques arguably
remains one of the preeminant problems of mathemati-
cal finance. In particular, the valuations of such models
may be represented as solutions of variational inequali-
ties of evolutionary type typically characterized by their
high number of degrees of freedom, unbounded domains,
and asymptotic behavior. We consider the application
of Multi-Quadratic Radial Basis Functions (MQ-RBF) to
the problem of option pricing.

1 Introduction

We consider here the valuation of American options writ-
ten on several risky assets. Such an option represents a
contract to buy or sell a prescribed asset for a predeter-
mined amount (the exercise price) up until a specified
time in the future (the expiration date). The purpose of
option pricing is to determine the “fair” value of the op-
tion and its (expected) optimal exercise time. Options
which may only be exercised at the expiration date are
known as European. As represented by [Black and Sc-
holes (1973)] and [Merton (1973)], the value of an option
formally equates to the value of a portfolio consisting of
a position in a safe asset, typically a money-market ac-
count, and the risky assets on which the option is written.
The determination of the investment distribution which
eliminates arbitrage opportunities dictates the value of
the portfolio and consequently the option. An introduc-
tion to the theory of option pricing may be found in [Hull
(1993)], [Wilmott et al. (1993)], [Duffie (1996)].

As analytic solutions do not generally exist for optimal
stopping problems, numerical methods are necessitated.
In terms of numerically approximating the value func-
tion of an option’s contract, we remark that dynamic
programming based algorithms have typically been em-
ployed, particularly in the single state space case when
explicit time differencing may be employed (so-called

1 University of Nevada, Las Vegas
Las Vegas, Nevada 89154

lattice methods) without any great computational cost
(cf. [Geske and Shastri (1985)]). When the time horizon
is known to be realized (e.g European options), Monte
Carlo and Quasi Monte Carlo methods have been shown
to be effective in higher dimensions (cf. [Niederreiter
(1992)], [Boyle (1977)]). Recently, attempts at com-
bining these two approaches have led to dynamic pro-
gramming simulation based techniques (cf. [Broadie and
Glasserman (1997)], [Longstaff and Schwartz (2001)]).
These appear attractive when the number of assets is
“large” and the possibility of early exercise times is lim-
ited to a “small” set.

The fundamental issue in applying field equation meth-
ods for computing option prices is the development of
computationally viable techniques. To this end, one
poses restrictions of the original problem on a sequence
of exhausting approximating domains such that bound-
ary conditions are inferred from the payoff. The appli-
cation of Multi-Quadratic Radial Basis Functions (MQ-
RBF) to option pricing has been investigated by [Hon
(2002)] and [Marcozzi et al. (2001)], [Choi and Marcozzi
(2001)], [Marcozzi, Choi and Chen (1999)]. A general
framework for option valuation utilizing finite elements
may be found in the papers by [Marcozzi (2001)], [Mar-
cozzi (to appear)]. Finite difference applications may
be found in [Lamberton and Lapeyre (1996)], [Zhang
(1997)], [Wilmott et al. (1993)]. Our objective is to com-
pare the relative efficiencies of the these approaches for
prototypical problems arising in financial engineering.

The outline of this paper is as follows; in section 2 we
consider the mathematical formulation of the option pric-
ing problem. In particular, the valuation of an option con-
tract is a stochastic control problem whose value function
satisfies a variational inequality of evolutionary type. In
section 3, we consider the discretization of the variational
inequality by Multi Quadratic - Radial Basis Functions
(MQ-RBF), a collocation algorithm. As an application,
in section 4 we develop the method for the case of an
option on a single risky asset. Numerical results are pre-
sented in section 5 for a variety of option pricing prob-



202 Copyright c© 2004 Tech Science Press CMES, vol.5, no.3, pp.201-212, 2004

lems from mathematical finance.

2 Variational characterization

In this section, we review the mathematical foundations
of option valuation. In section 2.1, the options contract
is defined as the expected value of a stochastic control
problem, evaluated under an appropriate measure. This
value function in turn may be characterized as the so-
lution to a variational inequality of evolution type. We
consider temporal semi-discretization of the variational
characterization in section 2.2.

