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Determination of Stress Intensity Factors for Interfacial Cracks Using the Virtual
Crack Extension Approach

W.M.G.. So1, K.J. Lau1, S.W. Ng1

Abstract: A new finite element analysis procedure is
implemented for the determination of complex stress in-
tensity factors in interfacial cracks. Only nodal displace-
ments and strain energies of the near-crack-tip elements
are involved in this procedure so that element stiffness
matrices need not be made available. The method is first
tested using a closed form solution for infinite media to
obtain a suitable finite element mesh. It is then applied to
finite plates and four-point bending specimens contain-
ing interfacial cracks. In cases where reference values
are available for comparison, good agreement of results
can be obtained with relatively coarse element meshes.

keyword: Fracture, interfacial, cracks, stiffness deriva-
tive

1 Introduction

The problems concerning a crack at the interface of two
dissimilar materials are gaining importance for their ap-
plications in the use of advanced and composite materi-
als, and in electronic packaging. Since the pioneer work
of Williams (1959), analytical solutions for such prob-
lems remain few and mathematically complicated in their
implementations. Summaries of significant advancement
can be found in Hutchinson and Suo (1992) and Atluri
(1997). The analysis of interfacial cracks in less ide-
alized geometrical configurations and under more gen-
eral loading conditions is usually obtained through nu-
merical methods. Most of these procedures involve the
use of finite element analysis, together with special post-
processing routines, e.g. Lin and Mar (1976), Matos,
McMeeking, Charalambides and Drory (1989), Naik and
Crews Jr. (1994), Wu (1994), Chow and Atluri (1995),
Chow, Beom and Atluri (1995, 1996), Charalambides
and Zhang (1996), Glaessgen, Riddell and Raju (2002).
Good accuracy has been demonstrated for each proce-
dure. Among these methods Matos, McMeeking, Char-
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alambides and Drory (1989) suggested a method based
on evaluation of the J-integral by the virtual crack exten-
sion method before and after the perturbation by small
increments of the stress intensity factors K 1 and K2. This
approach can be implemented in a relatively straight-
forward manner but accuracy depends somewhat on the
magnitude of the perturbation used. Wu (1994) modified
the procedure to remove this dependence. However, in
both methods, element stiffness matrices have to be ex-
tracted and their derivatives with respect to crack length
evaluated for postprocessing purposes. Since commer-
cial finite element codes usually do not include such ma-
trices as standard outputs, special routines have to be
written to select the elements involved and to reconstruct
such matrices. Ng and Lau (2000) has proposed a new
method for finding such derivatives for determining tra-
ditional stress intensity factors K I and KII in isotropic
materials. Only nodal displacements and strain energies
of the crack-tip elements are needed in the procedure.
Since these are standard outputs in most finite element
codes, the incorporation of this approach will remove
this final barrier for the implementation of the virtual
crack extension approach. In this paper the method is ex-
tended and combined with the ∆K perturbation approach
for the determination of the complex stress intensity fac-
tors for interfacial cracks in isotropic media. Suggestions
are also made to follow the line of Charalambides and
Zhang (1996) and Chow and Atluri (1995) to extend the
procedure for applications to orthotropic and anisotropic
bimaterial continua.

2 A Virtual Crack Extension Procedure

In the consideration of cracks at bimaterial interfaces
(Fig.1), the situation is vastly different from that of
cracks in isotropic media. Even when a simple direct
load is applied perpendicular to the interface, mixed-
mode deformations result for the interface crack. This
makes KI and KII generally indeterminable in the clas-
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Figure 1: Coordinates and typical contour used to evalu-
ate the J-integral

sical way and standard tests for generating critical K-
values as geometry-independent material properties quite
impossible. Instead, a complex stress intensity factor, K
= K1+iK2, is used to characterize the crack tip stresses,
with K1 relating to the effect of a remotely applied direct
stress and K2 relating to that of a remotely applied shear
stress. K1 and K2, however, neither carry the same phys-
ical meaning nor have the same units as K I and KII . In
fact the tensile and shear effects as characterized by this
complex stress intensity factor is considered as intrinsi-
cally inseparable into analogues of classical modes I and
II conditions.

Using the format adopted by Matos et al. (1989), stresses
at distance r ahead of the crack tip are given in terms of
K1 and K2 as:

σyy + iσxy = (K1 + iK2) riε
/√

2πr (1)

where ε =
1

2π
ln
[
(µ1G2 +G1)

/
(µ2G1 +G2)

]
(2)

i =
√−1 and µ j equals (3-ν j)/(1+ν j) in plane stress and

equals 3-4ν j in plane strain. The J-integral is then given
by

J =
1
H

(
K2

1 +K2
2

)
(3)

where

1
H

=
1
2

(
1
E ′

1
+

1
E ′

2

)/
cosh2 (πε) (4)

E′
j equals E j in plane stress and equals E j/(1- ν2

j) in plane
strain.

