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PMMC cluster analysis

S. Yotte1, J. Riss, D. Breysse, S. Ghosh

Abstract: Particle distribution influences the particu-
late reinforced metal matrix composites (PMMC). The
knowledge of particle distribution is essential for mate-
rial design. The study of particle distribution relies on
analysis of material images. In this paper three methods
are used on an image of an Al/SiC composite. The first
method consists in applying successive dilations to the
image. At each step the number of objects and the total
object area are determined. The decrease of the num-
ber of objects as a function of the area is an indicator
of characteristic distances. The second method is based
on dilations of one particle among all the others. Then
each time it touches a neighbor the number of the step i
of the process is recorded and gives the distance to the
nth neighbor. This is done for each particle of each im-
age. Thus statistical parameters of the distribution of the
distance to the six first neighbors are obtained and com-
pared to the previous characteristics. The third method is
the covariance method. These three methods are tested
on synthetic images of known characteristics. Then the
Al/SiC image is analyzed and once the characteristics are
identified a statistically identical image could be created
later.

keyword: image analysis, distance, composite, simu-
lation.

1 Introduction

Particulate metal matrix composites improve the me-
chanical characteristics of the Al material, but their me-
chanical characteristics are dependant on the particle spa-
tial distribution and specifically on the fact that particles
are not distributed at random but tend to be clustered at
some scale. Material design could be processed in three
steps :

• Simulation of the structure though image analysis
and image simulation ;
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• Mechanical simulation of tests in order to know the
mechanical properties (see for example Ghosh et al
(1997) or Tvergaard and Orts Pedersen (2000));

• Material processing in order to obtain the same par-
ticle distribution as simulated.

Thus the material can be developed and improved. The
first step of this process need a mean to characterize par-
ticle distribution. Thus the challenge is to obtain repre-
sentative characteristics of the particle spatial distribution
for future simulations.

Many studies have been made on distance characteriza-
tion on images. A first group of methods consists in the
analysis of the centroid distribution. The particle cen-
troids are studied as a set of points through:

• Radial distribution function H(r), or g(r) which
characterize the number of points in circle of r ra-
dius centered on each point of the set (Schwartz et
Exner (1983), Karnezis et al (1998), Li et al (1999)).

• Dirichlet tessellation which builds, around each
centroid, polygons whose borders are all laying
at half distance from two neighboring centroids
(Spitzig et al (1985), Hermann et al (1989), Fraser
(1991), Murphy at al (1996), Bertram and Wen-
drock (1996), Karnezis et al (1998), Ghosh et al
(1997)).

A second group studies the particle distribution directly:

• Finite body tessellation builds, around each particle,
polygons whose borders are laying at half distance
from two neighboring particles. This allowed bor-
der to border distance to be computed (Borgefors
(1986), Lafferty (1993), Boselli et al (1999) and Re-
don et al (1999), Dubois et al (1999)).

• Quadrat method divides the image into contiguous
quadrats and makes an analysis of the distribution of
local area fractions (Curtis and Mac Intosh (1950),
Greig-Smith (1952), Karnezis et al (1998)).
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• Covariance function gives some of the characteris-
tics of a distribution (Serra (1982), Soille (1999),
Susagna et al (2000)).

The two tessellation methods allow the computation of
the distance to the first neighbor, the mean distance to
the other neighbors (around the polygon), the number of
neighbors, the polygon area, and the local area fraction
in the polygon. The distributions of these characteristics
are compared to random set of points/particles (depend-
ing on the tessellation type) in order to have some statis-
tical characteristics of the particle distribution. But these
methods do not give precise distance values with their
signification.

A third possibility has been presented by Yotte et al
(2001). It allows the determination of various distances
such as intra–cluster inter–particle distance, inter–cluster
distance, or isolated particles to cluster distance.

In the following we will compare the results obtained
through an improvement of this last method and re-
sults obtained by a new method giving the inter–
particle distance to the first neighbor and to the five
further neighbors. This will be applied to five syn-
thetic images of known characteristics. Then the same
study will be made on an Al/SiC composite image.
The work is done with Micromorph R© image analy-
sis software (Armines/ENSMP, Centre de Morphologie
Mathématique, France). Micromorph is a software that
computes all the image analysis operations and transfor-
mations which are defined in mathematical morphology
(Serra, (1982)). The development of routines combin-
ing these transformations or operations is possible. The
programs described in this work have been written in the
Micromorph R© programming language.

2 The material

The composite is a SiC particle reinforced commercial
aluminum obtained by a powder metallurgy process (Li
et al. (1999)). The matrix is an X2080 aluminum alloy
(with 3.8% Cu, 1.8% Mg and 0.2% Zr weight percent-
ages) with 15 % volume fraction SiC particles. This ma-
terial is used in automotive and aerospace applications
and presents high thermo–mechanical properties.