2.1 Definition of the economy

The economy that we consider consists of m “risky” as-
sets, modeled by diffusion, and one “risk-free” asset, a
money-market account, featuring a risk-free rate of re-
turn r. The actual contract of the option is represented
by a function ψ, the “obstacle.” More specifically, the
economy maintains m independent exogenous sources of
uncertainty represented by the Brownian motion {Bt}t≥0

defined on the probability space (Ω,F ,P), where F =
{Ft}t≥0 denotes the standard augmentation of the natu-
ral filtration. We suppose that the state variable Xt ∈ R

n

evolves for s > t according to the Itô process

dXs = b(Xs, s)ds+σ(Xs, s)dBs (1a)

such that

Xt = x , (1b)

where x is the initial state. For example, in valuing a
“basket” of stocks, we consider for convenience that Xt =
(X1,X2, . . .,Xn) such that Xi = lnSi, where Si is the price
of the ith stock.

Heuristically, option valuation can be viewed as a deci-
sion process. Relative to the process (1), there exists two
possibilities at time t > 0: exit the process or continue
on. These two decisions are not equally favorable but
depend on efficiencies represented by an actualization of
the final payout. The stopping strategy which provides
the best result “in the long run” is defined as the value
of the option. That is, associated with the flow (1), the
decision variable θ, and the obstacle ψ, we define the
(expected) cost function

Jx
t (θ) = EP

[
exp

(
−

∫ θ

t
r(Xs, s)ds

)
ψ(Xθ,θ)

]
(2a)

and the valuation (optimal stopping) problem

u(x, t) = sup
θ∈T[t,T ]

Jx
t (θ) , (2b)

where T < ∞ represents the expiration date of the option
and T [t,T ] the set of stopping times in [t,T ].
In order to characterize the value function u, we intro-
duce the weighted Sobolev space W m,p,µ, where m is a
non-negative integer, 1 ≤ p ≤ ∞, and 0 < µ < ∞. Let
W m,p,µ denote the space of functions u∈ L p(Rn,e−µ |x|dx)
whose weak derivatives of all orders ≤ m belong to
Lp(Rn,e−µ |x| dx). We equip W m,p,µ with the norm

‖u‖m,p,µ =

{
∑

k≤m

∫
Rn

|Dk u(x)|p · e−µ |x| dx

}1/p

.

If X has norm ‖ · ‖X , the space Lp([0,T ];X ) consists of
the set of measurable functions g : [0,T ] → X such that∫
[0,T ] ‖g(t)‖p

X dt < ∞.

In order to obtain a well-defined valuation for the con-
tract ψ relative to the process (1), we make the following
assumptions:

(A) The drift vector b : R
n × [0,∞) → R

n is C1 and has
bounded derivatives.

(B) The dispersion matrix σ : R
n × [0,∞) → R

n×m is
C2,1, bounded and has bounded derivatives.

(C) The coercivity condition holds; that is, there exists
a constant η > 0 such that

ξT aξ ≥ η‖ξ‖2 ,

for all ξ ∈ R
m and each (x, t) ∈ R

n × (0,∞). The
(n×n)-matrix a(x, t) := σ(x, t)σ(x, t)T is known as
the diffusion matrix.

(D) The obstacle ψ ∈ Lp([0,T ];W2,p,µ), where p >
(n/2)+1, is non-negative and bounded.

We note that the boundedness imposed in (D) is a formal
restriction which will be removed subsequently; it re-

quires, in effect, that ψ(x, ·) = O
(

eε|x|2
)

, for some ε > 0.

Assumptions (A) - (C) ensure that the functions b and σ
satisfy the global Lipschitz condition

‖b(x, t)−b(y, t)‖+‖σ(x, t)−σ(y, t)‖≤ c‖x−y‖ ,
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for every 0 ≤ t < ∞, x ∈ R
n, y ∈ R

n, for some constant
c > 0. This suffices to ensure that there exists a unique
t-continuous strong solution of (1) (e.g. [Karatzas and
Shreve (1988)]).

The option valuation problem is to deter-
mine u ∈ L2([0,T ];H1

loc) ∩ Lp([0,T ];W2,p,µ),
∂u/∂t ∈ L2([0.T ];L2

loc) ∩Lp([0,T ];W 0,p,µ) such that

∂u
∂t

−A u− r u ≥ 0 ; u ≥ ψ, (3a){
∂u
∂t

−A u− r u

}
· {u−ψ} = 0 , (3b)

where

u(x,T) = ψ(x,T) , (3c)

for all x ∈ R
n. Here, A is the characteristic operator as-

sociated with (1) given by

A f := −1
2 ∑

i, j

∂
∂xi

(
ai j

∂ f
∂x j

)
+∑

j

a j
∂ f
∂x j

, (4a)

where

a j = ∑
i

∂ai j

∂xi
−b j ; j = 1, . . .n . (4b)

