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A Lattice Statics-Based Tangent-Stiffness Finite Element Method

Peter W. Chung1, Raju R. Namburu2, and Brian J. Henz3

Abstract: A method is developed based on an addi-
tive modification to the first Lagrangian elasticity ten-
sor to make the finite element method for hyperelasticity
viable at the atomic length scale in the context of lat-
tice statics. Through the definition of an overlap region,
the close-ranged atomic interaction energies are consis-
tently summed over the boundary of each finite element.
These energies are subsequently used to additively mod-
ify the conventional material property tensor that comes
from the second derivative of the stored energy function.
The summation over element boundaries, as opposed to
atom clusters, allows the mesh and nodes to be defined
independently from the atoms. The method is developed
with a specific form of the Tersoff-Brenner potential for
carbon. The method correctly predicts the in-plane de-
formation behavior of a single graphite sheet subjected
to displacement boundary conditions. Estimated plane
elasticity properties agree with experimental data from
the literature. Quenched molecular dynamics results are
used to validate the method for homogeneous and inho-
mogeneous loading constraints.

keyword: Nanomechanics, multiscale modeling, lat-
tice mechanics, continuum mechanics, finite element
method.

1 Introduction

The impetus to better understand the mechanics of crys-
tal defects such as dislocations and grain boundaries has
led to numerous new developments in multiscale meth-
ods. They have been proposed for application to micro
devices and to mesoscale material problems; scales in
which both atomistic and continuum phenomena need to
be resolved [Brenner, Shenderova, Areshkin, and Schall
(2002)]. The fundamental idea in these methods is to
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develop consistent formulations by which both atomic
and continuum phenomena can be modeled within a uni-
fied framework. Examples include an approach to equili-
brate forces between atoms and continua with the contin-
uum region modeled with analytical techniques [Sinclair
(1971)]; an atom embedding method inside the finite ele-
ments at the FE-atom interface [Mullins and Dokainish
(1982)]; a method incorporating a non-local elasticity
theory for a transition region connecting the lattice and
continuum regions [Kohlhoff, Gumbsch, and Fischmeis-
ter (1991)]; an FE-atomistic method with FE properties
derived directly from atomistic potentials [Tadmor, Or-
tiz, and Phillips (1996)]; a method of matched displace-
ments between atomistic molecular dynamics and a mi-
cromechanics model [Noguchi and Furuya (1997)]; and
a method for dynamically coupling a finite element re-
gion to a molecular dynamics region, and still further to
a tight-binding region [Broughton, Abraham, Bernstein,
and Kaxiras (1999-II)].

In many of the investigations to date, it is common prac-
tice to use bulk elasticity in regions far from the defect
where strains are small. And conversely, in regions at or
close to the defect, lattice statics or molecular dynamics
(MD) are employed to capture the detailed lattice scale
anharmonic effects. The intrinsic assumption is that the
problem under consideration always possesses a bound-
ary far enough away from the defect so that atomic force
fields per unit area asymptote to conventional continuum
stress definitions. Therefore, the multiscale analyses in-
volve disparate length scales where each scale is asymp-
totically smaller than the next.

The motivation for this juxtaposition of scales stems from
the limitations of each scale-specific method. The finite
element method employs constitutive laws that are in-
appropriate for treating atomistic effects. Yet, the size
of the problem is very large and is beyond the reach of
lattice statics or molecular dynamics alone. To study
problems where both atoms and continuum must be re-
solved, a unified framework that models both scales is
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needed. Each of the efforts previously described provides
a unique methodology for accomplishing this. However,
common to all of the methods is a definite interface that
separates the atomic region from the continuum region.
On one side is the atom region modeled with, say, clas-
sical potentials via lattice statics or molecular dynamics.
On the other side is the continuum region modeled with,
say, the finite element method, which is governed by the
standard principles of continuum mechanics. This as-
sumes that in regions close to this interface, both con-
tinuum mechanics and atomistic mechanics are valid.

This leads to the question: “How valid is the contin-
uum mechanics-based finite element method at this in-
terface?” It is assumed that the atomistic equations are
always more accurate, in a physics sense, than the con-
tinuum equations. Therefore, the simple answer to the
question is “yes” as long as the atomistic region is al-
ways made sufficiently large. But this would result in
problems containing many more atoms than are neces-
sary to accurately solve the problem and can also lead to
higher computational cost.