The image studied here is x100 magnification. Its char-
acteristics are shown on Tab. 1. Image is 640x512 pixels,
each pixel corresponding to a gray level in the range [0-
255], and to a size 0.63 µm. The image is presented on

Fig. 1.

Table 1 : Characteristics of the image.
Name Magnifi

cation 

Number of 

particles 

Particle 

area

Mean particle 

area (µm
2
)

Image 

5

x 100 470 62926 54 

Figure 1 : Binary image of the Al/SiC composite.

The final objective of the paper is to characterize this ma-
terial, through this image. In the following image analy-
sis will be used in order to

• create synthetic images of known characteristics,

• characterize inter–particle distance on these images
with three different methods,

• compare the various results,

• apply this study to the Al/SiC image.

3 How to characterize inter–particle distance?

In this part we will present three methods used for the
evaluation of the inter–particle distance. Some impor-
tant morphological operators must first be explained. So
we will explain what are a dilation and an erosion (Serra
(1982), Soille (1999)) and then present the method used
to create images.
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3.1 Image analysis basic morphological operators

3.1.1 Dilation

E

(a)  (b)  (c) 

Figure 2 : Dilation of an object by a disk. The objet A,
in grey, is shown in (a) with the disk beside. The object is
tested by the disk in (b), and the resulting dilated object
is shown in (c).

E

Figure 3 : Dilation of an object by a line.

Let be an object A and a structuring element E. A struc-
turing element is a small geometrical figure used as a tool
for the transformation; it is characterized by its shape, its
size and its center. The element E can be set at any point
of the image. Then E is tested on the object A. If the ele-
ment E touches to A then the center (origin) of E belongs
to the dilated of A. On Fig. 2, E is a disk. We will use an-
other structuring element which is a line whose center (or
origin) is defined on its right extremity. Fig. 3 presents
the directional dilation.

A dilation is characterized by its size (number of steps
elementary dilation is repeated) and by the structuring
element.

3.1.2 Erosion

It is the dual operation (Fig. 4). Let be an objet A and
the structuring element E. Then E is tested on the object
A. If E is completely included in the object A then the
center (or origin) of element E belongs to the eroded of
A.

(a)  (b)  (c) 

Figure 4 : Erosion of an object by a disk. The objet A, in
grey, is shown in (a). The object is tested by the disk in
(b), and the resulting eroded set of two objects is shown
in (c).

3.1.3 Conclusion

The aim of this paper being to characterize clusters of
particles it would be interesting to use euclidian distance,
see Borgefors (1986), but we are working with discrete
images and such a distance does not work well. We
just need an accurate tool to characterize and compare
the spatial distribution of particles laying on various im-
ages. So we decide to use distance function defined on
a hexagonal grid; in such a way two particles are dilated
by a hexagon (structuring element) of increasing size un-
til they became connected and the distance is assumed
to be the size of the structuring element. Fig. 5 shows
the hexagonal grid defining the pixel relative position
(nodes of the grid), and presents also the three directions
of the grid we used here for the directional dilation. The
hexagon is the structuring element for which all the pix-
els lay at the same distance from the center, as the disk in
the euclidian plane. The result of the dilation by such an
element is shown on the figure too.

3.2 Definitions

3.2.1 Function F

Two characteristics can be estimated on the image: the
number of objects and the object area. From those two
measures we want to obtain the image cluster character-
istics.

Successive directional dilations (Fig. 3) in one precise di-
rection of the hexagonal grid (direction 1, 2 or 3 see Fig.
5), with a size 1 dilation, modify the number of objects in
the image. All the particles are dilated together. As each
particle grows, it reaches the nearest particle when its di-
lation size is equal to the distance to this neighbor. Then
there is one single object instead of two. Thus, at each
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Figure 5 : Discrete image on A hexagonal grid: the re-
sult of a dilation by a disk is shown as well as the three
first directions of the hexagonal grid. The pixels are rep-
resented as circles and the lines represent the grid.

dilation, the number of objects in the image decreases
and the rate of decrease is related to the distribution of
distances between particles. This could be indicative of
other characteristic distances of the image such as inter–
cluster distance. This operation is done for the three di-
rections of a hexagonal grid.

At each step i, the number of objects and the total object
area are computed. This is done until the object size is
no more growing. Equation 6 gives the curve indicative
of the number of objects decrease as a function of the
occupied area.

Ni−Ni+1

N0

Ai+1−Ai

A f −A0

= F(di) (6)

With:

Ni: number of objects at the step i;

N0: number of objects initially;

Ai: area occupied by all the objects at the step i;

A f : area occupied by all the objects at the end of the
operation;

A0: area occupied by all the objects at the beginning;

Di: dilation size.

The initial number of objects is the number of objects be-
fore any dilation. The initial area is the area occupied by
the particles before any dilation, the final area is the area
occupied by the dilated particles when no more dilation
is possible.