Supposing (A) - (D), that r satisfies (A), and that ∂ψ/∂t−
Aψ− r ψ ∈ Lp([0,T ];W0,p,µ), there exist a unique so-
lution to (4) represented by (3), for all p sufficiently
large and µ sufficiently small (cf. [Bensoussan and Lions
(1982)], [Lamberton and Lapeyre (1996)]). In particu-
lar, it follows from the Sobolev embedding theorem that
u(·, t) ∈ C0 for all t ∈ [0,T). For n = 1, the solution u
may be seen to be infinitely smooth on the continuation
region and C1 globally (cf. [Van Moerbeke (1976)]).

We remark that in the case of European valuations, the
variational inequality (3) reduces to the parabolic equa-
tion ∂u/∂t −A u− r u = 0 subject to the terminal condi-
tion (3c). Moreover, it is possible to effect the change of
variables τ = T − t, in which case (3) becomes an initial
(as opposed to a “terminal”) value problem in τ.

Mathematically, the assumptions (A) - (D) ensure the
well-posedness of the variational characterisation of the
option value. In a financial context, they ensure that the
option may be valued in the economy; that is, that the
m-risky and one safe asset “span” the portfolio.

2.2 Approximation by exhausting domains

As a practical consideration, the value function u may be
realized as the pointwise limit of a convergent sequence
of functions which satisfy approximating variational in-
equalities on a sequence of exhausting domains. That is,
let {Ωk} denote an increasing sequence of bounded open
domains for which ∪Ωk = R

n and Ψ∈ Lp([0,T ];W 2,p,µ)
a regularization of ψ such that ψ̃ := ψ − Ψ → 0 as
‖x‖ → ∞. Of course, one may consider as a special
case that Ψ = ψ, but this is not required and conse-
quently ψ̃ does not necessarily vanish on ∂Ω k. We con-
sider ũk := uk − Ψ, where uk approximates u − ψ on
Ωk and ũk|∂Ωk

≡ ψ̃|∂Ωk
, by construction. In particular,

there exists a unique ũk ∈ L2([0,T ];H1
ψ̃(Ωk)∩H2(Ωk)),

∂ũk/∂t ∈ L2([0,T ];L2(Ωk)) such that

∂ũk

∂t
−A ũk − r ũk ≥ f̃ a.e. on Ωk × [0,T) ;

ũk ≥ ψ̃ on Ωk × [0,T ] , (5a)

{
∂ũk

∂t
−A ũk − r ũk − f̃

}
· {ũk − ψ̃}

= 0 a.e. on Ωk × [0,T ) , (5b)

where f̃ = −∂ψ̃/∂t +Aψ̃+ r ψ̃ and

ũk(x,T ) = ψ̃(x,T) , (5c)

for all x ∈ Ωk, where H1
ψ̃(Ωk) := {v ∈ H1(Ωk) | v = ψ̃ on

∂Ωk }. It follows then for any compact set G ⊂ R
n that

max
t∈[0,T ]

‖u(x, t)−uk(x, t)‖L∞(G) → 0 as k → ∞ (6)

(cf. [Bensoussan and Lions (1982)], [Lamberton and
Lapeyre (1996)]). The result (6) is a statement that
the asymptotic behavior (that is, uk|∂Ωk

) cannot “appre-
ciably” effect the solution in any fixed bounded region
within a finite interval of time. In effect, the estimate (6)
indicates that any well-posed problem on Ω k suffices as
an approximation on an exhasuting sequence.

Clearly, any convergence realized beyond the estimate
(6) will rely on the quality of the boundary conditions
imposed upon the frontier of Ωk. To this end, we con-
sider two types of boundary conditions consistent with
(5);

(i) Artificial boundary condition. We impose the con-
straint as the Dirichlet data ũk = 0 on ∂Ωk.
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(ii) Natural (no) boundary condition. Formally, we sup-
pose ∂ũk/∂t−A ũk− r ũk − f̃ → 0 as x ∈Ωk → x0 ∈ ∂Ωk;
differentiation being understood in a one-sided sense.

We remark that no explicit boundary information is trans-
mitted by condition (ii), which represents an attempt to
minimize the approximation error introduced by the arti-
ficial boundary conditions in (i). The motivation for (ii)
is to attain similar accuracies as (i) utilizing computa-
tional domains of smaller diameter. We remark, however,
that the well-posedness of (5) and the estimate (6) are not
demonstrated in this case.