The dilemma can be remedied through several ap-
proaches that can be found in the literature. One is to es-
tablish a transition region deterministically between the
atoms and the continuum with a theory such as non-local
elasticity [Kroner (1967)] where both atomic and con-
tinuum effects are valid [Kohlhoff, Gumbsch, and Fis-
chmeister (1991)]. Another approach is to specify the
nonlocal region adaptively [Tadmor, Ortiz, and Phillips
(1996)]. A third is to use a fully non-local technique
in which finite atom cluster regions are defined around
nodes [Knap and Ortiz (2001)]. In these approaches,
however, detailed placement of the nodes is necessary so
that they coincide with atoms at the interface. Therefore
the interface and the shape of the mesh are determined by
the kinematic constraints that are needed to tie the atoms
to the finite element mesh. The atoms act as nodal an-
chors for the mesh such that the smallest element size is
exactly equal to the length of the primitive lattice vec-
tor. A desirable feature for a theory at the interface is to
have the capability to define the nodes and elements in-
dependently from the atoms yet ensure that the numerical
formulations remain faithful to the atoms they represent.

Some related efforts have been undertaken to circum-
vent the interface entirely through homogenization the-
ory [Chung and Namburu (2003)]. Homogenization
methods have been used predominantly in the com-

putational literature for composite structures model-
ing [Raghavan and Ghosh (2004)] and composites man-
ufacturing modeling (e.g., see Ngo and Tamma (2004))
with considerable success.

A different but related problem is the modeling of
nanoscale devices where definable phenomena do not ex-
ceed tens of nanometers. Novel materials and structures
such as nanotubes and nanowires and some components
of microelectromechanical devices (MEMS) possess ma-
terial and phenomenological characteristics that reside in
length scales smaller than the acceptable lower length
scale limit of continuum theories. These devices typi-
cally span dimensions as small as tens of Angstroms to
as large as tens of micrometers. Despite the strength and
validity of the finite element method, its reliance on phe-
nomenological constitutive laws based on continuum-
scale observations precludes its applicability to the small
scale regimes of these devices.

Yet many problems dominated by atomistic effects ex-
hibit continuum-like behavior. An example of this is
the nanotube instability problem [Yakobson, Brabec, and
Bernholc (1996)]. The localized features of the tubes
that are of interest warrant detailed molecular dynam-
ics that render the earlier multiscale methods, namely
the treatment of the bulk continuum scales, unneces-
sary. This is understandable in light of the mesoscale
regimes to which these multiscale methods are applied
(and for which they were originally developed). To date,
continuum-like methods that have been developed for
nanoscale devices rely on parameterizations of more de-
tailed calculations, e.g. from molecular dynamics and/or
ab initio, to be fed into existing continuum models such
as shell [Yakobson, Brabec, and Bernholc (1996)] and
beam [Wong, Sheehan, and Lieber (1997)] theories. Un-
fortunately, developments such as these are difficult to
extend to general computational methods because of the
strict assumptions associated with shell and beam theo-
ries.

There is one common issue shared in the two prob-
lems discussed thus far, i.e., multiscale modeling and
nanoscale device modeling. The methodology needed to
treat the interface in each of these types of problems can
also be employed for developing continuum based un-
derstanding of nanodevices. This is predicated on the as-
sumption that interface modeling entails approximating
a small number of atoms with a continuum-like structure
and imbuing that structure with the appropriate character-
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istics of the atoms. To date, few studies can be found in
the literature, particularly in new finite element and other
computational methods, that further develop methods for
the interface. It is still unclear how to model continua
near the interface where a finite element, say, spans a vol-
ume occupied by at most five or ten atoms. It is evident
from the many molecular dynamics and condensed mat-
ter physics investigations in the literature that the insights
gained from such studies are potentially very useful.