3.2.2 First neighbor distance

The particles are isolated one after the other. Then suc-
cessive dilations of size 1 are applied to the image con-
taining the particle. This dilated particle is added to the
initial image and the number of objects is determined.
If this number decreases it means that the inter–particle
distance is equal to the number of dilations: the dilated
particle touches other particle and forms with them one
unique object. At each decrease of the number of objects,
is associated a distance to the further neighbor. In order
to avoid border influence only particles which are at a 30
pixels distance from the image border are studied.

3.2.3 Covariance

d

A AT

Figure 6 : Image A and the comparison between the
translated of A, AT and A: the objects of A are in light
grey and AT objects are in dark grey. The pixels belong-
ing to both A objects and AT objects are in dark.

Let be a binary image A. This image is translated into an
image AT , at a distance d from A and in a given direction.
The two images are compared. The pixels belonging to
objects on A and on AT are counted and this area gives
the covariance of A for the distance d (Fig. 6).
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3.3 Clustered random images

The objective is to create images where clusters exists,
and then to evaluate the various methods on these im-
ages. Measurements must give the same characteristics
as those that have been imposed during the image cre-
ation process.

(a) (b)

(d)(c)

(e)

(g)

(f)

Figure 7 : Creation of a clustered image; (a), (b) first
phase of particle laying out of clusters; (c), (d) clusters,
(e), (f) and (g) second phase of clustered particles.

3.3.1 Creation method

The process follows two steps. A first step creates parti-
cles which do not belong to clusters (first phase particles)
and a second one creates particles belonging to clusters
(second phase particles), see Fig. 7 (a) to (g).

For creating the first phase particles, random disks of d1

diameter are created. These disks do not touch each oth-
ers (Fig. 7 (a)). Diameter d1 is chosen so that the image
can contain all the disks. They are at least at one pixel
distance from each other. Then they are eroded to dp di-
ameter which is the final particle size (Fig. 7 (b)). Thus
the minimal inter–particle distance is:

d2 = 2.

(
d1

2
− dp

2

)
+1 = d1 −dp +1, (2)

which is shown on Fig. 7.

dp

d1

d2

Figure 8 : Distance between unclustered particles

d4 dp
d5

d3-d4+1

Figure 9 : Distance between clustered particles

For creating the second phase particles, random disks of
d3 diameter are created independently of the first phase
particles (Fig. 7 (c)). These disks do not touch each
others. Then they are eroded to a d4 diameter (Fig. 7
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(d)). This ensures a minimal distance of d 3-d4+1 be-
tween their borders. Then particles (diameter d p) are cre-
ated (Fig. 7 (e)) which

• have to touch or be inside the previous disks (Fig. 7
(f))

• and must not touch the first phase particles (Fig. 7
(g)).

Then the minimal inter–cluster distance is:

d5 = 2.

(
d3

2
− d4

2

)
+1−2dp = d3−d4 +1−2dp, (3)

as shown on Fig. 9.

3.3.2 Image characteristics

Clustered images are created. The particles have dp=11
pixels diameter. Tab. 2 gives the images characteristics.

n1 is the number of particles of the unclustered phase, n2

is the number of clusters and nc is the number of particles
in each cluster.

Table 2 : Image characteristics
Image n1 n2 nc d1 d2 d3 d4 d5

Cluster 1 51 22 5 33 23 57 33 3 

Cluster 2 51 22 5 33 23 57 33 3 

Cluster 3 51 22 5 33 23 57 33 3 

Cluster 4 31 26 5 49 39 49 33 1 

Cluster 5 1 32    41 25 1 

The first three images are statistically identical since they
have been created with the same parameters. The two
others are different: “Cluster 4” has more clusters and
less isolated particles. The clusters are nearer from each
others, the minimum distance is thus 1 pixel (as d 5 is
found negative), and the maximal distance (d 3-d4+1) is
17 pixels. “Cluster 5” is made of 32 clusters, just one
particle laying outside. All the images have the same
number of particles (161). Fig. 10 ((a) to (c)) shows
image “Cluster 5” and “Cluster 1” as well as a random
image with 161 identical particles.

3.4 General method

3.4.1 Comparison

For each method, the result for the three containing clus-
ter images must be compared to the theoretical data. The

(a) “Cluster 1” 

(b) “Cluster 5” 

(c) Random image 

Figure 10 : created 161 particle images: (a) 22 clusters
(b) 32 clusters (c) random image

distance for which there is a significant difference of re-
sult between the theoretical random distribution and clus-
tered particle distribution is a characteristic distance.

There are two problems:

1. The comparison is done between the results of clus-
tered image and the theoretical results of random images.
How can we say that the difference is an accident or if it
is due to the clusters? We choose a probability p of er-
ror and then the probability for the clustered result not to
differ from the random result is :

Prob(µ−up σ < X < µ+up σ) = 1−2p (4)

where up is given by the normal law tables (we assume
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that the random image distance distribution follow a nor-
mal law, of mean µ and standard deviation σ) and X
the interparticle clustered distance. The interval [µ-u pσ,
µ+upσ] is the p% probability interval. One such inter-
val is defined for each distance. Then the characteristic
distances of the distribution are those for which the clus-
tered image results are not in the confidence interval.

