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Adaptive Multi-Scale Computational Modeling of Composite Materials

P. Raghavan 1 and S. Ghosh 2

Abstract: This paper presents an adaptive multi-level
computational model that combines a conventional dis-
placement based finite element model with a microstruc-
tural Voronoi cell finite element model for multi-scale
analysis of composite structures with non-uniform mi-
crostructural heterogeneities as obtained from optical or
scanning electron micrographs. Three levels of hier-
archy, with different resolutions, are introduced in this
model to overcome shortcomings posed by modeling
and discretization errors. Among the three levels are:
(a) level-0 of pure macroscopic analysis; (b) level-1 of
macro-micro coupled modeling, used for signaling the
switch over from macroscopic analyses to pure micro-
scopic analyses; and (c) level-2 regions of pure micro-
scopic modeling. The adaptive Voronoi cell finite el-
ement model is utilized effectively for analysis of ex-
tended microstructural regions with high efficiency and
accuracy. Identification of statistically equivalent RVE
(SERVE) for evaluating the effective properties are made
through the use of correlation functions for different vari-
ables. Upon determination of SERVE’s for actual mi-
crostructures, numerical examples of a composite plate
and a composite laminate are solved to demonstrate the
ability of the multi-scale computational model in analyz-
ing complex heterogeneous structures.

keyword: Voronoi cell FEM, multi-scale analyses,
non-uniform microstructures

1 Introduction

The commercial use of reinforced composites in various
structural components has increased considerably in the
last few decades. Based on design requirements, they are
engineered to yield superior thermo-mechanical proper-
ties like high strength or stiffness to weight ratios, re-
sulting in a tremendous advantage over monolithic ma-
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terials. Despite property enhancements, the presence
of second phase fibers or particles in composites often
has adverse effects on their failure properties like frac-
ture toughness and strain to failure. Structural compo-
nents, e.g. laminates of many composite materials, ex-
hibit strong non-uniformities at the microstructural level.
The non-uniformities are in micro-scale morphology in-
cluding variable fiber/particle spacing, size, shape, vol-
ume fraction and dispersion, in meso-scale clustering or
directionality or in varying constituent material and in-
terface properties. The material response and especially
microstructural damage mechanisms, including inclusion
and matrix cracking, interfacial decohesion etc. can be
very sensitive to these local variations in morphological
and constitutive parameters. Robust analysis methods to
design optimal composite microstructures are necessary
for enhanced utilization of composite materials in load
bearing high performance applications.

Heterogeneous structures are conventionally analyzed
with properties obtained from homogenization of re-
sponse at smaller (meso-, micro-) length scales.
[Ghoniem and Cho (2002)] provides an overview of
current and a vision for future developements in mul-
tiscale simulations for nano- and micro-mechanics of
materials. Analysis of composite materials is often
performed by the method of homogenization wherein
the macroscopic properties are obtained by averaging
stresses and strains over a periodic representative vol-
ume element (RVE). Commonly used methods of ho-
mogenization, e.g. the asymptotic expansion homoge-
nization [Benssousan, Lions and Papanicoulau (1978);
Sanchez-Palencia (1980)], assume spatial periodicity
of microstructural representative volume elements or
RVE’s and uniformity of macroscopic variables . Mul-
tiple scale analyses of linear elastic reinforced com-
posites have been conducted by Fish et. al. [Fish and
Wagiman (1993)], Guedes and Kikuchi [Guedes and
Kikuchi (1991)], Ghosh et. al. [Ghosh, Lee and Ragha-
van (2001); Raghavan, Moorthy, Ghosh and Pagano
(2001)]. In this issue, the homogenization method has
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been used in conjuction with the boundary element
method for three-dimensional particle reinforced com-
posites in [Okada, Fukui and Kumazawa (2003)]. Mi-
cromechanical traction-displacement laws are embed-
ded in the continuum macromechanical formulation by
a variational multiscale method in [Garikipati (2002)].
The application of homogenization methods suffer from
some shortcomings with respect to accuracy in specific
problems with respect to limitations in the assumptions
of macroscopic uniformity and RVE periodicity. The uni-
formity assumption is not appropriate in critical regions
of high gradients like free edges [Pagano and Rybicki
(1974); Rybicki and Pagano (1976); Raghavan, Moor-
thy, Ghosh and Pagano (2001)], interfaces, material dis-
continuities and most importantly in regions of evolving
damage. Periodicity of simple unit cells is also unreal-
istic for non-uniform microstructures, particularly in the
presence of clustering. Even with uniform distribution
of microstructures, evolving localized stresses or strains
can violate the periodic assumptions. Problems like this
have been tackled effectively by global-local techniques
introduced by Fish et. al. [Fish and Wagiman (1993)],
Ghosh et. al. [Ghosh, Lee and Raghavan (2001); Ragha-
van, Moorthy, Ghosh and Pagano (2001)] and Oden et.
al. [Oden and Zohdi (1997)]. Sub-structuring in these
multiple-scale analysis methods differentiate between re-
gions requiring different resolutions, and enable global
analysis in some parts of the domain and zoom in for
complete microscopic modeling at region of high gradi-
ents. Adaptivity is a desirable ingredient of these mul-
tiple scale modeling methods, for automatically select-
ing appropriate regions to minimize discretization and
modeling errors. Without adaptivity, hierarchical mod-
eling may not be optimally efficient. Adaptive multiple-
level methods have been proposed by Oden et. al. [Oden
and Zohdi (1997); Oden, Vemaganti and Moes (1999)],
Ghosh et. al. [Ghosh, Lee and Raghavan (2001); Ragha-
van, Moorthy, Ghosh and Pagano (2001)] to address dis-
cretization and modeling error for multi-scale analysis of
composites.

A second shortcoming of composite analysis using the
asymptotic homogenization methods is related to effi-
ciency in the concurrent execution of finite element anal-
yses at the macroscopic and microscopic scales. Enor-
mous computational efforts can result from having to
solve boundary value problems of the microstructural
RVE in each macroscopic element of a finite element

model, in addition to the macroscopic solution. To econ-
omize computations, many studies have assumed sim-
ple unit cells models of the RVE, consists of a rectan-
gular domain with one or two fibers. These simplified
RVE’s often imply uniform or hexagonal closed-pack
distributions in the microstructure bearing little resem-
blance with the actual stereographic features of the actual
microstructure. Multiple scale models incorporating the
Voronoi cell microstructural models have proved to pos-
sess significant edge in this regard. The microstructural
Voronoi Cell Finite Element Model (VCFEM) has been
developed by Ghosh et. al. [Moorthy and Ghosh (1996,
1998, 2000); Ghosh, Ling, Majumdar and Kim (2000)]
to overcome limitations of unit cell models and effec-
tively analyze large microstructural regions with arbi-
trary dispersions, shapes and sizes of heterogeneities. By
combining assumed stress hybrid finite element formu-
lations with essential characteristics of micromechanics,
a high level of computational efficiency with good accu-
racy and resolution has been achieved with this method.
In this issue a 3D model for stress and damage analysis
in multi-inclusiondiscontinuouslyreinforced composites
has been proposed by B¨ohm et. al. [Böhm, Han and
Eckschlager (2003)] and a model for woven fabric com-
posites has been proposed by Kwon and Roach [Kwon
and Roach (2003)].

