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Analysis of Densification and Swelling of Solids Using Pressure Dependent
Plasticity Criteria
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Abstract: We consider certain constitutive laws for an-
alyzing the elastic-plastic behavior of granular material,
which is subjected to compressive hydrostatic stresses
and concomitantly undergoing swelling. The plastic
yield functions for this kind of materials are pressure
and porosity dependent. The constitutive laws are for-
mulated in a finite element (FE) framework for applica-
tions to structures involving granular/porous materials.
We have employed an implicit and unconditionally sta-
ble algorithm for numerical integration of the constitutive
relations. The numerical method has been programmed
in a FE computer code. The code is then used to study a
plane strain problem for a range of model parameters and
yield criteria, where the stress response of material under
compressive loads is evaluated. Finally the method is ap-
plied to the case of B4C powder encased in a stainless
steel tube, which is subjected to compressive loads under
swelling condition.

keyword: Densification, swelling, pressure dependent
plasticity, FEM.

1 Introduction

Granular materials are utilized in many industrial prod-
ucts and processes. They have peculiar and complex
mechanical properties, understanding of which is impor-
tant for the design and performance of these products.
In this paper we use certain constitutive laws for ana-
lyzing the elastic-plastic behavior of granular material,
which is subjected to compressive hydrostatic stresses
and concomitantly undergoing swelling. The main plas-
tic yield criterion considered here is a "regularized" vari-
ant of the Drucker-Prager model [Drucker and Prager
(1952)], which was proposed some years ago by Kuhn
and Downey (1971) and independently by Green (1972).

1 Royal Institute of Technology, SE-100 44 Stockholm, Sweden
2 Malmö University, SE-205 06 Malmö, Sweden
3 Quantum Technologies AB, SE-751 83 Uppsala, Sweden

The Kuhn-Downey-Green (KDG) model assumes that
the yield criterion is a function of the first invariant of
the deviator stress, σI, and the second invariant of the de-
viator stress, sII, i.e., F = F(sII,ασI,βκ) where α and β
are functions of the relative density (or porosity) and κ
is the yield stress. Shima and Oyane (1976) determined
the density dependence of α and β by means of uniaxial
compression tests for copper powders with initial rela-
tive densities ranging from 0.62 to 0.87. We have em-
ployed similar functional forms for α and β as described
in [Shima and Oyane (1976)].

We also regard, for the sake of comparison, the Gur-
son yield criterion [Gurson (1977)], which in its origi-
nal form describes a porous solid consisting of a rigid
perfectly plastic matrix containing spherical cavities of
equal size. The Gurson model, which provides a mech-
anistic description of deformation of porous solid, is ap-
propriate for low porosities [Redanz (1997)], (best for
relative densities greater than 0.90.)

The basic characteristic of these models is that the yield
functions give ellipsoidal yield surfaces in stress space
and are symmetric with respect to hydrostatic tension
and compression. Moreover, the functions are isotropic
with the material response expressed in terms of a sin-
gle state variable, the porosity. When porosity vanishes,
these yield functions reduce to the von Mises yield cri-
terion used in metal plasticity, i.e. the yield function
forms a cylindrical surface in stress space. The stress-
strain σ− ε constitutive relations, in incremental form,
are dε = dγ(∂F/∂σ), where dγ is a non-negative con-
stant. We will utilize these models with the consideration
that the material porosity changes during the deformation
process.

There are other mechanistic models of powder com-
paction, e.g., Helle, Easterling, and Ashby (1985) and
Fleck (1995). These models, as for the Gurson model,
are usually valid in a narrow range of relative density.
Also, they contain material-dependent parameters, which
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need to be determined experimentally.