In this paper, a lattice statics based finite element method
that is valid at the so-called interface/transition region is
presented. The objective is to develop a method that ap-
proximates the non-local behavior of a system as small
as one or two atoms to as large as millions of atoms. It is
specifically targeted for two types of applications. First,
for multiscale methods, the developments presented here
should be used in conjunction with bulk finite elements at
coarser scales and molecular methods (i.e., lattice statics,
molecular dynamics or density functional methods) at
finer scales. And second, for studying very small devices
where continuum-like phenomena are of interest but con-
taining a number of atoms too small for continuum mod-
eling. The method minimizes the energy over a reduced
number of degrees of freedom yet returns the qualitative
and quantitative atomistic results correctly. Therefore, it
is neither entirely atomistic nor entirely continuum. The
method is based on the development of a condensation
term that is evaluated and used to correct the atomistic
energy. In this sense, it builds upon the work of Knap
and Ortiz [Knap and Ortiz (2001)] by introducing level-
set regions around the element and computing their en-
ergy contribution to the associated element. This energy
is subsequently used with the standard hyperelastic con-
stitutive definition to derive the tangent material prop-
erty tensor by taking second derivatives with respect to
the deformation gradient. The constitutive properties are
then employed in the partial differential equations that
are solved through a standard finite element formulation
over the reduced number of degrees of freedom. The pre-
sentation of the paper is general for multi-dimensional
systems, but to demonstrate the application 2-D exam-
ples are shown.

The contents of this paper are as follows. In section 2,
the conventional continuum equations are shown eventu-
ally leading to a variational form based on the principle
of virtual work. In section 3, a corrected stored energy
(free energy at zero temperature) function is derived and

used to modify the traditional local element energy. This
function is summed over the surface of each element and
ensures that interactions with atoms exterior to the ele-
ment are properly included, which leads to the definition
of the so-called overlap region. In section 4, the method
by which the atomic information is passed to the con-
tinuum through the constitutive properties is described.
Then in section 5, the numerical implementation details
are shown. Examples are used in section 6 to validate the
method against lattice statics solutions through quenched
molecular dynamics simulations. Discussions and con-
cluding remarks are in section 7.

2 Continuum Formulations

The goal of this section is to formulate the variational
equations that form the basic equations for the finite ele-
ments consistent with lattice-statics energy. The point of
departure from classical continuum mechanics is in the
definition of the constitutive law where the first elasticity
tensor (using the terminology of Marsden and Hughes
(1983)) is defined from the second derivative of the
stored energy, and the stored energy is taken from the
atomistic potential. This type of approach is due to Kro-
ner (1967), and more recently in a computational setting
due to Kohlhoff, Gumbsch, and Fischmeister (1991) and
Tadmor, Ortiz, and Phillips (1996). The framework for
the continuum equations are developed here and the de-
tailed derivation of the atomistic constitutive relations are
developed in the next section.

Let Ω be a bounded domain with boundary Γ. A material
point X ∈ Ω deforms to the spatial point x through the
deformation gradient defined by

F =
∂x
∂X

= ∇ 0x, (1)

where ∇ 0 signifies the gradient taken with respect to the
undeformed configuration. Through the conservation of
linear momentum,

∇ 0 ·P+ f0 = 0, (2)

where P is the first Piola-Kirchoff stress tensor and f0 is
the body force per unit of undeformed volume. In rate
form, equation (2) can be written as,

∇ 0 · Ṗ+ ḟ0 = 0. (3)
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Then, using the principle of virtual work, equation (3)
can be rewritten as∫

Ω

(
∇ 0 · Ṗ

)
δudΩ+

∫
Ω

ḟ0 ·δudΩ = 0, ∀δu, (4)

where δu is the appropriate virtual displacement. Finally,
for a unit normal N such that the surface traction is de-
fined by ṫ = Ṗ ·N, integrating by parts yields,
∫

Ω
Ṗ : ∇ 0δudΩ =

∫
Γ

ṫ0 ·δudΓ +
∫

Ω
ḟ0 ·δudΩ. (5)

The definition of hyperelasticity provides the constitutive
information of the material as a function of the stored
energy W via

P =
∂W
∂F

, (6)

and the first elasticity or Lagrangian elasticity tensor is
defined by

CCC =
∂2W
∂F∂F

=
∂P
∂F

. (7)

Note CCC possesses only major symmetry and lacks the mi-
nor symmetries found in its spatial counterpart. To this
end, under certain situations, a more careful account-
ing of the angular momentum balance may be neces-
sary [Atluri (1979, 1980)]. It follows from equation (7)
that P is related to F through

Ṗ = CCC : Ḟ (8)

where

Ḟ = ∂u̇/∂X = ∂v/∂X, (9)

and where u̇ = v denotes the velocity. Substituting equa-
tions (7), (8) and (9) into equation (5) finally leads to

∫
Ω

(∇ 0δu)T :
∂2W
∂F∂F

: (∇ 0v)dΩ

=
∫

Γ
ṫ0 ·δudΓ +

∫
Ω

ḟ0 ·δudΩ, ∀δu.