In order to obtain an implicit semi-discretization of (5),
we let ∆t = T/M, for some positive integer M, tm = m ·∆t,
and define the sequence {ũm

k } by recurrence starting with

ũM
k = ψ̃ , (7a)

where, for m = 1, . . . ,M−1,

1
∆t

ũm
k −A ũm

k −a0ũm
k ≥ f̃ − 1

∆t
ũm+1

k a.e. on Ωk ;

ũk ≥ ψ̃ on Ωk (7b)

{
1
∆t

ũm
k −A ũm

k −a0ũm
k − f̃ +

1
∆t

ũm+1
k

}
· {ũk − ψ̃}

= 0 a.e. on Ωk. (7c)

That is, we utilize a backwards Euler temporal discretiza-
tion. For each 1 ≤ m < M, we note that the relation (7)
is a stationary variational inequality which is known to
be uniquely solvable for case (i) boundary conditions.
Moreover, by allowing piecewise continuation on the in-
terval [m∆t, (m + 1)∆t) and imposing the constraint at
the boundary, it follows that ũm

k converges weakly to ũk

(cf. [Bensoussan and Lions (1982)], [Glowinski, Lions
and Tremolieres (1981)]). We consider the space dis-
cretization of (7) by MQ-RBF in the next section.

3 MQ-RBF discretization on bounded domains

Multi-Quadratic Radial Basis Functions (MQ-RBF)
constitute a collocation method for the discretiza-
tion of differential operators in space (cf. [Kansa
(1990)]). Proceeding formally, we suppose a given mesh
{x1,x2, . . . ,xN}⊂Ωh and the so-called MQ-RBF approx-
imation

ũh (x, t) =
N

∑
j=1

α j (t) ·φ(r j (x)) , (8a)

such that

φ(r j (x)) =
[
r2

j + c̃ 2]1/2
; r j(x) = ‖x−x j‖ , (8b)

where c̃ is a constant known as the shape parameter. For
a uniform mesh with spacing h = ‖xi−xi−1‖, we suppose
c̃ = 4h; although c̃ may be optimized for particular appli-
cations (cf. [Kansa (1990)], [Carlson and Foley (1991)]).
Substituting (8) into (7), we obtain

Φ α(M) = ψ̃(x,T ) , (9a)

and define sequentially for m = M,M−1, . . . ,1;

w(m) :=
[

1
∆τ

Φ−L

]
α(m) − 1

∆τ
Φα(m−1) := Aα(m)−a , (9b)

and

z(m) := Φα(m)−b , (9c)

where α(m), resp. b := ψ̃(m), is an element in R
n such

that α(m)
j = α j (T −m ·∆t) and ψ̃(m)

j = ψ̃( · ,m ·∆t). That
is, the exponent m is the time stepping parameter. The
matrix Φ = [φ(ri j)] is symmetric positive definite and so
invertible (e.g. [Golub and Van Loan (1996)]) and the
operator L is linear and strongly coercive. We define for
each m the discrete linear complimentary problem (q,M)
as follows; find w(m), z(m) satisfying

[w(m)]t · z(m) = 0 : w(m) ≥ 0 : z(m) ≥ 0, (10a)

where

w(m) = Mz(m) +q , (10b)

such that

M = AΦ−1 =
1

∆τ
I −LΦ−1 and q = AΦ−1b−a .

For each m = M,M− 1, . . . ,1, there exists a unique so-
lution to (q,M), for all ∆t sufficiently small (cf. [Lemke
(1965)], [Cottle, Pang and Stone (1992)]). Consequently,
at each step, the MQ-RBF discretization (10) is uniquely
solvable for α (m).

Relative to the implementation of (10), we note:

(a) Asymptotic performance may only be realized on
the approximating region G of estimate (6) and not
over the entire computational domain Ωk.
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(b) Decreasing time and mesh sizing ∆t and h without
increasing diam{Ωh} will not result in convergence.

We remark that a so-called Bermuda approximation to
the American formulation would be to solve (9a) for
α(M), time step back ∆t solving w(M−1)Aα(M−1) −a = 0
for α(M−1), and then applying the constraint z (M−1) ≥ 0.
This procedure may then be continued inductively for
m = M − 2,M − 3, . . .,1. It subsequently follows from
Lemke’s algorithm [Lemke (1965)] that the so-called
Bermuda approximation represents a “first” complemen-
tary approximation to the American option valuation. We
note also that upon solving w≡ 0 we obtain the European
valuation.