In this paper the aforementioned constitutive laws (KDG
and Gurson) are formulated in a finite element (FE)
framework for applications to structures involving granu-
lar/porous materials. We have employed an implicit and
unconditionally stable algorithm, based on the work of
Aravas (1987) and Govindarajan and Aravas (1995), for
numerical integration of the elastoplastic constitutive re-
lations. The numerical method has been programmed in
the user-defined module of the FE computer code AD-
INA (1999). The code is then used to study a plane strain
problem for a range of model parameters and the two
yield criteria, where the stress response of material un-
der compressive loads is evaluated. Finally the method
is applied to the case of B4C powder encased in a stain-
less steel tube, which is subjected to compressive loads
under swelling condition. The present study is a con-
tinuation of our preceding works [Massih, Isaksson, and
Ståhle (1997), Massih (2000)] on plasticity of granular
material, where the case of perfect plasticity (constant
pore volume) was analyzed.

2 Plasticity criteria

We first consider the Kuhn-Downey-Green criterion [2,3]
for plasticity of porous solids. The yield stress function
for this criterion is expressed as

F = q2/κ2 +9αp2/κ2 −β ≤ 0, (1)

where q =
√

3sII , p = −σI/3, sII = tr(s2)/2 , σI = tr(σ),
and s = σ− tr(σ)1/3. Here σ is the stress tensor, 1 is
the second order unit tensor, α, β are positive scalar pa-
rameters depending on the material density (or porosity)
and κ is the yield stress of the solid matrix. The relative
density of the body ρ is related to the porosity fraction f
via ρ = f −1. We select the following form:

α = a f m; β = (1− f )2n, (2)

where a, m and n are material dependent parameters,
identified from measurements.

The other pressure-dependent yield criterion considered
here is the Gurson model [Gurson (1977)], described as

F = q2/κ2 +2k1 f cosh(
3k2p
2κ

)− (1+k2
1 f 2) ≤ 0, (3)

where the adjusting parameters k1 and k2 were introduced
by Tvergaard (1982) to account for void interaction ef-
fects, which is of special interest in situations where pore
concentration is significant.

Using an associated flow rule the plastic strain rate is
derivable from the yield function F = F(p,q), in the form

ε̇p ≡ γ̇
∂F
∂σ

= γ̇(
∂F
∂p

∂p
∂σ

+
∂F
∂q

∂q
∂σ

), (4)

where γ̇ is the plastic rate multiplier, and an overdot indi-
cates differentiation with respect to time t. Equation (4)
can be reduced to

ε̇p =
1
3

Ṗ1+ Q̇n, (5)

where Ṗ ≡ −γ̇ ∂F/∂p, Q̇ ≡ γ̇ ∂F/∂q , ∂p/∂σ = −1/3
and ∂q/∂σ = 3s/2q ≡ n. Furthermore, the Cauchy stress
tensor can be expressed in the manner

σ = −p1+
2
3

q n. (6)

For the two yield criteria considered here, i.e. relations
(1) and (3), we assume the following time evolution law
for material porosity fraction (void volume fraction):

ḟ = (1− f )tr(ε̇p) = (1− f )Ṗ. (7)

The total strain rate tensor for the material is the sum of
three contributions, elastic, plastic and swelling, where
the densification strain rate is included in the plastic term.
We write:

ε̇ = ε̇e + ε̇p + ε̇s, (8)

where in our case ε̇s = Φ = constant and Φ, the swelling
rate, is identified from measurement. We should mention
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that for the problem under consideration ḟ < 0, meaning
that porosity decreases under compression.

Assuming linear elasticity, Hooke’s law gives

σ = Ce : εe ⇔ σi j = Ce
i jklε

e
kl, (9)

where Ce is the fourth-order elasticity tensor. For
isotropic elasticity, this tensor is described according to
relation: Ce = λ1⊗1 + 2µI, where I is the fourth-order
symmetric unit tensor and λ and µ are the Lamé con-
stants, related to Young’s modulus E and Poisson’s ratio
ν.

The plastic rate multiplier can be found from the consis-
tency condition Ḟ = (∂F/∂q)q̇ + (∂F/∂p) ṗ = 0 which
after some algebra yields

γ̇=
−(∂F/∂p)tr(ε̇)+2ζ(∂F/∂q)tr(ėn)

(∂F/∂p)2 +3ζ(∂F/∂q)2 , (10)

where ζ = 3(1−2ν)/2(1+ν) and ė = ε̇− tr(ε̇)1/3 is the
deviatoric strain rate tensor.