(10)

It is quite clear that equation (10) is the standard varia-
tional form for an elliptic partial differential equation. In
the next section, the atomistic part of the developments
will be explained. Then in section 4, the method for com-
bining the two will be described.

3 Atomistic Definitions

A key assumption in this paper is the Cauchy-Born ap-
proximation [Ericksen (1984)], which assumes that the
homogeneous deformation of the lattice gives the energy
minimizing configuration of the deformed atoms. In the
finite element context, this means that within each ele-
ment the atoms deform homogeneously (see Figure 2).
The positions of the atoms are denoted by their Cartesian
coordinates X such that atom i is located at X (i). The dis-
placement of atom i is q(i) such that upon deformation,
the new position is given by

x(i) = X(i) +q(i). (11)

The deformation gradient is defined by

F =
∂x
∂X

. (12)

The vector R separating two atoms i and j in the refer-
ence configuration is given by

R(i j) = X( j)−X(i). (13)

The vector r separating two atoms in the deformed con-
figuration is given by

r(i j) = x( j)−x(i). (14)

Then the Cauchy-Born approximation states that the dis-
tance between atoms in their minimizing configuration is
given by

r(i j) = FX( j)−FX(i)

= FR(i j).
(15)

Although the present focus is on planar sheets, one might
use a more general exponential mapping procedure like
the one described by Arroyo and Belytchko (2002). Ulti-
mately, like the Cauchy Born approximation, this is still
an approximation to the more general case in which all
atoms are free to move independently.

The energy associated with the deformation of the atoms
is modeled using the so-called type II parameterization
of the Tersoff-Brenner potential [Tersoff (1988); Brenner
(1990)]. In this work, higher order conjugation terms are
omitted. This effectively removes third nearest neigh-
bor atomic interactions that are mainly used in problems
such as phase change where the local force field environ-
ment around the second nearest neighbor atom is nec-
essary. For a simple hyperelastic atomistic-continuum
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method, the qualitative ratio of contribution to compu-
tational complexity for including these interactions is
very small and are therefore presently excluded. How-
ever, the extension of the present method to account for
these terms is immediately obvious. Additional details
on these excluded terms can be found in Brenner (1990).

The stored energy form of the Tersoff-Brenner potential
is,

W =
1
n

[Eb(x)−Eb(X)] , (16)

where W is the energy density of the frozen system, n is
the number of atoms, and Eb is the binding energy for a
pure carbon system. From Brenner (1990), the energy is
given as

Eb(r) = ∑
i

∑
j(>i)

[
VR
(
r(i j)
)−BVA

(
r(i j)
)]

, (17)

which has repulsive and attractive terms, respectively,

VR(r) =
f(i j)(r)D(e)

(S−1)
e−

√
2Sβ(r−R(e)), (18)

VA(r) =
f(i j)(r)D(e)S

(S−1)
e−

√
2
S β(r−R(e)), (19)

a bond order term that accounts for the local environment
of each atom

B =
1
2

(
B(i j) +B( ji)

)
, (20)

B(i j) =

[
1+ ∑

k( �=i, j)
G(θ(i jk)) f(ik)

(
r(ik)
)]−δ

, (21)

G(θ) = ao

{
1+

c2
o

d2
o
− c2

o

d2
o +(1+cos θ)2

}
, (22)

and the cut-off function which limits the range of the in-
teractions

f(i j)(r) =




1, r < R(1)

1
2 + 1

2 cos
[

π(r−R(1))
(r−R(2))

]
, R(1) < r < R(2)

0, r > R(2)

,

(23)

The constants are given in Table 1.

As a result of equation (23), equation (16) is an abso-
lutely and uniformly convergent series with a conver-
gence radius of R(2), i.e., the cut-off distance. This radius

Table 1 : Parameters for Tersoff-Brenner potential.
R(e) 1.39 Å
D(e) 6.0 eV

S 1.22
β 2.1 Å
δ 0.5

R(1) 1.7 Å
R(2) 2.0 Å
ao 0.00020813
c2

o 3302

d2
o 3.52

can be used as a condensation parameter that defines a
closed region in which atoms external to an element de-
termines the energy within the element. Energy modify-
ing terms in a periodic molecular cell to account for long-
range interactions have been studied in Madelung (1918)
and Ewald (1921), and more recently in DeLeeuw, Per-
ram, and Smith (1980) and Heyes (1981) with additional
references therein. The concept of employing modifying
terms to the energy in this paper are due to these ear-
lier investigations. For the specific case of graphene, the
convergence factor extending beyond the boundaries of
each element creates “overlap” regions. All atoms in the
overlap have a non-negligible contribution to the local el-
ement energy W h.