The asymptotic crack tip displacements for the case of
K2= 0 and K1 = ∆K1 are given by

∆u j
x1

=
∆K1

2G j

√
r

2π
eπε

1+e2πε fx1 (r,θ,ε,µ j) ,

∆u j
y1

=
∆K1

2G j

√
r

2π
eπε

1+e2πε fy1 (r,θ,ε,µ j) (5)

Similarly, displacements for the case of K1= 0 and K2 =
∆K2 are:

∆u j
x2 =

∆K2

2G j

√
r

2π
eπε

1+e2πε fx2 (r,θ,ε,µ j) ,

∆u j
y2 =

∆K2

2G j

√
r

2π
eπε

1+e2πε fy2 (r,θ,ε,µ j) (6)

The functions f are given in the Appendix.

Parks (1974) introduced a stiffness-derivative finite-
element technique for determining J by comparing the
energy of two slightly different crack lengths so that

J = −(∂U
/

∂a
)

F = −1
2 {un}T (∂ [S]

/
∂a
){un} (7)

where U is the potential energy of the body and the dif-
ferentiation with respect to crack length a is carried out at
fixed load F. [S] is the stiffness matrix. Using the virtual
crack extension technique only elements connected to the
crack-tip are involved so that the stiffness derivative can
be evaluated by forward difference as:

∂
[
Sct

k

]
∂a

=
1

∆a

([
Sct

k

]
a+∆a −

[
Sct

k

]
a

)
(8)

where ∆a denotes the magnitude of the infinitesimal
crack extension (Figure 2) and

[
Sct

k

]
a,
[
Sct

k

]
a+∆aare the el-

ement stiffness matrices of crack tip elements with and
without the infinitesimal crack extension respectively.

Originally, Parks (1974) suggested extracting the element
stiffness matrices in order to evaluate the partial deriva-
tive on the right hand side of Eq. 8. Unfortunately, the
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Figure 2 : Crack tip extension

required extraction function is usually not readily avail-
able in commercial finite element packages. Substituting
Eq. 8 into Eq. 7 and then expanding we obtain

J =
1

∆a
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1
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})
(9)

The first term in the bracket of Eq. 9 can be viewed as
the total strain energy of the crack tip elements without
the crack extension. The second term can be regarded as
the total strain energy of the crack tip elements with the
crack extension when subjected to a nodal displacement
vector loading which is identical to the previous vector
solution without the crack extension. Since the strain
energy of individual element can be either obtained di-
rectly using the specific command of commercial finite
element packages or generated from stress and strain out-
puts, the calculation of the first term does not cause any
difficulty. The second term can be obtained as follows:
firstly, the original problem without crack extension is
solved with finite element analysis; secondly, a finite el-
ement analysis is performed on a problem in which the
nodal displacement solutions without crack extension are
imposed as prescribed boundary conditions on the corre-
sponding nodes of the crack tip elements with crack ex-
tension. Then, the required second term can be found
by summing up the individual strain energy of the crack
tip elements with crack extension. Since only the crack-
tip elements are perturbed during crack extension process

(Figure 2), the finite element mesh for evaluating the sec-
ond term consists of the crack-tip elements only. Eq. 9
can be rewritten as:

J =
1

∆a

(
Uct

a −Uct
a+∆a

)
(10)

The above procedure can be generalized so that other
rings of elements around the crack-tip can be chosen
as the perturbed elements for stiffness derivative evalu-
ations. In the present case, in order to avoid the singular-
ities that would be encountered by displacement incre-
ment calculations on the crack-tip elements, the second
ring of elements, i.e. the transition elements, are chosen.
The virtual crack extension is introduced by movement of
all the crack-tip element nodes for a distance of ∆a in the
direction of the crack extension. In this way only transi-
tion elements are perturbed while the crack-tip elements
will only undergo rigid body movements and hence not
contributing to the stiffness derivative. The integrated
procedure for determining K1 and K2 are then as follows:

Firstly finite element analysis and subsequent virtual
crack extension are performed on the system for which
the stress intensity factors are to be determined, resulting
in, from Eqs. 3 and 10,

K2
1 +K2

2

H
=

1
∆a

(
Uct

a −Uct
a+∆a

)
un

= A (11)

Secondly, we choose an arbitrary value of ∆K1

and superimpose the corresponding displacements
∆u1=(∆ux1,∆uy1) from Eq. 5 onto un to be used as nodal
boundary conditions for finite element and virtual crack
extension procedures on the transition elements, result-
ing in

(K1 +∆K1)
2 +K2

2

H
=

1
∆a

(
Uct

a −Uct
a+∆a

)
un+∆u1

= B (12)

∆K1 is related to ∆u1 through equation (4).