While VCFEM offers a solution to efficient analysis of
complex microstructures, identifying statistically equiv-
alent representative volume elements or SERVE for
non-uniform microstructures is a challenge. Under-
representation of SERVE’s can lead to considerable er-
rors in the values of effective properties and should be
avoided. Various authors have used statistical analyses to
determine the size scale of RVE and the number of fibers
contained in it [Pyrz (1994a,b), Bulsara, Talreja and Qu
(1999)]. Pyrz et. al. [Pyrz (1994a,b)] has used statisti-
cal correlation functions to obtain characteristic informa-
tion about the microstructure. For example, geometric
descriptors like the second order intensity function and
pair distribution functions have been used to distinguish
between different patterns or distributions . To account
for the interaction between fibers, they have used the
marked correlation function as an informative descriptor
for characterizing the size of the microstructural SERVE.
The marked correlation functions combines both the ge-
ometric descriptors as well as distributions of response
variables like stresses and strains in the microstructure.
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In this paper, a systematic multi-scale analysis method is
established for fiber reinforced composite structures con-
sisting of non-uniformly dispersed microstructures. The
multi-level computational model introduced in [Ghosh,
Lee and Raghavan (2001); Raghavan, Moorthy, Ghosh
and Pagano (2001); Lee, Moorthy and Ghosh (1999)]
for simple microstructures is extended in this work. The
model encompasses three levels in the computational do-
main. The level-0 and level-1 subdomains use effec-
tive properties obtained by homogenization of the statis-
tically equivalent RVE’s, obtained using marked correla-
tion functions in the microstructure. Unique methods of
applying periodic boundary conditions on non-uniform
RVE’s are developed. Level-2 sub-domains emerge with
loss of periodicity or uniformity in macroscopic regions,
where the model switches to complete microscopic cal-
culations using precise microstructures. Details of the
multiple scale computational model is provided in Sec-
tion 4. Numerical examples demonstrating the effective-
ness of the model are provided in Section 7.

2 The Asymptotic Expansion Homogenization
Method

Boundary value problems in a heterogeneous domainΩε

are assumed to satisfy the equations of linear elasticity,
given as

Equilibrium : σε
i j, j = − fi
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fields respectively. The scale parameterε = ly
lx

(ly, lx cor-
respond to length scales in the microscopic and macro-
scopic domains respectively) is typically an infinitesi-
mally small number. Since computational analysis of this
problem will be prohibitively expensive due to the pres-
ence of large number of heterogeneities, most analysts
solve an equivalent homogenized version of the problem
using macroscopic effective properties obtained by av-
eraging microscopic variables. A powerful method that
has been developed in conjunction with computational
analysis of heterogeneous materials is the asymptotic ex-
pansion homogenization method [Benssousan, Lions and
Papanicoulau (1978); Sanchez-Palencia (1980)]. In this
method variables (stresses, strains and displacements)

are assumed to exhibit dependence on the macroscopic
as well as microscopic length scales. Furthermore, the
microscopic dependence is assumed to beY−periodic,
whereY is the period of RVE. In this method, the dis-
placement field in a heterogeneous domain is expanded
asymptotically about its values at a macroscopic pointx,
in terms of the microscopic coordinatesy as

uε
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i (x,y)+· · · , y =
x
ε

(2)

The spatial derivative of any multi-scale function is given
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Using Eq. 2 and Eq. 3 in kinematics and constitutive re-
lations of Eq. 1 yields the stress tensorσε

i j as
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Using Eq. 3 and Eq. 4 in the equilibrium relation of Eq. 1,
equating various powers ofε and averaging over the pe-
riodic RVE, it can be shown that the following relations
hold.
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whereσ̂kl
i j , χkl

p are the microscopic stresses and character-
istic deformation modes. Furthermore the volume aver-
age of microscopic stresses yields the homogenized stiff-
ness tensorEH

i jkl for use in macroscopic calculations.
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The macroscopic stress-strain relation then takes the
form
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(7)

where the homogenized variables areΣ(x) =<

σε(x,y) >Y and e(x) =< eε(x,y) >Y . The compo-
nents of the homogenized stiffness matrixE H

i jkl are
calculated by detailed solution of separate boundary
value problems of the entire RVE. The loading in
each of these problems is in the form of imposed unit
macroscopic strains. Additionally, the periodicity on
RVE boundaries implies that points on the boundary
are constrained to displace periodically. For nodes
on the boundary which are separated by the periods
Y1,Y2,Y3 along one or more coordinate directions, the
displacement constraints can be expressed as

ui(x1,x2,x3) = ui(x1±k1Y1,x2±k2Y2,x3±k3Y3),
i = 1,2,3

(8)

wherek1,k2,k3 may assume the values 0 or 1, depending
on the node locations.

3 Estimating Statistically Equivalent RVE’s for
Non-uniform Microstructures

Macroscopic analysis of a composite structure, requires
that an appropriate RVE be identified for each macro-
scopic point. RVE’s can be readily identified for a regular
arrangement of fibers like rectangular or hexagonal dis-
tributions. However, microstructures from real compos-
ite materials hardly possess regular distribution as shown
in Fig. 1(b). In Fig. 1 a composite plate with a circular
hole and the corresponding microstructure from a opti-
cal micrograph are shown. The fibers are assumed to be
aligned perpendicular to the plane of paper. Since this
microstructure is random, a RVE can be obtained only in
a statistical sense and attention is focused on identifying
a Statistically Equivalent RVE (SERVE), which would
exhibit a macroscopic behavior that is equivalent to the
average behavior of the corresponding microstructure.

The microstructure shown in Fig. 1(b) corresponds to
macroscopic point A only. Since the construction of
SERVE’s for the entire plate would require a large num-
ber of micrographs from various representative points in
the plate, an assumption is made that, this is a representa-
tive microstructure for the entire plate. This may be jus-
tified from two considerations from statistical continuum
theories that have been described in [Beran (1968)], viz.
(a) an ensemble assumption, in which different exper-
iments with different microstructural arrangements ex-
hibit similar macroscopic behavior, and (b) an ergodic
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Figure 1 : (a) Composite plate with a hole (b) O
Figure 1 : (a) Composite plate with a hole (b) Optical
micrograph of the microstructure at point A

hypothesis, which demands that all states available to en-
semble of systems be available to each system of the en-
semble. The justification of the assumptions have been
provided in [Zeman and Sejnoha (2001)]. Consequently
a single SERVE is assumed to represent every macro-
scopic point in the plate. The representative size of the
SERVE is identified by the use of statistical functions,
e.g. correlation functions. Pyrz [Pyrz (1994b)] has in-
troduced “marked correlation functions” for characteriz-
ing the length scales defined as the region of influence in
a heterogeneous neighborhood on pre-disposed response
fields like stresses and strains. The marked correlation
function for a heterogeneous domain of areaA contain-
ing N fibers may be expressed as

M(r) =
d H(r)

dr

g(r)
(9)

where

H(r) =
1

m2

A
N2

N

∑
i

ki

∑
k=1

mimk(r) (10)

In the above equationmi is a mark associated withith
fiber, ki is the number of fibers which have their centers
within a circle of radiusr around theith fiber, mk are
the marks of those fibers andm is the mean of all the
marks. Marks in the marked correlation function can be
any field variable for example, the maximum principal
stress, Von Mises stress etc. associated with each fiber.
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H(r) is called the mark intensity function andg(r) is the
pair distribution function defined as

g(r) =
1

2πr
dK(r)

dr
(11)

whereK(r) is a second order intensity function which is
explained in [Ghosh, Nowak and Lee (1997a,b)]. While
K(r) can distinguish between different patterns, the pair
distribution functiong(r) characterizes the intensity of
inter fiber distances. From the definition it can be seen
that the marked correlation function associates field vari-
ables with morphology of the microstructure. The radius
of influenceRin f may be inferred from a plot ofM(r) vs
r, in whichM(r) stabilizes asr approachesR in f .