For the sake of discussion, it is useful to express the po-
tential in equation (16) in the following way:

Eb = ∑
i

{
∑

j(>i)

[
φ
(
r(i j)
)

+ ∑
k( �=i, j)

[
ψ
(
r(i j),r(ik)

)
+ψ

(
r( ji),r( jk)

)]]}
,

(24)

such that

Eb = ∑
i

∑
j(>i)

E(i j) +∑
i

∑
j(>i)

∑
k( �=i, j)

E(i jk). (25)

The Tersoff-Brenner potential [Brenner (1990)] pos-
sesses a bond order term that can be expressed in the
form shown in the k-summation term in equation (24).
Any subtended angle θ(i jk) created by two vectors r(i j)
and r(ik) can be obtained from the inner product of the
two vectors divided by their magnitudes.
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In the next section, the details of integrating atomistic
and continuum descriptions are shown. Typically, this
entails equating the atomistic energy to the free energy of
the solid under a zero temperature condition. However,
due to the finite element context, additional considera-
tions are needed.

4 Multiscale: Atoms and Continuum

There are two approaches for joining or linking such
that information can be exchanged between atomistic and
continuum regions. The first is to generate the mesh
based on the positions of the atoms such that each node
along an edge of the mesh coincides with an atom at the
edge of the lattice. This allows irreducible variables such
as displacements and velocities to be passed from one
region to the next. Problems involving the exchange of
irreducible variables generally contain distinct atomistic
and continuum regions with a definitive interface shared
between them. The second is to develop the constitu-
tive properties (a reducible variable used in context with
stresses and strains) for the continuum from the atomistic
potential. As a consequence of using reducible variables,
an atomistic region need not be defined separately from
a continuum region. Therefore kinematic linking is un-
necessary. The domain of a typical problem using this
approach generally contains only a continuum but has an
underlying lattice that is not modeled explicitly. The sec-
ond method is commonly accompanied in the literature
with liberal use of translation invariant properties of the
lattice (e.g. see Chung and Namburu (2003)). Trans-
lation invariance is necessary to give rise to continuum
models such as bulk elasticity.

The goal is to develop a method that is a combination of
both approaches. Although the atomic degrees of free-
dom are not modeled explicitly, as in lattice statics, the
atom positions are used with no assumption of translation
invariance. In the following, first the finite element equa-
tions are derived in the context of hyperelasticity. Then,
the modifications to the atomistic energy, namely the lat-
tice sums, are made that make the formulation energeti-
cally consistent over finite elements.

4.1 Continuum: Finite Elements

The aim here is to replace equation (10) with an approx-
imate energetically consistent finite element form. To do
this, approximate this problem with the simplest finite

element method using piecewise linear functions. Take
Ω = Ω∪∂Ω and let Ωh =

⋃
e Ωe ⊂ Ω with

γro < h ≤ ho and 0 < γ< 1 (26)

be a finite number of closed elements with disjointed but
conforming interiors. The parameter γ is adjustable so
that it restricts the smallest allowable element size, h, and
ensures that each element circumscribes at least one atom
(represented by the nearest neighbor distance, ro) leaving
no “vacuous” gaps in the mesh, i.e., the “smallness” of
the elements is restricted. With this discretization, equa-
tion (10) takes the new approximate form∫

Ω

(
∇ 0δuh

)T
:

∂2W h

∂F∂F
:
(

∇ 0vh
)

dΩ

=
∫

∂Ω
ṫ0 ·δuhdΓ +

∫
Ω

ḟ0 ·δuhdΩ, ∀δuh
(27)

where the script h denotes the finite element approxima-
tion. Then, in the usual manner, let

δuh = ∑
a

caNa, (28)

vh = ∑
a

vaNa, (29)

where a runs over all node numbers, ca is a constant, Na

is the shape function associated with node a and v a is the
unknown velocity at node a. Let Ba = ∇ 0Na. Then, for
all ca, the following must hold:

∑
e

∫
Ωe

∂2W h

∂F∂F
: (Ba ⊗Bb)vbdΩ

=
∫

Γ
ṫ0NadΓ +

∫
Ω

ḟ0NadΩ.