In the procedure of Wu (1994), the related equations are:

K2
1 +K2

2

H
= −1

2 {un}T (∂ [S]
/

∂a
){un} = A (13)

(K1 +∆K1)
2 +K2

2

H
= −1

2 {un +∆u1}T (∂ [S]
/

∂a
){un +∆u1} = B (14)
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∆K2
1

H
= −1

2 {∆u1}T (∂ [S]
/

∂a
){∆u1} = C (15)

Subtracting Eqs. 13 and 15 from Eq. 14 gives

K1 = − H
2∆K1

{∆u1}T (∂ [S]
/

∂a
){un}

=
H

2∆K1
(B−A−C) (16)

As explained in Wu (1994) since ∆K1 is proportional to
∆u1, the result is independent of the choice ∆K1. Hence
K1 can now be determined with A and B from Eqs.11
and 12 and with C from the chosen ∆K1value. A simi-
lar operation will give the value of K2, or alternatively,
K2 can be found by back-substituting the K 1 result into
either Eq. 11 or Eq. 12.

3 Test cases

3.1 Interface crack in an infinite dissimilar material
under biaxial loading (Fig. 3)
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Figure 3: Biaxially loaded crack

From Murakami (1987), the stress intensity factor is
given by

K1 + iK2 = σ∞
y (1+2iε)

√
πa(2a)−iε (17)

while σ∞
x is defined as

σ∞
x2 =

1
1+µ2

[
G2

G1
(1+µ1)σ∞

x1 +
{

3−µ2 − G2

G1
(3−µ1)σ∞

y

}]

but does not affect the stress intensity factors.

The closed form solution for this case is used to establish
the appropriate finite element mesh for the analysis of
interfacial cracks. Quarter-point crack-tip elements are
employed in the analysis to account for stress singularity.
In the case of isotropic materials, the recommended size
(e) of the crack-tip element is about a/50 and the virtual
crack extension (∆a) ranges between 10−5 and 10−3 of
the crack-tip element size. A focused mesh at the crack-
tip with gradual enlargement of element size according
to a geometric progression scheme is usually employed.
Each of these three arrangements are investigated in turn,
using E1/E2 = 100, ν1 = ν2 = 0.3, σ∞

y = σ∞
x1= 1, and a fi-

nite width plate model with crack length to plate-width
ratio of 1/10. The reference value from Eq. 17 are K1 =
1.79874 and K2 = -0.262529. A typical element mesh
is illustrated in Fig. 4. To ensure the circular crack-
tip and circular transition elements to progress smoothly
into rectangular elements, the elements at the crack-tip
are specially formed as shown in Fig. 5. On the crack
line the three elements on either side of the crack-tip are
given the same length of side, e, while elements beyond
are enlarged progressively using a factor equal to m.

Firstly, keeping ∆a to 10−3 of e, and a moderate adja-
cent element-size ratio (m) of 1.5, the value of e is varied
over a large range of values. The K-values determined
using the above method are shown in Fig. 6. It can be
seen that the K-values obtained are quite insensitive to
element size. . High accuracy can be achieved with very
coarse element meshes. For e/a < 1/50, errors are below
0.4% and 0.5% for K1 and K2 respectively.

Secondly, keeping e = a/100, m is varied from 1.2 to 4 for
e/a = 1/4, 1/10 and 1/100. The results are given in Fig.
7a and Fig.7b. It can be seen that K2 values are affected
more as m is increased. For m ≤ 2.5, K-values are very
stable. Errors are around 0.4% and 0.5% for K1 and K2

respectively.
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Figure 4 : Half Plate with m = 1.5 , e/a = 1/6

Figure 5 : Crack-tip mesh

Recommended: 

e/a = 1/100 

Relative element size e/a 
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-0.262529

 K1

 K2

SDM Ref

Recommended: 

e/a = 1/100 

Figure 6: Effect of relative element size e/a on K values–
remote biaxial load
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values– remote biaxial load 

Geometric Progression Factor m

K1

1.79874 

Recommended: 

m = 1.5 

Figure 7a: Effect of geometric progression factor m cou-
pled with element size e/a on K1 – remote biaxial load

Geometric Progression Factor m 

K2

Recommended: 

m = 1.5 

-0.262529 

Figure 7b: Effect of geometric progression factor m cou-
pled with element size e/a on K2 – remote biaxial load

It should be noted that by redesigning the element mesh
in areas away from the crack tip, numbers of elements
used could have been considerably reduced in the major-
ity of cases, especially cases with small e-values. Since
computing time and hardware requirements are not crit-
ical in the present study, taking into account the range
of element size and number involved, an optimal mesh
is not actively pursued. Suffice to say that the present
method can be confidently implemented with a relatively
coarse mesh and moderate m-values.