Once the radius of influenceRin f has been determined
from M(r), SERVE may be constructed by using square
windows of sizeRin f ×Rin f at various points of the mi-
crograph. The use of square windows to carve out the
RVE for a random microstructure results in the intersec-
tion of many fibers with the edges yielding cut fibers near
the boundary, as shown in Fig. 2(a). While some authors
have used cut fibers in their RVE construction [Zeman
and Sejnoha (2001)], the application of periodic bound-
ary condition is improper with these RVE’s. Increasing
the window size to include the totality of cut fibers, as
done in [Bulsara, Talreja and Qu (1999)] (Fig. 2(b)), re-
sults in a decreased volume fraction.

As a remedy, to the above discrepancies, a method of
constructing the SERVE boundary by repeating the group
of fibers periodically is adopted in this work as shown in
Fig. 2(c).

The local microstructure is first constructed by repeat-
ing the randomly distributed fibers obtained from sta-
tistical analysis in both they 1− andy2− directions for
several period lengths. Periodic repetitive fibers are
placed at(y1,y2), (y1 ± k1Y1,y2), (y1,y2 ± k2Y2) and
(y1± k1Y1,y2± k2Y2), wherek1,k2 are integers. The pe-
riod lengthsY1 andY2 are selected such that the volume
fraction of the RVE matches with that of the original mi-
crostructure. The multi-fiber domain is then tessellated
into a network of Voronoi cells [Ghosh and Mukhopad-
hyay (1991)] as shown in Fig. 2(c). The boundary of the
RVE, shown in bold lines, is generated as the aggregate
of the outside edges of Voronoi cells associated with the
primary fibers (dark colored). The consequent SERVE
will have non-straight line edges corresponding to non-
uniform fiber arrangements. However, nodes on the RVE
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igure 2 : (a) Particles cut during the RVE
Figure 2 : (a) Particles cut during the RVE generation
(b) Boundary of the RVE adjusted to accommodate the
complete particle (c) Construction of periodic RVE with
non-straight edges

boundary, created by this procedure are periodic, i.e. for
every boundary node a periodic pair can be identified on
the boundary at a distance of one period along one or both
of the coordinate directions. In Fig. 2(c), the node pairs
are identified as AA, BB etc. The periodicity constraint
conditions on nodal displacements can then be easily im-
posed.

3.1 Convergence in the Size of SERVE

A numerical example is used to demonstrate the effect of
size of the constructed SERVE on the macroscopic prop-
erties as well as the microscopic stresses. The pair distri-
bution functiong(r) for the entire microstructure (Fig. 1)
is evaluated and depicted in Fig. 3, wherero is the fiber
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radius. Instead of using a correction factor for evaluating
K(r), periodicity of the micrograph is used. A compar-
ison with a pure random Poisson distribution (g(r) = 1)
shows that the microstructure considered exhibits signif-
icant deviation from randomness through clustering etc.
High levels of clustering are seen for lower levels ofr
(< 8ro), and the clustering intensity decreases with in-
creasing radial distance.
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r/rο
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Figure 3 : g(r) distribution for the micrograph

Maximum principal stress in the fiber and maximum Von
Mises stress in matrix in each Voronoi cell are consid-
ered as marks since they are good indicators of failure
initiation in the microstructure. These variables are ob-
tained by detailed computational analysis of the entire
micrograph under tensile loading by the Voronoi Cell fi-
nite element method (VCFEM), described in Section 4.3,
[Moorthy and Ghosh (1996)]. The VCFEM mesh is
generated by tessellating the entire micrograph into a
network of Voronoi cells [Ghosh and Mukhopadhyay
(1991)]. Plots ofM(r) for different marks are shown in
Fig. 4(a). It can be seen thatM(r) is high at distances less
than 8ro but stabilizes to a unit value at distances greater
than approximately 8ro. This indicates that the influence
on the stress persists for fibers within an approximate ra-
dius of 8ro. It can also be seen thatM(r) for both Von
Mises stress and principal stress have a similar behavior
and stabilize approximately in the same radial range. A
very similar behavior ofM(r) is also observed when the
micrograph is loaded under biaxial tension as shown in
Fig. 4(b). This suggests that a length of around 8r o can
characterize the size scale of the statistically equivalent
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Figure 4 : Marked correlation functions M(r) for (a) uni-
axial loading and (b) biaxial loading

representative volume element.

Convergence in effective macroscopic moduli and micro-
scopic stress distributions with respect to the RVE size is
now studied. 5 different RVE’s, shown in Fig. 5, are con-
sidered with periodic boundary conditions. They consist
of 1, 8, 18, 35 and 55 fibers respectively with correspond-
ing RVE sizes ofro, 3ro, 6ro, 9ro and 12ro. The RVE’s
are chosen from any arbitrary region (Region A) in the
micrograph. The matrix material is assumed to be epoxy
with propertiesEm = 3.8 GPA andνm = 0.34, while the
fibers are of graphite with propertiesE f = 380.0 GPA
andν f = 0.2. The effective properties are calculated by
the homogenization method using Eq. 6. A Frobenius
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Figure 5 : RVE’s with 1, 8, 18, 35 and 55 fibers

norm of the effective elastic modulus is given as

‖E‖ =

√√√√ N

∑
i=1

N

∑
j=1

E2
i j (12)

whereN = 3 for plane stress and plane strain. Fig. 6
shows the convergence of‖E‖ with the increasing RVE
sizes. The norm converges with increasing RVE sizes.
The difference in the norm between the single fiber and
55 fibers is around 2%, while the difference between 18
fibers (corresponding toRin f = 10µm in Fig. 4) and 55
fibers is found to be less than 0.5%. Similar responses are
observed for other regions (Region B) in the microstruc-
ture as shown with the dotted line in Fig. 6. Conse-
quently, a size scale ofr = 6ro is deemed adequate for
the SERVE to be used in all subsequent analyses.

In the study of the effect of RVE size on microscopic
stresses, unit macroscopic strainsexx = 1, eyy = 0, exy =
0, ezz = 0 are imposed on the RVE’s with periodic
boundary conditions. Fig. 7 shows the macroscopic
stress (Σxx), the maximum Von Mises stress in the matrix
and the maximum principal stress in the fiber, as func-
tions of increasing RVE size. While the macroscopic
stress is almost insensitive to the RVE size, the maxi-
mum stresses in the microstructure change considerably.
The difference in maximum Von Mises stress in the ma-
trix for the single fiber RVE and 55 fiber RVE is almost
60% whereas, the corresponding difference for the 18
fiber RVE and the 55 fiber RVE is less than 4%. This
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Figure 6 : Convergence of‖E‖ with increasing RVE
sizes at different regions

study reasserts the effectiveness of the marked correla-
tion function in determining the SERVE size.