4 Put option on a single stock.

We consider here the explicit MQ-RBF construction in
the case of an option written on a single stock. To this
end, we suppose that Xt = lnSt , where St denotes the
stock price, satisfies the stochastic differential equation

dXt =
(
r−σ2/2

)
dt +σdBt ,

such that

X0 = x ,

where t > 0 represents time, r the risk-free rate of re-
turn (typically that of a money market account), σ the
so-called volatility of the asset, and dBt the Brownian
motion with respect to the risk-neutral measure.

We further distinguish two types of options; calls and
puts. A call option gives the holder the right to buy the
asset under contract at the agreed upon exercise price,
while a put option provides the holder with the opportu-
nity to sell the asset at the fixed price. As may be ex-
pected, the pay-off properties of these two options are
opposite of one another. Mathematically, an American
option is a nonnegative, adapted process {g(t)} 0≤t≤T ,
where g(t) is the payoff of the claim if exercised at time
t such that g(t) = (E −St)

+ := max{E −St ,0} for a put
option and g(t) = (St −E)+ for a call option. Here, E
denotes the exercise price. Henceforth, we shall consider
only put options as these alone admit early exercise op-
portunities when the option is vanilla (that is, pays no
dividends). Also, without loss of generality, we may sup-
pose E = 1. As per (2), the fair (arbitrage-free) price as-
sociated with an American put is given by

P(x, t) = sup
θ∈T[t,T ]

E

[
e−r(θ−t) (

1−eXθ
)+ |Ft

]
,

(cf. [Merton (1973)]). “Arbitrage-free” refers to the ap-
parent fact that a profit cannot be realized by exercising
the option without incurring some associated market risk.
Formally, the put price P(x, t) satisfies the variational in-
equality for all x ∈ R and t ∈ (0,T ) ;

min

{
−∂P

∂t
(x, t)− 1

2
σ2 ∂2P

∂x2 (x, t)

− (r−σ2/2)
∂P
∂x

(x, t)+ rP (x, t) ,

P(x, t)− (1−ex)+
}

= 0, (11a)

subject to the terminal condition

P(x,T ) = (1−x)+ , (11b)

for all x ∈ R. In particular, we nondimensionalize (11)
by letting

t = T − τ
1
2σ2

: P(x,τ) = e−
1
2 (κ−1)x− 1

4 (κ+1)2τ p(x,τ),

where κ = r/ 1
2σ2. The nondimensional put value is then

seen to satisfy the parabolic variational inequality

min

{
−∂p

∂τ
(x,τ)+

∂2 p
∂x2 (x,τ) ,

p(x,τ)−e
1
4 (κ+1)2τ

[
e

1
2 (κ−1)x −e

1
2 (κ+1)x

]+
}

= 0, (12a)

for all (x,τ) ∈ R×R+ such that

p(x,0) =
[
e

1
2 (κ−1)x −e

1
2 (κ+1)x

]+
, (12b)

for all x ∈ R. That is,

− ∂p(x,τ)
∂τ

+
∂2 p(x,τ)

∂x2 ≥ 0 ;

p(x,τ)−eκ1τ [eκ2x −eκ3x]+ ≥ 0 , (13a)

{
∂p
∂τ

(x,τ)− ∂2 p
∂x2 (x,τ)

}
·
{

p(x,τ)−eκ1τ [eκ2x −eκ3x]+
}

= 0 , (13b)

for all (x,τ) ∈ R×R+ such that

p(x,0) =
[
eκ2x −e

κ3x
]+

; x ∈ R , (13c)
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where

κ1 =
1
4

(κ +1)2 , κ2 =
1
2

(κ−1) , κ3 =
1
2

(κ +1) .

We wish now to discretize (13) through the use of Multi-
Quadratic Radial Basis Functions relative to a given
mesh {x1,x2, . . . ,xN}. To this end, we suppose

p(x,τ) =
N

∑
j=1

α j (τ) ·φ(r j (x)) , (14a)

such that

φ(r j (x)) =
[
r2

j + c̃2] 1
2 ; r j(x) = |x−x j| , (14b)

where c̃ is the shape parameter. Substituting (14) into
(13), it follows for all τ ∈ R+ and i = 1,2, . . .,N;{

N

∑
j=1

dα j

dτ
(τ) φ(ri j)−

N

∑
j=1

α j (τ)
[

1
φ(ri j)