3 Numerical integration and linearization

In the framework of finite element method the consti-
tutive relations are evaluated at the element integration
points. During the computation process the total strain is
known and the individual strains (the right hand side of
relation (8)) and the state variables (material porosity in
our case) are updated. The elasticity relations (9) give:

σt+∆t = Ce : εp
t+∆t = σe −Ce : ∆εp, (11)

where σe = Ce : (εe
t +∆ε) is the elastic trial stress tensor,

∆ε is the increment of the total strain tensor and ∆t is
the time increment. For the present calculation we have
adopted the Euler backward scheme presented by Aravas
(1987). In this scheme the plastic strain increment ∆ε p is
expressed as:

∆εp =
1
3
p1+qnt+∆t , (12)

where p ≡ −∆γ(∂F/∂p)t+∆t , q ≡ ∆γ(∂F/∂q)t+∆t and ∆γ

is the increment of the plastic multiplier. Also equation
(6) can be rewritten as:

σt+∆t = −pt+∆t 1+
2
3

qt+∆t nt+∆t . (13)

Invoking the relation for Ce and using equation (12) we
can express equation (11) in the form

σt+∆t = σe − (λ +
2
3

µ)p1−2µqnt+∆t . (14)

We note that equation (14) gives: st+∆t = se −2µqnt+∆t ,
where se is the deviatoric stress corresponding to σ e.
Therefore, in the deviatoric stress space, the return to the
yield surface is along nt+∆t , implying that se is coaxial
with st+∆t and hence can directly be found from σe via the
relation: nt+∆t = (3/2qe)se, where qe =

√
3tr(sese)/2.

The primary unknowns in equation (14), p and q, are
found by using the equations collected in Box 3.1, where
Ft+∆t ≡ F(pt+∆t ,qt+∆t , ft+∆t) and K = λ + 2µ/3 is the
modulus of elasticity. This set of equations are solved by
Newton’s method in the user-defined subroutine of the
ADINA program, ADINA (1999).

p(∂F/∂q)t+∆t = −q(∂F/∂p)t+∆t (15)

pt+∆t = pe
t+∆t +Kp (16)

qt+∆t = qe
t+∆t −3µq (17)

ft+∆t = ( ft +p)(1+p)−1 (18)

Ft+∆t = 0 (19)

Box 3.1: Relations for finding p and q.

The consistent tangent modulus, for the backward Euler
update method, is calculated as Ca = (∂σ/∂ε)t+∆t . Using
equation (14), and omitting the subscript t +∆t, we find

∂σ
∂ε

= K
(

1− ∂p
∂ε

)
⊗1 +2µ

(∂e
∂ε

− ∂(qn)
∂ε

)
, (20)

where ∂(qn)/∂ε = (∂q/∂ε)⊗n +q(∂n/∂ε).

The explicit expressions for the terms appearing in the
tangent modulus (20) can be derived for computation fol-
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lowing the work of Govindarajan and Aravas (1995). In
our notation, the differentials of the state variables, ob-
tained from relations (16)-(18), are expressed as:

dp = −K
(

tr(dε)−dp
)
, (21)

dq = µ
(

2n : dε−3dq
)
, (22)

d f = (1− f )(1+p)−1dp. (23)

Taking the total differential of relation (16) and substi-
tuting for dp, dq and d f from equations (21)-(22), we
obtain the following matrix relation:

[A]{∂p
∂ε

,
∂q
∂ε

} = [B]{1,n}, (24)

where [A] and [B] are 2×2 matrices with components Ai j

and Bi j, respectively. The brace symbol in equation (24)
denotes a column vector with two components. Equation
(24) can formally be solved for ∂p/∂ε and ∂q/∂ε accord-
ing to:

{∂p
∂ε

,
∂q
∂ε

} = [M]{1,n}, (25)

where [M] = [A−1][B]. The components of the matrix
[M], for the problem under consideration, are listed in
the appendix. Hence the tangent modulus is expressed as
the sum of a symmetric and an unsymmetric fourth-order
tensor:

∂σ
∂ε

= Asym +Buns (26)

where

Asym = 2µ
( q

qe J +N22n⊗n
)

+K(1−M11)1⊗1, (27)

Buns = −2µM21n⊗1−KM121⊗n, (28)

N22 = (2/3)(1−q/qe)−M22 and J = I −1⊗1/3. Note
that Buns becomes symmetric when M12 = 2µM21/K.
On the other hand, comparing the M-matrix components
given in the appendix, we find

M12 =
2µ
K

M21

1+χq
, (29)

where χ is defined in the appendix. As has been noted
by Aravas (1987), the use of unsymmetric stiffness ma-
trix in a finite element program slows down the rate of
convergence of the Newton iterations of the equilibrium
equation. However, in our case q is of the order of 0.01
or less, hence the lack of symmetry should not degrade
the rate of convergence appreciably, if the unsymmetrical
part of the tangent modulus is symmetrized.

4 Example: A plate subjected to compression under
swelling

Let us apply the foregoing method to a square plate with
side length L fixed at three sides and subjected to a com-
pressible displacement from one side (plane strain con-
dition). Our aim is to study the influence of model pa-
rameters on the plastic response of the material. We
consider the KDG yield criterion with material property
data listed in Tab. 1 and the Gurson criterion for two
sets of adjusting parameters, the original Gurson values
k1 = 1, k2 = 1 and the Tvergaard (1982) values, k1 = 1.5,
k2 = 1, for f0 = 0.3. Furthermore, we impose a swelling
rate Φ = 2.59×10−6 h−1 and a compressive strain rate
ẇ = 3.60×10−6 h−1 in the material.

Table 1 : Material property data used in plate example.

KDG parameter Case I Case II
a 0.698 1.1
m 1.08 1.1
n 2.5 0.0

E = 191 GPa ν = 0.18 κ = 300 MPa

The results of our FE analysis using the KDG criterion
are depicted in Fig. 1, where the equivalent stress is plot-
ted against time for the two considered cases. We notice
that in case I, right after plastic yielding, the equivalent
stress exhibits a softening effect, whereas in case II a
hardening behavior is observed. The change from soft-
ening to hardening occurred when a ≈ 1. This behavior
was not witnessed when we employed the Gurson cri-
terion with the two sets of aforementioned coefficients,
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Figure 1 : The equivalent stress in the plate versus time
under plane strain condition. The KDG criterion, for the
two cases listed in Tab. 1, is used in the computations.
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Figure 2 : The equivalent stress in the plate versus time
under plane strain condition. The Gurson criterion for
the two sets of adjusting coefficients is used in the com-
putations.

Fig. 2.

We have also checked the accuracy of our finite element

method by comparing the results of calculations on case
I for p versus q with direct numerical solution (Euler’s
method) of the exact analytical relations derived for the
plate, Larsson (2001). The match between the results of
the two methods is practically complete for time steps
below ∆t = 100 h.

5 Application: boron carbide powder in a steel tube

B

A

stainless steel

y

x [mm]1.75 2.390

B4C

Figure 3 : A quarter of tube geometry that is modeled.

ADINA
X Y

Z

Figure 4 : The finite element mesh used in the analysis.

We consider an example from nuclear engineering, i.e.
the case of a control rod of a boiling water reactor con-
sisting of B4C powder (neutron absorber) encased in a
stainless steel tube, Fig. 3. Three-dimensional isopara-
metric 20-node solid element of the ADINA program is
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used for the structure with a mesh shown in Fig. 4. Gen-
eralized plane strain condition and perfect contact (no
sliding) between B4C and steel are assumed.
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Figure 5 : B4C powder confined in a steel tube subjected
to compressible hydrostatic pressure. The solid curve
shows the evolution of the equivalent stress q versus the
hydrostatic pressure p during densification. Here κ is the
flow stress of the material and f the porosity fraction.
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Figure 6 : Stresses at the outer rim of the tube (element
B, Fig. 3) versus time. Stress-equiv. is the von
Mises equivalent stress.
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Figure 7 : Strains at the outer rim of the tube (element B,
Fig. 3) versus time. The plastic strain component is nil.