0 10 20 30 40 50 60
Number of fibers in RVE

0

20

40

60

80

S
tr

es
s 

(G
P

a)

Maximum microscopic principal stress in inclusion
Maximum microscopic Von Mises stress in matrix
MacroscopicΣ

xx
 stress

Figure 7 : Convergence of macroscopic and microscopic
stress for unit strain loading for different RVE sizes

4 The Adaptive Multi-Scale Computational Model

Even if a RVE with a large number of heterogeneities
is used, the microscopic stresses or strains at critical lo-
cations may be grossly misrepresented in purely macro-
scopic studies with effective moduli established through
microscopic homogenization, due to the assumptions of
periodicity and macroscopic uniformity associated with
the definition of a RVE. It has been noticed by many
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authors [Pyrz (1994a); Daniel and Anastassopoulos
(1995)] that local morphology of fibers have strong ef-
fect on failure initiation and propagation. The multi-scale
computational model has been developed in [Ghosh, Lee
and Raghavan (2001); Raghavan, Moorthy, Ghosh and
Pagano (2001)] to overcome the limitations of pure ho-
mogenization based analyses of heterogeneous materials.
This model is adaptive in nature and automatically distin-
guishes between critical and non-critical regions to intro-
duce levels of hierarchy in the computational model. In
this paper, the model is extended to microstructures with
non-uniform distribution of fibers. The main computa-
tional subdomains in the hierarchical model are shown in
Fig. 8 and discussed next.

4.1 Computational Subdomain Level-0

Level-0 subdomains encompass regions of macroscopic
analysis using effective properties obtained by homoge-
nization of SERVE. This level is valid in regions where
macroscopic gradients in variables like stresses or strains
are relatively small. For each element in the level-0 sub-
domain, a SERVE is identified and the asymptotic ho-
mogenization method is then used for obtaining effective
material properties. Conventional displacement based
elements are used for the level-0 element formulation.
Each element stiffness matrix and load vector is evalu-
ated and stored for global assembly for this subdomain.

4.2 Computational Subdomain Level-1

Level-1 subdomains are intended as ‘transition’ regions,
where microscopic information in the SERVE is used to
decide whether microscopic computations are necessary
for these regions. They are seeded in regions of locally
increasing gradients of macroscopic variables in the pure
level-0 simulations. These gradients may be caused by
microscopic non-homogeneity in the form of large lo-
calized stresses and strains, or when the microstructure
faces possible damage initiation or localization. Com-
putations in this region are still based on assumptions
of macroscopic uniformity and periodicity of the RVE.
Concurrent with macroscopic simulations, computations
are executed in the microstructure to monitor variables
in the RVE. Computational requirements for microstruc-
tural analysis of elements in this level are considerably
higher than that for level-0. It is therefore important to
design robust criteria to avoid redundant element tran-
sition from level-0 to level-1. Major steps involved in

level-1 element computations are

• Setting up the macroscopic stiffness by solving RVE
level boundary value problems with unit strains and
periodic boundary conditions

• Post-processing to compute microscopic stresses in
the RVE at each integration point of the macro-
scopic element

Figure 8 : Multi-level mesh showing different levels for
the multi-scale model

4.2.1 Adaptive Level-0 and Level-1 Mesh Enrichment

The discretization error in level-0 and level-1 are reduced
by performing adaptive refinement to increase resolu-
tion in required regions of the model. Different types of
adaptations are possible for these models. Three pop-
ular refinements viz., theh-version, p-version and the
hp-version have been proposed in literature. The sim-
ple and most common is theh-version, where refinement
is accomplished by subdividing the element while keep-
ing the same polynomial order of the element. In the
p-version, the size of an element is kept constant, but
the order of interpolating polynomial is increased. In the
hp-version both of the above refinements are included.
When high accuracy is required, the use ofp-version or
the hp-version is necessary. Mathematical and numeri-
cal work by Babuska and co-workers [Babuska and Sz-
abo (1991)], have shown that with thehp-refinement, it
is possible to achieve an exponential rate of convergence
to the exact solution for many problems, including those
with singularities. The rate of convergence in thehp−
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adaptive method has been estimated [Guo and Babuska
(1986a,b)] as

‖u−uhp
f e‖ ≤C hµ p−(m−1) ‖u‖ (13)

whereµ = min(p,m−1), p = polynomial order,m = reg-
ularity of the solution andC = constant independent ofh
and p. The estimate shows that the rate of convergence
will be slow if m− 1 is less thanp. On the other hand
if m is large, which is the case when the solution is very
smooth, the rate of convergence will be limited only by
the order of polynomialp. A method for estimating the
value of m is given in [Ainsworth and Senior (1997)].
For problems with singularity, the value ofm will be low
near singular regions. Thehp adaptivity procedure auto-
matically performsh refinement near a singularity andp
refinement outside of the singular regions.

4.3 Computational Subdomain Level-2

Level-2 regions are characterized as those with signifi-
cant microstructural non-uniformities in the form of high
local stresses or strains that would occur e.g. near a crack
tip or free edge. High gradients in macroscopic variables
and loss of RVE periodicity are expected in those re-
gions. Scale effects are important in these regions, result-
ing in mesh-dependence of pure macroscopic computa-
tions. Adaptivity is used to switch from level-1 to level-2
elements for performing extended microscopic analysis.
The microscopic model in level-2 elements is required
to encompass considerable portions of the microstructure
with large number of heterogeneities as shown in Fig. 9.

Level-2 elements are constructed by filling macro level-1
elements with the exact microstructure at that location.
The regionΩk

l2 constituting thek− th level-2 element, is
obtained as the intersection of the entire microstructural
regionΩε with the boundary of thek−th level-1 element
Ωk

l1, i.e.

Ωk
l2 = Ωε ∩Ωk

l1 (14)

Steps in creating a level-2 element are itemized below

• Use adaptation criteria described in Section 6.2, to
determine if a level-1 element needs to switch to
level-2 element.

• Identify a regionΩk̂ ∈Ωε that is located in the same
region inΩk

l2 and that extends beyondΩk
l2 by ap-

proximately two fiber lengths.

(a)

(b)

Ωε

Ω k̂

Ω l1
k

Figure 9 : (a) Level-1 element boundary superposed over
the actual microstructure (b) Level-2 element formed by
carving out the microstructure

• Tessellate the regionΩ k̂ to generate a mesh of
Voronoi cell elements as shown in Fig. 9(a).

• Carve out the regionΩk
l2 by superposing the bound-

ary of Ωk
l1 on Ωk̂. This procedure will result in dis-

secting some of the fibers on the boundary ofΩk
l2.

When this happens, additional nodes are generated
on the Voronoi cell boundary at locations where the
fiber surface and Voronoi cell edges intersects the
boundary ofΩk

l2. The dissected pieces of a fiber be-
long to two contiguous level-2 elements are joined
together when the two contiguous elements share a
common edge.