To consider the effect of virtual crack extension size, an
infinite plate with central crack is analyzed, with e/a =
100, m = 1.5 and a total of 1132 elements. The refer-
ence values for KI and KII are 1.798740 and -0.262529
respectively. The results are shown in Fig.8. Basing on
these results it is recommended that ∆a/e should be about
1/500 to 1/1000 to ensure that deviations are below 0.5%.

Relative Virtual Crack Extension Size a/e

K1

Recommended: 

a/e = 1/500 

K2

 K1

 K2

SDM Ref

1.79874 

-0.262529 

Figure 8: Effect of relative virtual crack extension ∆a/e
on K values – remote biaxial load

3.2 Central interface crack in a finite bi-material plate
under uniform tension (Fig. 9)

By symmetry, only half of the plate needs to be analyzed.
Plane stress conditions are applied with: i) symmetry
along the plane of symmetry, ii) uy = 0 on the bottom
edge and iii) σ = 1 along the top edge. Fig. 10a-c be-
low show the results with e/a=1/100, m = 1.5, and ∆a/e =
1/500. References values are derived from those of Yuuki
and Cho as reported in Murakami (1987). A phase angle
shift has to be applied since the definition for the complex
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Figure 9 : Central interface crack
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Figure 10a: K values for different 2a/W– central crack
in finite plate (with E1/E2 = 2)

stress intensity factors includes a normalization factor of
(2a)−iε. The maximum deviation is around 0.6%.
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Figure 10b: K values for different 2a/W – central crack
in finite plate (with E1/E2 = 4)
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K2
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Crack length : Width 2a/w 

Figure 10c: K values for different 2a/W – central crack
in finite plate (with E1/E2 = 10)



196 Copyright c© 2004 Tech Science Press CMES, vol.5, no.3, pp.189-200, 2004

3.3 Single edge interface crack in a finite bi-material
plate under uniform tension (Fig.11)

With e/a=1/100, m =1.5, ∆a/e = 1/500, and σ = 1, differ-
ent combinations of a/W (crack length : plate width ) and
E1/E2 (modulus ratio) are modeled. Reference values are
again derived from those of Yuuki and Cho as reported in
Murakami (1987). Fig.12a-c shows the results of having
bottom edge fixed uy=0 and with the remote corner ux=0,
and with pressure σ = 1 on the upper edge. Deviations
from reference values are generally rather small, being
less than 0.5% in most cases.
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x

y

a

W

E1, 1

Figure 11 : Single edge interface crack
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K2

SDM Ref 

Crack length : Width a/w 

Figure 12a: K values for a/W – single edge interface
crack (with E1/E2 = 2)

K1 K2

K1

K2

SDM Ref

Crack length : Width a/w 

Figure 12b: K values for different a/W – single edge
interface crack (with E1/E2 = 4)
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Figure 12c: K values for different a/W – single edge in-
terface crack (with E1/E2 = 10)
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Figure 13: Four-point Bend Specimen

3.4 The Four-point Bend Specimen(Fig.13)

The following material and geometrical parameters are
used: E1 = 3×109 , ν1 = ν2 = 0.3

B=1, H1 = 10B , S = 300B , d =H3 ,

a = 45B , L = S/2 - 2H3

Reference values are taken from Charalambides, Lund,
Evans and McMeeking (1989), in which graphical pre-
sentations of K are given in the normalized formats:

K1norm = Re
(
KHiε

3

) ·BH3/2
3

Pd

and K2norm = Im
(
KHiε

3

) ·BH3/2
3

Pd

K
1
 a

n
d
 K

2

Young’s Modulus Ratio : E2/E1

Figure 14: K values of different H1/H2 and E1/E2 ratios
– four point bend specimen

Results calculated by the present approach are also con-
verted to these forms for easy reference and are presented
in Fig. 14. The maximum error is below 3.5%. It should
be pointed out that the extraction of the normalized ref-
erenced values from the graphs in the reference makes it
rather difficult to demonstrate extremely high accuracy.