− (xi −x j)
φ3 (ri j)

]}
(15a)

×
{

N

∑
j=1

α j (τ)φ(ri j)−eκ1τ [eκ2xi −eκ3xi ]+
}

= 0 ,

such that

N

∑
j=1

dα j

dτ
(τ) φ(ri j)−

N

∑
j=1

α j (τ)
[

1
φ(ri j)

− (xi −x j)
φ3 (ri j)

]
≥ 0 , (15b)

N

∑
j=1

α j (τ)φ(ri j)−eκ1τ [eκ2xi −eκ3xi ]+ ≥ 0 , (15c)

and

N

∑
j=1

α j (0)φ(ri j) =
[
eκ2x −e

κ3x
]+

. (15d)

for all x ∈ R, where ri j = ri(x j). Discetizing (15) now
uniformly in time, we suppose

dα j

dτ
(τ)≈ α(m)

j −α(m−1)
j

∆τ
,

for ∆τ > 0 and m = 1,2, . . .,M, where

α(m)
j = α j (m ·∆τ)

and M ·∆τ = 1
2 σ2 T . Let

wi :=
N

∑
j=1

1
∆τ

φ(ri j)α(m)
j −

N

∑
j=1

[
1

φ(ri j)
− (xi −x j)

φ3 (ri j)

]
α(m)

j

−
N

∑
j=1

1
∆τ

φ(ri j)α(m−1)
j , (16)

or

w :=
[

1
∆τ

Φ−L

]
α(m)− 1

∆τ
Φα(m−1) := Aα(m)−a , (17a)

and

zi :=
N

∑
j=1

φ(ri j)α(m)
j −eκ1(m·∆τ) [eκ2xi −eκ3xi ]+ ,

or

z := Φα(m)−b , (17b)

where i = 1,2, . . .,N. We may now define the discrete
linear complimentary problem (q,M) as follows; find w, z
satisfying

wt · z = 0 ; w ≥ 0 ; z ≥ 0, (18a)

where

w = Mz+q (18b)

such that

M = AΦ−1 =
1

∆τ
I −LΦ−1

and

q = AΦ−1b−a.

It then follows that there exists a unique solution to
(q,M), for all ∆τ sufficiently small, and consequently the
RBF discretization (17) is uniquely solvable. It follows
readily that the European put satisfies the relation

w = 0

subject to the initial condition (15d).
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5 Numerical experiments

In order to verify the convergence and efficiencies of the
MQ-RBF discretization, we consider the valuation of a
variety of options from mathematical finance. To this
end, we value European and American style options writ-
ten on a single asset and two noncorrelated assets, as
well as an option on a foreign currency in a stochastic
interest rate economy. In section 5.1, we present case re-
lated details, benchmarking the MQ-RBF discretization
to the finite element (FEM) implementation of [Marcozzi
(2001)]. In section 5.2, we discuss general conclusions.

In the case of European options considered below, com-
parisons will be made to the analytic solution whenever
possible. For American options, or when analytic solu-
tions are not available for the European case, computed
finite element solutions anticipated to be at least two or-
ders of magnitude more accurate than the approximations
are utilized as benchmarks.

Although the order of the MQ-RBF discretization in
space is theoretically unknown, our results appear to in-
dicate second-order convergence for solutions which are
globally C1. To this end, we consider uniform spactial
mesh sizes h = ∆xi and fixed ∆t/h2 = β, where we choose
for computational purposes β = 1, a sufficiently small
constant, unless otherwise noted. Note that the choice
of β effects the relative performance (accuracy) of the
method. As such, we expect to achieve asymptotic con-
vergence as ∆t → 0, h → 0, and the radius of the com-
putational domain grows without bound; that is, R c → ∞
(cf. Remarks (a) and (b) of section 3).

The approximation and computational domains were
constructed as n-squares with (maximum norm) radius,
Ra and Rc, respectively. The center of the approxima-
tion domain G and the computational domain Ω k were
aligned “at the money” (detailed in each example). In
particular, the radius Ra = 0.1 was utilized for all com-
putations. Results are reported in the (discrete) maxi-
mum norm where we considered only those nodal values
within the approximation region G.

5.1 Case studies

The following formulations are provided in the so-called
risk-neutral measure, which provides for complete mar-
kets and unique option prices. We remark that the pro-
cess (1) is fully specified by its drift b and volatility σ
whereas the options themselves are uniquely determined
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Figure 1 : Effect of shape parameter on convergence.

by their payoff attributes represented by the obstacle ψ
and duration T in (2).