2. There is no theoretical data for inter particle dis-
tance distribution in the case of particles of any shape.
There is no analytical solution. Thus the law giving
inter–particle distance in hard core images has to be esti-
mated through results from N random image simulations.
What is the better value for N? “Better” means here the
values of µ and σ respectively mean and standard devia-
tion of the normal law, related to the random image dis-
tance, have to be estimated. Thus the confidence interval
is an estimation of the real one with a chosen risk of error
α%.

3.4.2 How many images are necessary?

Let be Xth the parameter for which we want an estima-
tion. Xth could be the distance function we call F (Yotte
et al (2001)), the number of neighbors or the covariance
result for a given distance d. Since we need to estimate
an optimal number N of images we assume it can be in-
ferred from

Prob(|m±ks| < |µ±upσ|) = α (5)

where:

• µ and σ are the mean and the standard deviation of
a normal variate X,

• m and s are the estimate for µ and σ from an N sam-
ple of this distribution,

• and up is related to the interval of probability:

Prob(µ−upσ < X < µ+upσ) = 1−2p

The parameter k depending on p, α and N is tabulated;
since

k =
t√
N

the optimal size of the sample can be estimated.

For p being 10%, α being 25 % and N being 20, statistic
tables give a coefficient k (N, p, α) of 1.93. Thus we will
take this value for the following study and use 20 random

images to estimate the mean and standard deviation. For
this data set, if on a given image and a given distance d,

X < mth −1.93σth or X > mth +1.93σth (6)

we will conclude that d is a characteristic distance for this
image. The mean mth will be estimated from 20 images.

3.5 Function F results

Fig. 11 shows results for “Cluster 5” direction 1 (Fig.
11 a), direction 2 (Fig. 11 b) and direction 3 (Fig. 11
c). Three curves are plotted for each image: the mean di-
vided by the standard deviation minus 1.93 and the mean
divided by the standard deviation plus 1.93, and the re-
sult of the image divided by the standard deviation. We
choose to plot m

σ ± 1.93 instead of m ± 1.93σ because
the standard deviation value σ vary with the dilation size.
This choice ensures a constant difference of 3.86 between
the upper limit and the lower limit.

Some points are outside the limits and are said to be rep-
resentative of structures on the image. We decide that
only series of consecutive points or isolated points which
appear in at least two directions are representative points.

Thus Fig. 11a shows that 1 and 2 pixels are characteristic
distances as well as 4 and 5 pixels for example. If a min-
imal distance is searched then the first number of the se-
ries is the distance, if it is a maximal distance then the last
number of the series is the distance. On Fig. 11a the first
series is [1-2]. Thus 1 pixel is the minimal intra–cluster
inter–particle distance. The second series is [5-6], thus 6
is the maximal intra–cluster inter–particle distance. The
three directions give similar results [1-2] then [5-6] for
direction 1 and 3 and [4-5] for direction 2. All the other
distances laying out of the limits are not taken as charac-
teristics.

Tab. 3 shows the results related to all the images. The
last column gives the common results (series and single
values if they appear in two directions at least).

• “Cluster 1” image seems to have 1 as characteristic
distance (first of the series [1 to 5]). As this series
is rather long we suppose that 5 the last of the series
could be a maximal characteristic distance. Also 7,
11 and 21 (firsts of the next series), as well 19 pixels
seems to be characteristic distances.

• In the case of “Cluster 2” image which have been
created with similar parameters, 1, 10 and 32 pixels
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(c) direction 3 

Figure 11 : “Cluster 5” results, a in direction 1, b in
direction 2 c in direction 3.

seems characteristic with no value between 1 and
10.

• “Cluster 3” image is similar to “Cluster 1” with 1, 4

Table 3 : Results related to the 5 images “Cluster”
 Direction 1 Direction 2 Direction 3 Characteris

tic distances 

“Cluster 1”  [2-3] [7-8-

9] 11 [22-

23-24] 

[3-4] [11-12] 

19 [21-22]  

[1-2-3-4-5] 7 

19

[1-2-3-4-5] 

[7-8-9] [11-

12] 19 [21-

22-23-24]

“Cluster 2” [1-2] [10-11-

12-13] 33 

[1-2] [12-13-

14] [32-33] 

[1-2] [13-14] [1-2] [10-11-

12-13-14] 

[32-33]

“Cluster 3” 2 4 [7-8-9] 

12 14 [21-

22] 32 

[4-5] 12 14 

[31-32] 

[1-2] 4 7 14  [1-2] [4-5] 

[7-8-9] 12 

14 [21-22] 

[31-32]

“Cluster 4” [4-5] 7 10 

[14-15] [20-

21-22-23]  

1 5 [13-14] 

[16-17-18] 

[31-32] 

[1-2-3-4] 7 

[16-17-18] 

31

[1-2-3-4-5] 7 

10 [14-15] 

[16-17-18] 

[20-21-22-

23] [31-32]

“Cluster 5” [1-2] [4-5-6] 

[8-9-10] 

[1-2] [4-5] 8 

19

[1-2] [4-5] 9 

19

[1-2] [4-5-6] 

[8-9-10] 19

(or 5 as in “Cluster 1”), 7, 12, 14 21 and 31 pixels
as characteristic distances.