The high resolution model for level-2 elements with
many heterogeneities entails prohibitively large compu-
tations with conventional finite element models. Con-
sequently, the microstructure based Voronoi Cell Finite
Element Model (VCFEM), which has been developed by
the authors [Moorthy and Ghosh (1996, 1998, 2000)] in
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modeling non-uniform heterogeneous materials is used
for analyzing the level-2 elements. Extensive microstruc-
tural regions, obtained from micrographs, are efficiently
modeled by this approach. In VCFEM, the computa-
tional mesh consists of multi-sided Voronoi polygons
that naturally evolve by tessellation of the microstruc-
ture [Ghosh and Mukhopadhyay (1991)]. Each ele-
ment in VCFEM consists of a heterogeneity (inclusion or
void) with its immediate surrounding matrix. Accuracy
of analysis is maintained for these relatively large mul-
tiphase elements by incorporating observed behavior of
stress fields from micromechanics in an assumed stress
hybrid finite element formulation [Moorthy and Ghosh
(1996, 1998)]. This method has shown considerable suc-
cess in modeling elastic-plastic problems [Moorthy and
Ghosh (1996)] and problems with damage by particle
cracking and debonding [Moorthy and Ghosh (1998);
Ghosh, Ling, Majumdar and Kim (2000)]. VCFEM has
been successful in significantly reducing computational
degrees of freedom and current VCFEM computing ef-
fort is estimated to be∼ 60-70 times lower than most
commercial FEM packages for modeling complex mi-
crostructures.

4.3.1 Transition Elements between Level-0/1 and
Level-2 Elements

The interface between the macroscopic displacement
based level-0 or level-1 elements, and level-2 elements
requires a layer of transition elements for creating a
smooth transition of variables as shown in Fig. 8. These
elements (tr) are essentially level-2 elements with a dis-
placement constraint imposed at the interface with level-
0/1 elements. In [Ghosh, Lee and Raghavan (2001)], a
direct constraint has been imposed on Voronoi cell FEM
nodes in the transition elements to conform with the dis-
placement interpolation of the adjacent level-0/level-1 el-
ement boundaries.

Such a direct constraining process may however lead to
local singularities in the transition element due to in-
duced displacement discontinuities at the interface. To
avert these spurious singularities, a special interfacial
layer is introduced between the transition elements and
the level-0/level-1 elements. As shown in Fig. 10, the left
side corresponds to level-0/level-1 elements with lower
order displacement polynomials on the boundary. The
right side corresponds to the boundary of transition ele-
ments which consists of multiple edges, of Voronoi cell

Y Transition element nodes on transition layer

Y

Y

Y

X
X

X
X

X

Y

VCFEM internal nodes

X

X

X

X

X

Level−0/1 Element

Level−2 element

Transition element

Interface layer

Level−0/1 nodes outside transition layer

Level−0/1 nodes on transition layer

VCFEM nodes on level−2/tr boundary

Figure 10 : Interface constraint at the level-0/1 element
and transition element

elements depending on the number of fibers. The inter-
mediate boundary segment in generally chosen to have
higher order interpolation than the adjacent level-0/level-
1 element boundaries. As suggested in [Aminpour, Ran-
som and McCleary (1995)], Lagrange multipliers are
used to satisfy the interfacial displacement continuity
constraint in a weak sense. Comprehensively speaking,
the total potential energy of the multi-level element mesh
may be expressed as

Π = ΠΩl0 +ΠΩl1 +ΠΩl2 +ΠΩtr

+
∫

Γint

λl0/l1
i (vi −ul0/l1

i ) dΓ

+
∫

Γint

λtr
i (vi −utr

i ) dΓ

(15)

where ΠΩl0, ΠΩl1, ΠΩl2 and ΠΩtr are the total poten-
tial energies for elements in level-0, level-1, level-2 sub-
domains and transition regions respectively.Γ int corre-
sponds to the interfacial layer.λλλl0/l1 andλλλtr are Lagrange
multipliers onΓ int , corresponding to boundaries ofΩ l0/l1

and Ωtr respectively. The interfacial displacements on
the boundaries ofΩl0/l1 andΩtr elements at the interface
are designated asul0/l1 andutr. The Euler’s equations,
obtained by the variation of Eq. 15 with respectv, λλλl0/l1

andλλλtr, are

λl0/l1
i = (σi jn j)l0/l1 = −λtr

i = −(σi jn j)tr and

ul0/l1
i = utr

i = vi

(16)
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whereni is the unit outward normal vector, andλ l0/l1
i and

λtr
i correspond to the interface tractions on the boundaries

of Ωl0/l1 andΩtr respectively.

5 Coupling of all Levels

The global stiffness matrix and load vectors are derived
for the complete multi-scale model consisting of level-0,
level-1, level-2 and transition elements. The computa-
tional domain (Ω) can be described as

Ω = {Ωl0∪Ωl1∪Ωl2∪Ωtr} (17)

• Ωl0 =
Nl0∪
k=1

El0 - Domain comprised ofNl0 level-0 el-

ements with boundary∂Ω l0

• Ωl1 =
Nl1∪
k=1

El1 - Domain comprised ofNl1 level-1 el-

ements with boundary∂Ω l1

• Ωl2 =
Nl2∪
k=1

El2 - Domain comprised ofNl2 level-2 el-

ements with boundary∂Ω l2

• Ωtr =
Ntr∪
k=1

Etr - Domain comprised ofNtr transition

elements with boundary∂Ωtr

The boundary of the complete domainΓ can be written
as

Γ = {Γl0∪Γl1∪Γl2∪Γtr} (18)

where, Γl0, Γl1, Γl2, Γtr are defined asΓl0 = ∂Ωl0 ∩
Γ, Γl1 = ∂Ωl1 ∩ Γ, Γl2 = ∂Ωl2 ∩ Γ, Γtr = ∂Ωtr ∩ Γ re-
spectively. The equation for the principle of virtual work

for the entire domain can be expressed as

∫
Ωl0

Σi j
∂δulo

i

∂x j
dΩ−

∫
Ωl0

fiδul0
i dΩ

+
∫

Ωl1

Σi j
∂δul1

i

∂x j
dΩ−

∫
Ωl1

fiδul1
i dΩ

+
∫

Ωl2

σi j
∂δul2

i

∂x j
dΩ−

∫
Ωl2

fiδul2
i dΩ

+
∫

Ωtr

σi j
∂δutr

i

∂x j
dΩ−

∫
Ωtr

fiδutr
i dΩ

−
∫

Γl0

tiδul0
i dΓ−

∫
Γl1

tiδul1
i dΓ

−
∫

Γl2

tiδul2
i dΓ−

∫
Γtr

tiδutr
i dΓ

+δ
∫

Γint

λl0/l1
i (vi −ul0/l1

i )dΓ +δ
∫

Γint

λtr
i (vi −utr

i )dΓ = 0

(19)

An implicit assumption is made in this equation that the
traction continuitybetween level-0 and level-1, and level-
2 and transition elements, are satisfied in a weak sense.

The terms in the box of Eq. 19 forΩ l2 andΩtr are ana-
lyzed using the Voronoi cell finite element method and
should be integrated with the other terms obtained by
conventional displacement based finite element analysis.