(I) European put option on a single risky asset.

We consider Xt = lnSt , where St > 0 denotes the assets
price at time t > 0. In the so-called risk neutral valuation,
the drift b = r−(1/2)σ2. The payoff is defined such that

ψ(x,T ) = max
{

E −ex,0
}
,

where E denotes the exercise price of the option. In
case (i) applications, the artificial boundary conditions
are specified by the constraint. As indicated in [Marcozzi
(2001)], any boundary conditions for which the problem
is well-posed suffice. In particular, we utilize Dirichlet
data obtained from the depreciated payoff

ψ(x, t) = max
{

E · e−r (T−t) −ex,0
}

,

for the European option. In the single asset case, the Eu-
ropean put price is given by the celebrated Black-Scholes
formula. The stochastic process (1) was defined such that
σ = 0.3, r = 0.1, T = 1.0, while for the payoff we as-
sumed E = 100. The center of the computational grid
(and of G) was taken to be ln(E).

The effect of mesh and computational domain size for
the one-asset European put was considered in [Marcozzi,
Choi and Chen (1999)]. We simply note here that the
results are similar to those of example (II) below; rely-
ing on the refinement of the mesh size and enlargement
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Figure 2 : Bermudian approximation to the American
put option.

of the computational domain to obtain convergence. Fig-
ure 1 demonstrates the convergence of the MQ-RBF ap-
proximation for the European case and case (ii) boundary
conditions as a function of the mesh size and shape pa-
rameter for Rc = 1.0. Results were similar for the case
(i) artificial boundary condition application. In particu-
lar, we note the sensitivity of the results on the choice
of the shape parameter. For c̃ = 1 or h2, we found that
the matrix Φ was nearly singular. This may portend the
utilization of numerical accuracies greater than the dou-
ble precision employed here. In Figure 2, we consider
the effect of valuing an American option by its so-called
Bermudian approximation. As expected, the approxima-
tion improves as mesh size decreases. Figure 3 plots the
MQ-RBF valuations for the American and European op-
tions as a function of stock price.

(II) Put option on the geometric average of two assets.

Generalizing the single asset case, each component of the
diffision represents the logorithm of a stocks price; that
is, Xi = lnSi, for i = 1,2. We again suppose that the drift
components b j = r−(1/2)σ2

j ( j = 1,2) in the risk neutral
economy. The payoff for a put option on the geometric
average of two assets is defined to be

ψ(x,T ) = max
{

E − (ex1 · ex2)1/2 ,0
}

,

where we again suppose the constraint for a European
option to be the depreciated payoff

ψ(x, t) = max
{

E · e−r (T−t)− (ex1 · ex2)1/2 ,0
}

.
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Figure 3 : Put option values.

For the corresponding American option the obstacle is
given by

ψ(x, t) = max
{

E − (ex1 · ex2)1/2 ,0
}

.

Here E denotes the exercise price of the option. Unlike
the single asset case, there does not exist an analytic solu-
tion with which to compare the quality of the approxima-
tion. However, by introducing the process Yt = X1 + X2

such that ψ(y) = max{E − ey/2,0}, we are able to value
these options by numerically approximating Yt , which
has only a single source of uncertainty (that is, by solv-
ing the single state variable variational inequality for Yt ).
The FEM solution for Yt (with h = 0.001) was utilized to
benchmark the general MQ-RBF and FEM approxima-
tions.

We suppose σii = 0.3, σi j = 0.0, and r = 0.1 to define
the diffusion (1) and E = 100 and T = 1.0 to define the
option. The center of the computational grid (and of G)
was taken to be (ln(E), ln(E)). For the MQ-RBF com-
putations, we consider the so-called Bermudian approxi-
mation to the American option case.

Figure 4 presents convergence results for the European
an American cases, both for the MQ-RBF and FEM spa-
tial discretizations. In particular, we note the need to both
refine the mesh sizing while simultaneously enlarging the
radius of the computational domain. In general, the case
(ii) formulation tends to achieve its asymptotic conver-
gence rate for smaller computational domains than the
case (i) boundary conditions. As with the single-asset
case, Figure 4 suggests that the MQ-RBF discretization
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is second-order in space. Figure 5 is a plot of the value
function in terms of asset prices.

(III) Option on a foreign currency.