• “Cluster 4” image which has more clusters and less
isolated particles than the three previous images, has
1 and perhaps 5 (as in “Cluster 1”), 7, 10, 14 16 or
18, 20 or 23 and 31 pixels as characteristic distance.

These results will be compared to those obtained with the
neighbor method on the same images.

3.6 First neighbors results

Fig. 12 a to f gives the frequency in percentage of the
distance to the six first neighbors for images “Cluster 1”
and “Cluster 5”. An image curve is either over the upper
limit, either inside the two limits either under the lower
limit. When it is over the upper limit, this means that
some particles have more neighbors at this distance than
random images. Thus the first distance of the series is a
minimal characteristic distance. When the curve is under
the lower limit, this means that some particles have less
neighbors at this distance than random images. Thus the
first distance minus one of the series is a maximal char-
acteristic distance.

For example in the case of image “Cluster 1” on fig.12
(a), first neighbor distance, 1 and 3 pixels are distances
at which a particle has more chances to have a neighbor
than in a random image. More particles are nearer from
other particles in “Cluster 1” than in random images, thus
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Figure 12 : Frequency of the neighbor distances for images “Cluster 1” and “Cluster 5”.

“Cluster 1” seems to be more clustered than a random im-
age. The second characteristic distance is 7 pixels: it is
under the lower limit. Up to 6 pixels the particles have
more or as many neighbors as in the random image. But
at 7 pixel distance lay less first neighbors than in a ran-
dom image. Thus particles which have first neighbors
at 1 to 6 pixels are in a cluster and those of which first
neighbors are at more than 7 pixels lay out of clusters.

The set of the first six neighbors curves (fig 12 (b) to
(f)) gives perhaps more information but it is difficult to
find which distance is really characteristic. Our clustered
images have 5 particle clusters. Thus the fifth and sixth

neighbor frequencies must lay inside or under the two
limits. It is rather true for the two images “Cluster 1” and
“Cluster 5”, just 1 or two particles (1 to 2% frequency)
are laying very near from a cluster. The second, third and
fourth neighbor plots shows higher differences between
upper limit and image curves for high distances which
is logical. Thus the lower difference between the upper
limit and the curves is an indication of the number of
clusters of particles.

“Cluster 5” particles are all laying in clusters. Only 68%
of “Cluster 1” particles are planned to lay in clusters.
Thus for the four first neighbors, the characteristic dis-
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Table 4 : “Cluster” image characteristic distances
 Neighbor 

1

Neighbor 

2

Neighbor 

3

Neighbor 

4

Neighbor 

5

Neighbor 

6

“Cluster 1” 1+ 3+ 7-

[21-22]+  

[1-2-3-4-

5]+ [13-

14]- [26-

27]-

[3-4-5]+

9+ 11+ 14-

16-

5+ 8+ [10-

11] 13+

16- [32-

33]+

7+ [9-10]+

[13-14]+

21- 33+

[11-12]+

“Cluster 2” 1+ [7-8]-

16+ 19+

24+

[1-2-3-4]+

12+ 24+
[3-4-5]+

10+ 14-

27+

[4-5-6]+

9+ 11+
[6-7-8-9-

10-11]+
14+ 21-

23+

“Cluster 3” 1+ 9- [23-

24]+ 27+
[2-3]+ 8+

11- 13-

[23-24]+

30+

[2-3-4-5]+

14- 17- 25+

17+ 30+

[6-7-8]+

[11-12]+

[21-22]-

[9-10]+

12+ 21-

30+

26-

“Cluster 4” 1+  [1-2-3-4-

5]+ 8+ 28+
3+ 5+ 10+

18+
6+ 22- 9+ 12+ 20+

21-

14+ 20+

25+

“Cluster 5” [1-2]+ [7-

8-9]- 12-
[1-2]+ [4-

5]+ [12-

13]-

[1-2-3-4-

5]+ 9+ 11+

[14-15]+

[4-5-6-7-

8-9-10-

11]+ 16+

[22-23-

24]-

[8-9-10-

11-12]+

14+ 16+

[21-22]-

33+

[11-12]+

14+ [16-

17]+ [25-

26-27-

28]-

tances of “Cluster 5” (intra cluster inter particle distance
and inter cluster distance) have a higher frequency, more
particles are laying at this distance from another particle.

Tab. 4 shows the results for the five images. The val-
ues are followed by a plus character if the point is over
the upper limit and with a minus character if the point is
under the lower limit. Series are in brackets.