(30)

In the continuum finite element approximation (for hy-
perelasticity, in particular), it is commonly acceptable to
take W h uniform over all elements Ωe. For a crystal or
small crystallite, this is generally untrue. This has been
illustrated quite clearly in Shenoy (1999) in the mani-
festation of so-called ghost forces. For now, it is clear
these observations indicate the problem has both geomet-
ric and material nonlinearity. It remains to define W h

more precisely for material nonlinearity in the next sec-
tion. Careful accounting of the local definition of W h is
needed to ensure a finite element energy consistent with
the underlying atoms each element is meant to approx-
imate. The geometric nonlinearity can be treated using
numerous standard techniques. In this work, an updated
Lagrangian formulation is used.
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4.2 Atomistic: Lattice Sums

Assume that the modification of W h is

W h = W e +W e
overlap, (31)

where W e is the local energy of the element and W e
overlap

is half of the energy contained in the overlap. The union
of the element and overlap regions is the region over
which the condensation is performed.

For the set of all atoms A , define the atoms within each
element by A e such that A =

⋃
e Ae. Define a region

Ωe
overlap ⊂ Ω and let A e

overlap ⊂ A be the set of all atoms
in Ωe

overlap, and likewise, let A e ⊂ A be the set of atoms
in Ωe. Note that, in general, Ωe

overlap is not a simply con-
nected domain, and in general, A e ∩Ae

overlap �= /0. Figure
1 depicts these regions for a single four-noded element.
The region of width 2R(2) is the overlap region.

e
overlapΩ

eΩ
(2)R

(2)R

Figure 1 : An element Ωe and its associated overlap re-
gion Ωe

overlap.

The atom indices in the original potential defined in
equations (17)–(22), i.e., in the absence of any finite ele-
ment approximation, are defined by

W = W




i ∈ {A}
j ∈ {A ,> i}
k ∈ {A , �= i, j} .

(32)

With the finite element approximation, W is now ap-
proximated by W h locally within each element and the
indices must therefore be changed. From equation (31),

the new atom indices are defined by

W e = W




i ∈ {A e}
j ∈ {A e,> i}
k ∈ {Ae, �= i, j} .

and

W e
overlap =

1
2
W




i ∈
{

Ae∩Ae
overlap

}
j ∈
{

Ae
overlap\Ae,> i

}
k ∈ {Ae, �= i, j}.

.

(33)

The factor of 1/2 in equation (33) is needed to avoid
double counting the overlap energy in adjacent elements.
W e and W e

overlap now form the components of equation
(31), the energy of the finite element. In the next section,
the second derivative of this energy is used to estimate
the new effective first Lagrangian elasticity tensor.

4.3 Derivatives of the Potential

The first derivative of the strain energy gives the first
Piola-Kirchoff stress and the second gives the first La-
grangian elasticity tensor. By equating the atomistic po-
tential with the strain energy as in section 4.2, the stresses
and constitutive properties can be obtained from atom-
istic variables. The derivatives are first obtained with re-
spect to the fundamental variables of the potential, which
are the interatom vectors. Then, the chain rule yields ap-
propriate derivatives with respect to the gradients. The
details for the calculation of the Tersoff-Brenner poten-
tial are provided in the appendix and only general forms
are presented here.

The first Piola-Kirchoff stress is given by

P =
∂W
∂F

=
1
n

∂Eb

∂F
,

(34)

and using equation (25) with the the chain rule for deriva-
tives, it is

P =
1
n

∂Eb

∂F

=
1
n ∑

i
∑

j(>i)

∂E(i j)

∂r(i j)

∂r(i j)

∂F

+∑
i

∑
j(>i)

∑
k( �=i, j)

(∂E(i jk)

∂r(i j)

∂r(i j)

∂F

+
∂E(i jk)

∂r(ik)

∂r(ik)

∂F
+

∂E(i jk)

∂r( jk)

∂r( jk)

∂F

)
.

(35)
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The expression of the atomistic energy Eb contains only
the deformed component, i.e., Eb(x) in equation (16).
The derivative ∂Eb(X)/∂F is zero.

Using a similar approach with an additional derivative
yields the first Lagrangian elasticity tensor. This is the
traditional way of estimating the elastic properties of lat-
tices. The algebraic details are shown in the appendix.