We consider the valuation of options written on a for-
eign currency when interest rates are stochastic and the
diffusion matrix representing the global economy is co-
ercive. In this case, an American call (put) option gives
the holder the right to buy (sell) a fixed amount of a for-
eign currency at a predeterminded price at any time un-
til a fixed expiration date. As usual, the corresponding
European option can be exercised only at the expiration
date. In particular, an option on a foreign currency repre-
sents an option on a foreign treasury bond. When denom-
inated in domestic currency through the spot exchange
rate, such instruments may be considered exotic domes-
tic securities. Models encompassing options on a foreign
currency are quite general and include such securities as
corporate bonds and domestic treasuries as special cases.

We denote the (stochastic) instantaneous risk-free rate of
return at time t within the domestic economy by r = X1,
the foreign economy by X2, and the logarithm of the
cross-currency exchange rate by X3. It follows then that

the payoff of a put on a foreign currency is given by

ψ(x,T ) = max
{

E −ex3 ,0
}
,

such that in the European case the discounted constraint
is specified such that

ψ(x, t) =

{
max

{
E −ex3 ,0

}
, i f X1 < 0

max
{

E · e−x1 (T−t)−ex3 ,0
}
, i f X1 ≥ 0,

and by
ψ(x, t) = max

{
E −ex3 ,0

}
,

in the American case, where E is the exercise price of the
option. The specific model utilized is introduced in [Choi
and Marcozzi (2001)]. The general model for American
options on a foreign currency under stochastic interests
rates was first developed in Amin and Jarrow [Amin and
Jarrow (1991)], which includes an analytic solution ap-
plicable to the European case specified here. In particu-
lar, we suppose the following dispersion matrix;

σ =

 0.05 0.005 0.005
0.005 0.05 0.005
0.03 0.03 0.3
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in addition to taking

b1 = 0.005 , b2 = 0.005−
3

∑
i=1

σ2iσ3i ,

b3 = x1 −x2 −
3

∑
i=1

σ2
3i/2 ,

an exercise price of E = 1, and a duration of T = 1.

For a maximum norm computational domain radius of
2.5, a uniform spacial mesh size of 0.09, a time step
of 1/360, and for a duration of 1 year, we obtained a
European valuation “at the money” of uE = 0.1143 at
(0.05, 0.05, 0.0) utilizing the MQ-RBF discretization and
case (ii) boundary conditions. This compares to the ex-
act value of uexact = 0.1144. For a MQ-RBF Bermudian
approximation to the American option valuation, we ob-
tained uA = 0.1171, which compares to uFE = 0.1172
obtained utilizing finite elements.

5.2 Further discussion

With respect to other field equation methods, the ad-
vantage of MQ-RBF is its simplicity. As a collocation
technique, coding is elementary. As such, MQ-RBF dis-
cretizations appear to hold promise for the complex free-
boundary geometries of mathematical finance problems
for which the state space dimension may readily exceed
three. We note that MQ-RBF was able to obtain accura-
cies comparable to a linear peicewise (second-order spa-
tial) finite element implementation. For variational in-
equalities on unbounded domains (or degenerate opera-
tors), convergence was only achieved upon allowing the
temporal and spatial mesh sizes to vanish as the size of
the computational domain increases without bound. We
also note that this convergence may only be obtained on
the compact approximation region and not, in general,
over the entirety of the computational domain. We re-
mark that this asymptotic convergence has only been re-
alized in the case of uniform meshes, suggesting the need
for domain decomposition algorithms when local mesh
refinement is optimal.

Additionally, MQ-RBF discretizations appear to be more
stable than their FEM counterpart with respect to the ap-
plication of the natural boundary conditions. This may
be a consequence of the global footprint of the MQ-
RBF method as opposed to the compact support of the
basis functions utilized in FEM. As the so-called natu-
ral boundary condition potentially represents increased

computational efficiencies when applied to the problems
of mathematical finance, this may prove significant for
MQ-RBF applications when the number of independent
assets is “large.”

The difficulties with MQ-RBF pertain to the resultant full
matrix Φ, which leads to very large condition numbers,
and a lack of theoretical justification of the method. To
combat these difficulties, domain decomposition meth-
ods have been employed (cf. [Marcozzi, Choi and Chen
(1999)]) as well as so-called compactly supported radial
basis functions (cf. [Schaback and Wendland (1999)]).
Likewise, the issue of the shape parameter remains un-
resolved in MQ-RBF, although we suspect that this de-
pendence is a consequence of the full coefficient matrix
and the accuracy of the discrete solver, as opposed to any
particular choice of c̃.
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