The three first images are constructed with similar pa-
rameters. The three images have 3 characteristic distance
for the first neighbor: 1 pixel (value over the upper limit),
between 7 and 9 pixels (value under the lower limit) and
between 21 and 24 pixels (value over the upper limit).
Only the first distance appears in “Cluster 4” and the two
first in “Cluster 5”. These two images have more clusters
than the three first image which could means that the two
first distances are representative of clusterization and the
third distance is more related to isolated particles.

3.7 Covariance results

The covariance is calculated for the 5 images and the 20
random images which give the upper and lower limits.
Fig. 13 gives the various results.

The covariance curves from the three images lay out of
the two limits for distance from 4-5 pixels to 15-16 pix-
els. More particles are laying at distance varying between
4 and 16 pixels from each other than in a random image.
This result is due to clustering. There is no great differ-

ence between the results in the three directions, which
is quite logical as the images are isotropic. Statistically
similar images as “Cluster 1, 2 and 3” give covariance
curve that are quite similar. Fig. 14 shows the compar-
ison for direction 1 of “Cluster 1, 4 and 5” covariance.
“Cluster 5” curve is over the two others for distance val-
ues between 6 and 21 and is under for distance between
26 and 37. This means that more particles are at inter–
particle distance between 6 and 21 and less are laying
at 26 to 37 pixels distance than in the two other images.
Thus it is possible with the covariance to see a difference
between “Cluster 5” and the other images but the differ-
ence between “Cluster 1, 2, 3 and 4” is hard to highlight.

4 Discussion

4.1 Inter–particle distances

From the neighbor method and the distance function F
method we will determine the intra–cluster inter–particle
minimal and maximal distances. Tab. 5 compare the re-
sults obtained with the two methods applied to the five
images. For the first neighbors result when a series were
under the lower limit, the characteristic distance is the
number just before the first value of the series.

From this table we determine the minimal inter–particle
distance dmin and the maximal one dmax inside a cluster.

In all the images dmin is well identified by the two meth-
ods as 1 pixel. The same agreement does not happen for
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Figure 13 : covariance curves for clusters 1, 2 and 3 in
direction 1 (a), (2) and (3). The three curves are com-
pared to the results of 20 random simulation which give
the upper and lower limit.

comparison of "Cluster 1, 4 and 5" in direction 1
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Figure 14 : Comparison of the covariance obtained for
“Cluster 1”, “Cluster 4” and “Cluster 5” in the first direc-
tion.

Table 5 : Comparison of the results for the two first meth-
ods.

 F function First neighbor dmin dmax

“Cluster 1” 1 5 7 11 19 21 1 (or3) 6 21 1 6 

“Cluster 2” 1 10 32 1 6 16 19 24 1 6 

“Cluster 3” 1 4 (or 5) 7 12 14 

21 31

1 8 23 27 1 5 

“Cluster 4” 1 5 7 10 14 16 (or 

18) 20 (or 23) 31 

1 1 5 

“Cluster 5” 1 6 8 (or 10) 19 1 6 11 1 6 

the value of dmax. It is due to the fact that all the clus-
ters on an image and not at the same distance from each
other. In the case of “Cluster 1”, F function gives 5 or 7
for dmax and the neighbor method 6. As these value are
very similar we take 6 as dmax. The distance function F
gives for “Cluster 2” a single possibility for d max which
seems very high, thus we choose to keep the value given
by the neighbor method. Image “Cluster 3” have 5 as
dmax from the F function and 8 from the first neighbor,
thus we choose 5 as dmax value. No value is given in the
case of “Cluster 4” by the neighbors. F function result
is 5. Thus we choose 5 as dmax. The image “Cluster 5”
shows no such problem as the two methods are in agree-
ment.

Thus when a inter–particle distance have a high fre-
quency it is well identified by the two methods. It is the
case of dmin for all the images and of dmax in the last im-
age where all the particles are clustered and the result is
not corrupted by isolated particles.

For the following determination of the inter–cluster dis-



182 Copyright c© 2004 Tech Science Press CMES, vol.5, no.2, pp.171-187, 2004

 (a) 

 (b)  

 (c) 

Figure 15 : Cluster construction:
(a) Initial image (cluster 5)
(b) Image after a 5 pixels dilation
(c) Image after 5 pixels erosion and filling of the holes.

tance, the intra–cluster inter–particle distance is taken as
6 pixels for “Cluster 1” and “Cluster 5”, and 5 pixels for
“Cluster 4”.

4.2 Inter–cluster distances

At a first step a dilation with a disk, of the size of the
previously identified inter–particle distance, is applied to
the image. Thus the inter–particle distance is filled with
white pixels and an object “cluster” is build (Fig. 15
b). As all the particles grows together the cluster we
build is larger and overlap more particles than the ini-
tial one. An erosion is done so that the particles and the
clusters recover their initial size again. It is not a perfect
because few particles remains bound to the clusters, but
their amount is negligible in this study. Close holes ap-
pear inside some clusters. Their are filled and the result
is shown on Fig. 15 c. The clusters are identified and
appear as objects on the image.