The VCFEM employs the assumed stress hybrid for-
mulation with independent assumptions on equilibrated
stress fields (σσσ) in the matrix (Ωm) and fiber phases (Ωc)
of each element, and compatible displacement fieldsue

on the element boundary∂Ωe and uc on the matrix-
inclusion interface∂Ωc as shown in Fig. 11. The element
complimentary energy functional is given by

ΠC
e (σ,ue,uc) =

∫
Ωe

σ : S : σ dΩ−
∫

∂Ωe

σ ·ne ·ue d∂Ω

+
∫

Γtm

t ·uedΓ +
∫

∂Ωc

(σm −σc) ·nc ·uc d∂Ω

(20)

whereS is the elastic compliance tensor,ne andnc are the
outward normals on∂Ωe and∂Ωc respectively andt is the
prescribed traction on the boundaryΓ tm. The total energy
functional for a level-2 element containingNvc Voronoi
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int

e

Γtm

Ωe

Ωc

Ωext

Ω

l2Ω

mΩ
cΩ

Figure 11 : A Level-2 element with Voronoi cell finite
elements

cell elements can be written as

ΠC =
Nvc

∑
e=1

ΠC
e =

Nvc

∑
e=1

∫
Ωe

σ : S : σdΩ

−
Nvc

∑
e=1

∫
∂Ωe

σ ·ne ·ue d∂Ω+
Nvc

∑
e=1

∫
Γtm

t ·uedΓ

+
Nvc

∑
e=1

∫
∂Ωc

(σm −σc) ·nc ·uc d∂Ω

(21)

The variation of the above equation with respect to the
element boundary displacementsue results in

δΠC =−
Nvc

∑
e=1

∫
∂Ωe

σ ·ne ·δue d∂Ω+
Nvc

∑
e=1

∫
Γtm

t ·δue dΓ (22)

The boundaries of all Voronoi cells can be split as

Nvc

∑
e=1

∂Ωe = ∂Ωint ∪∂Ωext (23)

where∂Ωext corresponds to external Voronoi cell element
boundaries that coincide with level-2/transition element
boundary and∂Ωint corresponds to all the other internal
boundaries of Voronoi cell elements. The external el-
ement boundaries∂Ωext are identified by thick lines in

Fig. 11. Eq. 22 can be re-written as

δΠC = −
Nvc

∑
e=1

∫
∂Ωint

σ ·ne ·δue d∂Ω−
Nvc

∑
e=1

∫
∂Ωext

σ ·ne ·δue d∂Ω+
Nvc

∑
e=1

∫
Γtm

t ·δue dΓ
(24)

In the virtual work equation Eq. 19, the boxed terms cor-
responding to energy in level-2 and transition elements
can be re-written using divergence theorem, in the ab-
sence of body forces as
∫

Ωe
l2/tr

σ · ∇ ue dΩ =
∫

∂Ωe
l2/tr

σne ·δue dΓ−
∫

Ωe
l2/tr

∇σ ·ue dΩ

(25)

The first term in Eq. 25 is obtained as the contribution to
the stiffness from all Voronoi cells and can be calculated
using Eq. 24 as

∫
∂Ωe

l2/tr

σ ·ne ·δue dΓ = −
Nvc

∑
e=1

∫
∂Ωvc

e

σ ·ne ·δue d∂Ω

+
∫

Γtm

t ·δue dΓ +
∫

∂Ωint
σ ·ne ·δue d∂Ω

(26)

The last term in Eq. 25 drops out since the analysis is per-
formed using VCFEM, which uses an equilibrated stress
field. The contribution to the stiffness matrix from level-
2 elements may therefore be calculated by assembling
the stiffness contributions from all VCFEM elements us-
ing Eq. 22 and condensing out the internal degrees of
freedom on∂Ωint . To achieve this, the displacement field
along the edges of VCFEM elements are interpolated by

{ue} = [Lvc]{Uvc} (27)

The degrees of freedomUvc can be separated intoU ext
l2

andUint
l2 depending on whether they belong to∂Ω ext or

∂Ωint respectively. The stiffness matrix and the load vec-
tor of the ensemble of all Voronoi cell elements belong-
ing to a level-2 element can be partitioned as[

Kext,ext
l2 Kext,int

l2
K int,ext

l2 K int,int
l2

]{
Uext

l2
U int

l2

}
=
{

Fext
l2

F int
l2

}
(28)

Static condensation of the internal degrees of freedom
leads to[[

Kext,ext
l2

]−[Kext,int
l2

][
K int,int

l2

]−1[
K int,ext

l2

]]{
Uext

l2

}

=
{

Fext
l2

}−[Kext,int
l2

][
Kmint,int

l2

]−1{
F int

l2

} (29)
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The above equation is then used in global assembly.

The displacementsul0
i and ul1

i in level-0 and level-1
elements are interpolated by the standard or hierarchi-
cal shape functions based on Legendre polynomials as
[Ainsworth and Senior (1997)]

{u}l0/l1 = [Nl0/l1]{Ul0/l1} = [NI
l0/l1NO

l0/l1]{
UI

l0/l1

UO
l0/l1

}

(30)

whereUI
l0/l1 corresponds to the nodal degrees of freedom

at the interface with transition elements andU O
l0/l1 are

all others. A similar separation can also done for tran-
sition elements into displacements on this interface,U I

tr
and otherwise,U O

l2/tr.

The displacements and the Lagrange multipliers on the
intermediate boundary segment are interpolated from
nodal values using suitably assumed shape functions as

{v} = [Lint ]{Uint} , {λlo/l1} = [Lλl0/l1 ]{Λlo/l1}
{λtr} = [Lλtr ]{Λtr}

(31)

Substituting interpolations from Eq. 29,Eq. 30 and Eq. 31
in Eq. 19 results in a coupled set of matrix equations for
the multi-level domain. The global assembly leads to the
following coupled set of equations




KI,I
l0/l1 KI,O

l0/l1 0 0 0 Pl0/l1 0

KO,I
l0/l1 KO,O

l0/l1 0 0 0 0 0

0 0 K I,I
tr KI,O

l2/tr 0 0 Ptr

0 0 KO,I
l2/tr KO,O

l2/tr 0 0 0

0 0 0 0 0 Ql0/l1 Qtr

PT
l0/l1 0 0 0 QT

l0/l1 0 0
0 0 PT

tr 0 QT
tr 0 0







U I
l0/l1

UO
l0/l1

U I
tr

UO
l2/tr

Uint

Λl0/l1

Λtr




=




F I
l0/l1

FO
l0/l1

F I
tr

FO
l2/tr

0
0
0




(32)

The notation corresponding to the superscriptI repre-
sents quantities on the interface whereas those with the
superscriptO are on the regions other than interface. The

submatricesKl0/l1, Kl2 andKtr and the vectorsFl0/l1, Fl2

andFtr correspond to stiffness matrices and load vectors
from the respective subdomains given as

[Kl0/l1] =
∫

Ωl0/l1

[B]T [E][B]dΩ

{
Fl0/l1

}
=
∫

Ωl0/l1

[Nl0/l1]
T{ f}dΩ+

∫
Γl0/l1

[Nl0/l1]
T{t}dΓ

(33)

where[B] is the strain-displacement matrix. The stiffness
[Kl2/tr] and the load vectors

{
Fl2/tr

}
for level-2 and tran-

sition elements are obtained by solving VCFEM using
the procedure described in [Moorthy and Ghosh (1996)].
The coupling between the level-0/1 and transition ele-
ments is achieved through the[P] and[Q] matrices, which
are

[Pl0/l1] = −
∫

Γint

[Nl0/l1]
T [Lλl0/l1 ] dΓ

[Ptr] = −
∫

Γint

[Ltr ]T [Lλtr ] dΓ

[Ql0/l1] =
∫

Γint

[Lint ]T [Lλl0/l1 ] dΓ

[Qtr] =
∫

Γint

[Lint ]T [Lλtr ] dΓ

(34)

The system of equations is solved using an iterative
solver with Lanczos method.