4 Comparisons with other methods in accuracy

Several authors, namely, Wu (1994), Matos et al. (1989)
and Chow et al. (1995), also analysed the infinite plate
in Test Case 3.1 for validating complex stress intensity
factors extraction techniques. Different material combi-
nations were used for verification. Their reported per-
centage errors are shown in Tab. 1a-c. Our values for
similar material combinations in Table 1d are obtained
with e/a = 1/4 and m = 2.5, giving a coarse mesh of 166
elements. It can be seen that our accuracies are relatively
high.

E1/E2 ν1/ν2 K1 (%-error) K2 (%-error)
10 1 1.15 1.10
22 0.857 1.09 0.95
100 1 1.03 0.89

Table 1a: Accuracy in Matos et al. (1989)
[160 elements]
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E1/E2 ν1/ν2 K1 (%-error) K2 (%-error)
10 1 1.16 1.04
22 0.857 1.07 1.115

100 1 0.99 1.03
Table 1b: Accuracy in Wu (1994) [160 elements]

E1/E2 ν1/ν2 K1 (%-error) K2 (%-error)
5 1 1.18 0.70
50 1 1.01 0.00

Table 1c: Accuracy of Hybrid Element by Chow
et al. (1995) [56 elements]

E1/E2 ν1/ν2 K1 (%-error) K2 (%-error)
5 1 0.53 1.00

0.857 0.52 0.98
2.5 0.59 1.10

10 1 0.44 0.78
0.857 0.43 0.75

2.5 0.50 0.91
22 1 0.36 0.63

0.857 0.35 0.60
2.5 0.42 0.77

50 1 0.32 0.55
0.857 0.30 0.51

2.5 0.37 0.69
100 1 0.29 0.51

0.857 0.28 0.47
2.5 0.34 0.65

Table 1d: Accuracy of SDM [166 elements]

5 Applications to bimaterial anisotropic interfacial
cracks

Basing primarily on the solutions of Qu and Bassani
(1989, 1993), stress intensity factors for orthotropic
plates have been studied by Chow and Atluri (1995) and
Charalambides and Zhang (1996). In the former case the
virtual crack closure integral method was employed and
the procedure was also extended to anisotropic bimate-
rial continua in general. Using the expressions in Chow
and Atluri (1995), the stress and displacement equations
corresponding to equations (1) and (2) for orthotropic bi-
material media are:

√
β2σ22 + i

√
β1σ12 =

√
β2K1 + i

√
β1K2√

2πr
riε (18)

and√
β1δ2 + i

√
β2δ1

=
(s#1 − s#2)

√
2πrriε

πβ(1+2iε)cosh(πε)

(√
β2K1 + i

√
β1K2

)
(19)

where β1, β2 , s#1 and s#2 are functions of stiffness coef-
ficients while β2 = β1β2. and equation (2) becomes

ε =
1

2π
ln

(
1+β
1−β

)
(20)

Relationships between stress intensity factors and strain
energy release rates in equations (10) through (15) will
also take more complicated forms.

In the case of anisotropic bimaterial continua in general,
β has to be derived from operations on matrices of mate-
rial constants, with correspondingly more complex forms
for the stresses and displacements. A systematic listing
of the relevant equations, both for the orthotropic and
anisotropic cases can be found in Atluri (1997). These
equations can be used to modify the expressions for the
above stiffness-derivative-based procedure.

6 Conclusion

A method which integrates the stiffness derivative ap-
proach and a stress intensity factor perturbation proce-
dure is presented. The stiffness derivative can be ob-
tained in a finite-element analysis using crack-tip ele-
ment nodal displacements and strain energies without the
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generation of element stiffness matrices. Using a crack-
tip element size to crack length ratio of 1/100, and a vir-
tual crack extension to element size ratio of 1/500, accu-
rate results can be obtained using relatively small number
of elements.
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Appendix A: Functions f for asymptotic crack tip
displacements

From Matos, KcMeeking, Charalambides and Drory
(1989), the functions fx1, fy1, fx2 and fy2 are defined as
follows (with reference to Fig. 1):

fx1 = D j + 2δj sin θ sin ψ
fy1 = -C j - 2δj sin θ cos ψ
fx2 = -C j + 2δj sin θ cos ψ
fy2 = -D j + 2δj sin θ sin ψ
where

δ1 =e−(π−θ)ε δ2 = e(π+θ)ε

ψ = εlog r + θ/2
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D j = βγj cos θ
2 +β′γ′j sin θ

2

Cj = β′γj cos θ
2 −βγ′j sin θ

2

β =
0.5cos(ε logr)+εsin(ε logr)

0.25+ε2

β′ =
0.5sin(ε logr)−εcos (ε logr)

0.25+ε2

γj = µ jδj – 1/δj, γ’ j = µ jδj + 1/δj