The same method that has been used for neighboring par-
ticles (§351) is used and the first neighbor cluster dis-
tance curves are plotted. Fig. 16 gives the results for
the three images “Cluster 1” (Fig. 16a), “Cluster 4” (Fig.
16b), “Cluster 5” (Fig. 16c). The characteristic distance
are 12, 14, 17, 22 pixels in the first plot (Fig. 16a). For
each distance the number of clusters outside the limits
are not the same but they are rather low (2 clusters maxi-
mum); and the total number of clusters is low too: 5 clus-
ters for distance 12, 3 clusters for distance 14 and 17, and
2 for distance 22. Thus there is no unique inter–cluster
distance, but a distribution. “Cluster 4” shows 4 charac-
teristic distances but only one (6 pixels) is very different
from the random distribution. In the last case (“Cluster
5”, Fig. 16c) the 21 pixel distance seems characteristic
but the cluster distance seems to be fast uniformly dis-
tributed.

The construction of the image gives for maximal inter–
cluster distance d 3-d4+1. Tab. 6 gives the comparison of
the maximal and minimal distance to the distance found
with the neighbor method in the previous paragraph.

We will now compare the distances used for the image
creation (see Tab. 2) and these characteristics we found
here in order to evaluate the methods for inter particle
distance and inter cluster distance determination.

The distances found are all in the given interval except
for the last image. This means that

• first the neighbor method is sufficient to identify the
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Figure 16 : First neighbor distance to clusters for “Clus-
ter 1” (figure 16a), “Cluster 4” (figure 16b), “Cluster 5”
(figure 16c)

Table 6 : Comparison of the construction values of inter–
clusters distance with results

 Distance 

interval for 

clusters

First

neighbors 

“Cluster 1” 3 – 25 12-14-17-22 

“Cluster 4” 1 – 17 6-10-11-14 

“Cluster 5” 1 – 17 14-21-29 

intercluster distances,

• then the chosen maximal inter–particle distance
dmax were relevant.

The plots shows that the distance distributions lays in the
creation interval except in the case of “Cluster 4” where
the 20 pixel distance could be an isolated particle to an-
other, and for “Cluster 5” where 5 clusters upon 32 are
at a greater distance. In this cases the initial d 3 diameter
disks used to create the cluster were not of sufficient size
to cover the all image.

4.3 Conclusion

Three methods for characterizing inter–particle distance
have been tested.

• The intra–cluster inter–particle minimal distance is
identified identically in the five images by the F
function and the neighbors method. The intra–
cluster maximal distance is identified in 4 images
for each of these two methods. The inter–cluster
distance is not identified here. Then the two first
methods give as good results for identifying the two
first characteristic distances.

• The inter–cluster distance is too distributed, but the
values obtained with the neighbor method are in
agreement with those used for the construction of
the image.

• The fifth neighbor characteristic distances contain
the inter–cluster distances obtained after. But we
look at this particular distance distribution because
the number of clusters of particles is known which
is not the case generally.
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• The covariance shows differences between clustered
images and random ones, and between the last im-
age and the four others. But it does not give values
for inter–particle distances. Furthermore it does not
find any difference between “Cluster 4” and “Clus-
ter 1, 2 and 3” which in reality are slightly different
(22 clusters are created in the three first images, and
26 for the fourth one). Usually it is used to test if
two images are statistically equivalent.

Thus for the analysis of the real image we choose to use
the two methods and the inter–cluster distance will be
searched with the neighbors method.

5 Real Al/SiC image analysis

5.1 Inter–particle distance

In order to have a comparison between the real image
and random ones, 20 random images are created with the
same particles as on the real image but localized at ran-
dom positions.

Fig. 17 shows the results of the comparison. A first char-
acteristic distance appears at 1 pixel. This is due to the
fact that many particles are not separated on the image
and we have artificially separated them, see Yotte et al
(2001). For so closed particles the distance is set to one
pixel. The series [2-3-4-5-6] have their frequencies un-
der the lower limit. Then less particles have their first
neighbor laying between 2 and 6 pixels distance than in
a random image. It means that the distance before 2 (first
number of the series) is a maximal intra–cluster inter–
particle distance. Thus a first structure exists on the im-
age with these very closed particles (at 1 pixel distance
from each other). Similarly distances 8 and 12-13 are
characteristic with frequency value under the lower limit.

Fig. 18 shows the result of the analysis through the F
function. As for the neighbor frequencies, the 1 pixel dis-
tance is characteristic because the value is over the upper
limit, but all the other characteristic distances are char-
acteristic because their frequency lays under the lower
limit. We use the same method to identify characteristic
values: a series of values is said to be characteristic and
a single value is a characteristic distance only if it ap-
pears in at least two directions. Thus here the important
distances are: 1, [2-3-4], 6, [10-11-12], [13-14], [15-16]
and [24-25-26].
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Figure 17 : First neighbor distance of Al/SiC image.