6 Discretization and Modeling Error Indicators

The errors associated with the multi-level model are clas-
sified into two groups, viz., discretization errors and
modeling errors.

6.1 Discretization Error

Discretization error in level-0/1 elements is a result of
insufficient orders of interpolation in the finite element
model. Thehp− adaptive mesh refinement suggested in
[Ainsworth and Senior (1997)] is adopted in this paper to
reduce the discretization error. The steps involved in this
process are as follows

• Evaluate the energy norm of the local errorφk for
elementk, by solving the residual in the principal of
virtual work as∫

Ωk
l0/l1

Σi j(φφφk)ei j(v)dΩ =
∫

Ωk
l0/l1

fivi dΩ

−
∫

Ωk
l0/l1

Σi j(ul0/l1)ei j(v)dΩ+
∫

Γk
(gk)ivi dΓ

(35)
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where(gk)i is the traction discontinuity on the ele-
ment boundaryΓk.

• Identify elements forhp− adaptivity from the con-
dition φk ≥ C1(φk)max, where(φk)max is the maxi-
mum elemental local error. If an element is a can-
didate for adaptation, an exponentm is evaluated to
determine the type of adaptivity i.e ifp+2≤ m

– thenp refinement

– elseh refinement

is performed. The singularity indicatorm can be
obtained by solving

‖φ‖2
k = ‖φp+q‖2

k +C2
k (p+q)−2(m−1) (36)

for three different values ofq as outlined in
[Ainsworth and Senior (1997)].

6.2 Modeling Error

Transition from level-0 to level-1 :
Modeling errors for level-0 and level-1 elements evolve
at regions where macroscopic uniformity and micro-
scopic periodicity become invalid. Various conditions,
depending on the physics of the problem being are pro-
posed. Two examples of such criteria considered in this
paper are given below.

1. If a macroscopic stressΣi j is important, criteria
based on the gradients of this stress can be proposed.
Transition from level-0 to level-1 for an elementk is
performed if

Ek ≥ C2Eavg (37)

whereEavg = (∑NE
k=1 E2

i
NE )1/2 and E2

k =
∫

Γk [[Σi j ]]2dΓ∫
Γk dΓ .

NE is the total number of elements and[[ ]] is the
jump operator.

2. When traction gradient is critical [Raghavan, Moor-
thy, Ghosh and Pagano (2001)], level-0 to level-1
transition for elementk will be made if

Ek ≥ C3Eavg (38)

whereEavg = (∑NE
k=1 E2

i
NE )1/2 and

E2
k =

∫
Γk([[Tx ]]2+[[Ty]]2)dΓ∫

Γk dΓ andTx andTy are tractions

in x andy directions respectively.

Transition from level-1 to level-2 :
Criteria for transition from level-1 to level-2, is based on
observation of variables in the RVE and prediction of de-
parture from periodicity. In this work, large local stresses
in the matrix/fiber or interfaces are assumed to indicate
such departures. Two alternative criteria are used in this
paper.

1. Level-1 to level-2 transition takes place if the local

microscopic equivalent stressσeqv =
√

3
2σ′

i jσ′
i j ex-

ceeds the average. The equivalent stress is a good
indicator for damage, especially in plasticity dom-
inated problems. Level-1 to level-2 transition is
made if

(σm
eqv)max ≥ C4(σm

eqv)avg or

(σc
eqv)max ≥ C4(σc

eqv)avg
(39)

at more than 1% of all integration points in the RVE.
(σm

eqv)max and(σm
eqv)avg, and(σc

eqv)max and(σc
eqv)avg

represent the maximum and average equivalent
stresses in the matrix and in the fiber.

2. Transition from level-1 to level-2 takes place if

|T | ≥C5|Tavg| (40)

where T represents the local interfacial traction
(
√

T 2
n +T 2

t ) evaluated on the fiber/matrix inter-
face.Tavg is the average traction on the fiber/matrix

boundary and is given by∑
NI
i=1 T
NI , whereNI is the to-

tal number of integration points on the fiber/matrix
interface in the RVE. Since debonding is an impor-
tant failure mechanism in fiber reinforced compos-
ites, this criteria is expected to warrant significant
amount of debonding in the microstructure.

All constantsC1 to C5 are chosen from trial numerical
experiments.

7 Numerical Examples - Composite Plate with a
Hole

Numerical experiments are conducted to demonstrate the
effectiveness of the multi-scale model. Two examples,
one of a composite plate and another of a composite lam-
inate are considered.
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7.1 Composite Plate with a Hole

A fiber reinforced composite plate with a hole as shown
in Fig. 1 is analyzed. The dimensions of the compos-
ite plate areW = 22.86mm, L = 114.285mm andr =
6.858mm. The representative microstructure of the plate
at the point A is shown in Fig. 1 with dimensions 100
µm × 79.09 µm. All fibers are assumed to be posses
the same radius value of 1.75µm. Average fiber spacing
is around 3.4µm. The estimated total number of fibers
for this quarter plate is approximately 8 million. The
matrix material is epoxy with propertiesEm = 3.8 GPA
andνm = 0.34. The graphite fiber properties areE f =
380.0 GPA andν f = 0.20. The plate is subjected to a
load of unity along they direction on the top face. A
statistically equivalent RVE for this plate is evaluated as
described in Section 3 and is found to contain 18 fibers.

The effective modulus (in GPa) calculated by
homogenization for this SERVE is given by
E1111 = 10.51, E1122 = 4.49, E1133 = 4.23, E2222 =
11.19, E1212 = 2.85, E3333 = 127.35. Using this
modulus the macroscopic model is constructed with
300 level-0 elements. Generally no singularities are
expected in the solution of the problem. Consequently,
discretization error would result inp− adaptivity being
predominant. While ap− adaptation would suffice
for the problem, theh− refinement facilitates for sig-
nificantly smaller regions of localized modeling error
identification and hence realization of fewer elements
making level transitions. Theh− adaptations are
executed to a minimum macroscopic element size of
25 µm and no more. Level-0 to level-1 transition takes
place according to Eq. 37 as specified in Section 6.2
with the value ofC2 taken to be 1.5. Level-1 to level-2
transition takes place according to Eq. 39 as specified
in Section 6.2 with the value ofC4 taken to be 4.0. The
adapted multi-scale mesh, shown in Fig. 12, consists of
1091 level-0 elements, 2 level-1 elements, 3 transition
elements and 2 level-2 elements. The mesh in the
critical region is circled and shown in Fig. 12(b). The
microstructure for the level-2 and transition elements is
shown in Fig. 12(c). The macroscopic contour plot ofΣyy

stress and microscopic contour plot ofσyy stress for the
element close to the critical region A is shown in Fig. 13.
It can be seen that the maximum microscopic stresses are
at least one order higher than the macroscopic values.
The maximum microscopic stresses is near the point
where two or more fibers are located close to each other.