During reactor service, B4C swells and is subjected to
mechanical interaction with the tube. We suppose that
B4C obeys the KDG yield criterion, with material prop-
erties listed for case I in Tab. 1, and the swelling rate
of Φ = 2.59× 10−6 h−1. The stainless steel tube is as-
sumed to obey the von Mises yield criterion, with E =
175 GPa, ν = 0.3, and the creep strain rate ε̇creep

ss =
6.68×10−10σeq, in unit of h−1, where σeq is the equiv-
alent von Mises stress in MPa at the service temperature
of 300 ◦C.

By running the ADINA program the stresses and strains
in the B4C and in the tube wall are calculated as a func-
tion of time. In Fig. 5 we have depicted the evolution
of the equivalent stress q versus the hydrostatic pressure
p in B4C (element A, Fig. 3) during densification and
the evolution of the yield surface due to the decrease in
porosity. We note that in the elastic regime, q increases
with p till the yield surface is reached. Then on the yield
surface, as time evolves, the stresses tend to hydrostatic
pressure, rendering q to decrease until the porosity is re-
duced sufficiently leading to a slow raise in q. Fig. 6
shows the time evolution of the stresses at the outer sur-
face of the tube (element B, Fig. 4). The total hoop strain
is calculated to be about 0.8% after 30000 h of irradi-
ation, Fig. 7. No time-independent plastic deformation
of stainless steel tube was found, i.e. all the permanent
deformation is due to irradiation creep according to our
calculations.
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5.1 Discussion

Post irradiation examinations made on boiling water con-
trol rods, consisting of B4C powder with f = 0.30 en-
cased in Type 304 stainless steel tube included measure-
ments of tube diameter changes and the powder den-
sity, Fuhrman (1986). Measurements of tube diameter
changes using mechanical profilometer showed a maxi-
mum permanent hoop strain of 0.2% over the top 0.51
m of the rod at end-of-life. The measurements of B4C
powder densities in this region by pycnometry of sam-
ples showed that B4C particles swelled on average up to
about 26% in volume. Our calculation shows that the
permanent hoop strain of tube is around 0.5%, Fig. 7.
The corresponding volumetric swelling correlation we
used gives ∆V/V = 3Φt ≈ 0.23 at t = 30000 h. Hence
with the material properties utilized, we over estimate the
tube strain by a factor larger than 2. However, we at-
tribute part of this over estimation to the choice of our
irradiation-induced creep correlation for stainless steel,
which has an upper-bound characteristic. If we choose a
best-estimate type creep correlation, e.g. that of Foster,
Wolfer, Biancheria, and Boltax (1972) we find ε̇creep

ss ≈
2.78×10−10σeq, i.e. a factor of 2.78/6.68≈ 0.42 lower
than the used value.

Moreover, we should mention that long irradiation times
in boiling water reactor core, cause embrittlement of the
stainless steel material, due to the phenomenon of inter-
granular stress corrosion cracking, which eventually re-
sults in through wall cracks in the tube for strains larger
than 0.2%, Fuhrman (1986). This type of evaluation
takes us beyond the scope of the present paper.
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Appendix A: Components of the M-matrix in rela-
tion (24)

Algebraic manipulations result in the following expres-
sions for the components of the matrix [M] defined
through relation (25):

M11 = K(F2
p +3µR1)/D (30)

M12 = −2µFpFq/D (31)

M21 = −KFpFq(1+χq)/D (32)

M22 = 2µE/D (33)

D = KF2
p + fpFf Fq +3µE (34)

E = F2
q +KR1 + fpR2 (35)

χ = fp(FpFp f −Ff Fpp)/(FpFq) (36)

R1 = FppFqq−FqqFpp (37)

R2 = Fp f Fqq−FqqFf p (38)

where we have utilized the notation, Fq = ∂F/∂q, Fp f =
∂2F/∂p∂ f , etc. Also for the problem under considera-
tion, Fpq = Fqp = 0. Comparing equation (31) with (32)
we obtain equation (29) of the paper.