The one pixel distance appears with a high frequency in
the two methods. Thus it is related to a first structure.
The [2-3-4] series is not characteristic of clusters because
their F value in the random method is higher than that of
real image, this means only that the value before the se-
ries is particular. Indeed the number of particles having
a first neighbor at 1 pixel distance is very high. Thus it
remains fewer particles than in the random image hav-
ing a first neighbor at more than 1 pixel distance. This is
why the F values for distance higher than 1 are very low.
The next characteristic distance is 6. Clusters forming a
second structure could have their maximal intra–cluster
inter–particle distance at this value. It is possible to ob-
serve this second characteristic distance on the second
neighbor plot on Fig. 19: here only 1, [6-7-8], [10-11-
12-13] and 15 are characteristics. As [6-7-8] are under
the lower limit, it means that fewer particles have their
second neighbor at this distance thus 5 pixel value is a
maximal intra–cluster inter–particle distance for the sec-
ond structure.

As a conclusion, we observe a first structure whose par-
ticles are laying at 1 pixel distance from each other, and
a second having an inter–particle distance of 6 (given by
F function) or 7 (given by the first neighbor) or 5 (given
by the second neighbor). The value of 6 is assumed to be
the inter–particle distance of the second structure.

Fig. 20 and 21 show the result of an dilation of respec-
tively 1 pixel and 6 pixels which allowed particle to join
up in clusters. The particles in the clusters have their first
neighbor laying at a distance between 1 (resp. 6) pixel
and twice this value because here all the particles are di-
lating at the same time. The erosion separates some of
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18 (a): Function F applied to image Al/SiC in direction 1 
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18 (b): Function F applied to image Al/SiC in direction 2 
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18 (c): Function F applied to image Al/SiC in direction 3 

Figure 18 : Results in the three directions of the grid for
image 5 analyzed with function F

the particles.

On the two figures isolated particles remain, which have
been already seen in Yotte et al (2001). The two struc-
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Figure 19 : Second neighbor distance for the Al/SiC im-
age.

Figure 20 : Al/SiC image after a size 1 dilation and ero-
sion

tures appear clearly on the figures: first structure of small
clusters and second one with few clusters of irregular
shape and size.

These two constructions enable the inter–cluster distance
calculation, which will be done in the next paragraph
with the first neighbors distance.

5.2 Inter–cluster distances

Fig. 22 shows the result of the first neighbor method ap-
plied to Fig. 20 image. The characteristic distance values
are 1, 2 which give frequencies under the lower value,
and 5, 7, 9, 10, and 18 which give frequencies over the
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Figure 21 : Al/SiC image after a size 6 dilation and ero-
sion

upper limit. The cluster building operation would have
left only few objects at a distance less than 1 or 2 pix-
els. The result here shows that the dilation/erosion builds
the clusters but it modifies the object shape and thus the
distances. Nevertheless, the frequencies for 1 and 2 pixel
distances are very low. The next characteristic distances
are 5 and 7 pixels, which are in agreement with the 6 and
8 distance for the particles. Similarly the 9-10 distance
seems in agreement with the 12-13 result for particles.
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Figure 22 : Distance of the small clusters to their first
neighbors

The difference between the particle and this result comes
from the comparison which is not done with the same

random images: in the case of clustered images there
are less objects to cover the same surface. This explains
why in the case of particle distance these values have fre-
quencies under the lower limit and in this case they have
frequencies over the upper limit. Nevertheless these dis-
tances are characteristics of another structure which ap-
pears in Fig. 21.
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Figure 23 : Distance of the large clusters to their first
neighbors

Fig. 22 shows the distances to their first neighbors of
the second size clusters, characterized by a intra–cluster
inter–particle distance of 6 or 7 pixels. Distances from 1
to 6 show small frequencies (equivalent to 0 to 4 objects),
which are due to the cluster building process. Some dis-
tances are characteristics: 7, 11, 16, 18 and 19 pixels.
Fast all the clusters lay at distances ranging from 7 to 20
pixels. The same trend appears on Fig. 21 curves.

6 Conclusion

Three methods for identifying inter–particle distances
have been tested in this work: covariance, distance to
neighbors and a function characteristic of distances will
call F.

Covariance enables the differentiation of the images but
do not gives the distances characteristic of an image.

Neighbor method and F function gives characteristic dis-
tance values, which are not always the same but the
cross–checking of the two set of distance gives the intra–
cluster minimal and maximal inter–particle distance.

We applied these two last methods on an Al/SiC im-
age and evaluated the inter–particle distances and inter–
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cluster distances. This underlines the presence of two
structures in this image.

This work, together with a previous one on the particle
distribution, will enable the construction of images which
have the same characteristics as the real one.

These methods are not limited to composite materials. It
can be used for any heterogeneous material, for which
inter component distance is important for some behavior.
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