(a) (b)

TOTAL ELEMENTS = 1098 

LEVEL 0 = 1091 

LEVEL 1 =   2 

TRANSITION ELEMENTS =   3 

LEVEL 2 =   2 

x
y

(c)

Level-2/transition element boundary

Figure 12
Figure 12 : (a) h adapted multi-level mesh (b) Mesh
around local circled area (c) Microstructure of level-
2/transition elements

7.2 Free Edge Composite Laminate Subjected to Ex-
tensional Loading

The performance of the multi-scale model in the pres-
ence of singularity is demonstrated with this example.
The composite laminate consists of randomly distributed
fibers on the top and bottom whereas the middle portions
consists only of matrix material. With effective modulus
theory this architecture corresponds to a homogenized
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Figure 13 : (a) Contour plot of macroscopic s
Figure 13 : (a) Contour plot of macroscopicΣyy stress
for the plate with a hole (b) Contour plot of microscopic
σyy stress for the macroscopic element close to point A

material sandwiched between two composite plies. The
laminate is subjected to extensional out-of-plane loading
along the fiber direction as shown in Fig. 14(a).

The microstructure of the laminate around the free edge
point A is assumed to be same as in the previous problem.
The dimension of the cross section is 64mm × 32 mm.
The out-of-plane loading, is simulated using a general-
ized plane strain condition with prescribedε zz = 1. The
distribution of the microstructure is assumed to symmet-
ric about thex andy axes. Due to symmetry in thexz
andyz planes only one quarter of the laminate is mod-
eled. Symmetric boundary conditions are employed on
the surfacesx = 0 andy = 0, and the top and right sur-
faces are assumed to be traction free. The top portion

(a) (b)

h

y

x

2h

A

Figure 14 : (a) Composite laminate subjected to exte

Figure 14 : (a) Composite laminate subjected to exten-
sional loading (b) Optical micrograph of the microstruc-
ture near point A

of the laminate is modeled with effective properties ob-
tained by homogenization. The initial mesh in the multi-
level model consists of 200 level-0 4-noded bilinear or
QUAD4 elements. The discretization error in the homog-
enized model is reduced by performinghp− adaptations.
The presence of free edge at the composite-monolithic
material interface causes a singularity inσyy stress. Due
to the singularity,h adaptivity is dominant near the free
edge, while regions far away from the free edge arep
adapted.

The hp− adapted mesh is shown in Fig. 15(a) with a
blow-up of the mesh near the free edge is shown in
Fig. 15 (b).

Due to the requirement of traction continuity at the mate-
rial interface level-0 to level-1 transition is made accord-
ing to Eq. 38. For the level-1 to level-2 transition the cri-
teria in Eq. 40 is used. The parameterC3 andC5 are cho-
sen to be 2.5 and 1.25 respectively. The evolved multi-
level model consists of 513 level-0 elements, 7 level-1 el-
ements, 3 transition elements and 1 level-2 element. The
microstructure of the macroscopic element close to the
free edge is shown in Fig. 15(c). The macroscopicΣyy

stress singularity at the material interfacey = h
4 is shown

in Fig. 16. The figure also shows microscopicσyy stress
near the free edge obtained from the multi-scale solution.
It can be observed stress singularity observed at the free
edge in the effective modulus solution is not present in
the multi-scale solution. The macroscopic contour plot
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(a) (b)

TOTAL ELEMENT   524 

LEVEL 0 = 513 

LEVEL 1 =   7 

TRANSITION ELEMENTS =   3 

LEVEL 2 =   1 

(c)
igure 15 : (a) hp adapted multi-level mesh (b) Mesh

Figure 15 : (a) hp− adapted multi-level mesh (b) Mesh
around local circled area (c) Microstructure of level-
2/transition elements near the free edge

of Σyy stress is shown in Fig. 17. Fig. 17 also shows the
distributionof microscopicσyy stress for the macroscopic
element close to the free edge.

It can be noticed that the microscopic stress are atleast
2 orders higher than the macroscopic stress and occur in
the fibers close to the free edge. The artificial interface
created in the effective modulus solution is avoided in the
multi-scale model thus providing with accurate stresses
in critical regions.

8 Conclusion

This paper presents an adaptive multi-level computa-
tional model that combines a conventional displacement
based finite element model with a microstructural
Voronoi cell finite element model for multi-scale analy-
sis of composite materials. The model is developed with
the capability to analyze both macroscopic and micro-

(a) (b)
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σ yy
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h

Figure 16 : (a) MacroscopicΣyy stress aty = h
4 obtained

with the homogenized model (b) Microscopicσyy stress
at y = h

4 near the free edge obtained with multi-scale
model
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-8.477E+00
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igure 17 : (a) Contour plot of macroscopic stress f
Figure 17 : (a) Contour plot of macroscopicΣyy stress for
the composite laminate (b) Contour plot of microscopic
σyy stress for the macroscopic element near the free edge
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scopic stresses and strains in real composite structures
with non-uniform microstructural heterogeneities as
obtained from optical or scanning electron micrographs.
Three levels of hierarchy, with different resolutions,
are introduced in this model to overcome shortcomings
posed by modeling and discretization errors. Among
the three levels are: (a) level-0, where pure macro-
scopic analysis is conducted using effective properties
obtained by homogenization of variables in a statistical
equivalent RVE; (b) level-1, which are intermediate
regions of macro-micro coupled modeling, used for
signaling the switch over from macroscopic analyses
to pure microscopic analyses; and (c) level-2 regions
of pure microscopic modeling where critical events in
the microstructure are expected to occur. The adaptive
Voronoi cell finite element model is utilized effectively
for analysis of extended microstructural regions with
high efficiency and accuracy. Special transition elements
between level-0/1 and level-2 elements provide the
necessary constraint conditions to facilitate smooth
transition from macroscopic to microscopic analysis.

Identification of statistically equivalent RVE (SERVE)
for a non-uniform microstructure, is essential for eval-
uating the effective properties for use in level-0 and
level-1 elements. The use of different correlation func-
tions based on statistical principles offers a systematic
way of identifying a bounded SERVE, which possess
the similar effective properties as that of the entire local
microstructural ensemble. Upon the determination of
SERVE’s for actual microstructures, microstructural
analyses with homogenization is performed in this paper
to demonstrate the convergence of effective properties as
well as microscopic stresses as functions of the SERVE
size.

Discretization error in the macroscopic computations of
level-0 and level-1 elements is reduced by performingh
andhp adaptations. Various modeling error criteria are
experimented with, based on the physics of the problem
considered. For the examples conducted, stress or trac-
tion gradients criteria are used for the level-0 to level-
1 switch. High local microscopic stresses and interface
tractions are used as modeling error criteria for making
the transition from level-1 to level-2 elements. Two nu-
merical examples of a composite plate with a hole, and a
composite laminate comprised of a heterogeneous layer

and a monolithic layer, are solved to demonstrate the
ability of the multi-scale computational model in analyz-
ing complex heterogeneous structures. Extension of this
to model to determine the initiation and propagation of
failure due to fiber/matrix interfacial debonding is cur-
rently in progress.
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