∂2W
∂F∂F

=
1
n

∂2Eb

∂F∂F
(36)

The first Lagrangian elasticity tensor (36) is used as the
material property tensor in equation (30) subject to the
modification of equation (31).

5 Implementation

The details of the numerical implementation of the
method is presented in this section. All loads and bound-
ary conditions are applied directly to the mesh. Atoms
contribute to the problem only through the modified ma-
terial property tensor. Therefore, energy is minimized
only over nodal degrees of freedom.

The finite element method uses a standard implicit solu-
tion procedure at each incremental load step with an up-
dated Lagrangian formulation to update the mesh at each
step. The stiffness matrix is assembled on an element by
element basis using a second order numerical quadrature
rule. From equation (30), the quadrature rule for each
element stiffness matrix Kab is computed by

Kab =
∫

Ωe

∂2W h

∂F∂F
: (Ba ⊗Bb)dΩ

=
2

∑
r=1

2

∑
s=1

w(r, s)
∂2W h

∂F∂F
: (Ba(r, s)⊗Bb(r, s)),

(37)

where r and s run over the order of the quadrature rule,
w(r, s) are the quadrature weights and B(r, s) is the matrix
containing derivatives of the shape functions evaluated at
the quadrature points. The second derivative of W h is
presently assumed constant in each element, Ωe, but is a
nonlinear function of the position of the atoms. Newton
iterations are presently used to handle this nonlinearity.

The solution follows a standard finite element method
update procedure. It is based on quasistatic load incre-
ments with nonlinear material iterations, or quenching
iterations in a molecular dynamics sense. An iterative
conjugate gradient solver is presently used for the im-
plicit solution procedure and Newton iterations are used

for the nonlinear iterations. The algorithm is as follows:

for loadstep = 1 to maxloadstep do
for quenchstep = 1 to maxquenchstep do

for all elements do
compute ∂2W h/∂F2

assemble K
end for
apply incremental nodal constraints and/or loads
solve K∆u = f
update iterative atom positions
test convergence

end for
update mesh Xa = Xa +∆u
update atom positions
compute new atomistic energy

end for

An additional algorithm is used inside the element loop
to search in a cluster of atoms for those atoms that are
inside the element and overlap regions, respectively. The
size of the cluster is determined in the first load step and
stored for use in subsequent steps. The search procedure
is based on an algorithm due to Eberly (2002) that finds
the distance between a point and a triangle in a plane.
In the search algorithm, the quadrilateral is constructed
from two triangles.

Within each quench iteration, the atom positions are up-
dated using equation (39) on an element-by-element ba-
sis. This results in atom deformation patterns like the one
depicted schematically in Figure 2. The overlap region
for the center element encompasses atoms in adjacent el-
ements that, when combined, are not in a homogeneous
deformation pattern.

6 Examples

In this section, several results are validated with lat-
tice statics solutions that are obtained through quenched
molecular dynamics simulations that employ the Tersoff
potential [Tersoff (1988); Rifkin (2002)]. Planar prob-
lems are considered to demonstrate the method without
loss of generality. The formulations can be extended
readily to more complicated 3-D systems. Fixed dis-
placement conditions are used in each example. The
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overlap region
outer boundary of

Figure 2 : Deformation is homogeneous in each element
but inhomogeneous with overlap region included.

problem is of a graphene sheet one atom thick. The con-
ditions are illustrated schematically in Figure 3. Two
load cases are considered along one edge of the sheet: I)
a uniform displacement condition and II) a non-uniform
displacement condition starting at zero at the top edge
and linearly increasing to the bottom edge. The applied
displacement magnitudes in load case II depend on the
position of the nodes (and atoms) in the reference unde-
formed configuration.
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Figure 3 : Load conditions for examples. Load I is
a uniform displacement conditions and Load II is non-
uniform.

All degrees of freedom on the left edge of the sheet
are constrained in the X1 direction and are free in the
X2 direction. However, one degree of freedom in the
X2 direction is constrained to remove rigid body solu-
tions. Applied displacements on the right edge of the
sheet are applied in increments. All results are for qua-
sistatically applied displacement increments. This means
that nonlinear iterations are performed in each load incre-
ment until nodal displacements between iterations sat-
isfy |u| = √

u ·u < tol where the tolerance tol is set to
tol = 10−10Å. For the molecular dynamics, the atoms
are quenched with each incremental displacement. This
is performed by setting a bath temperature to 200 K and
cooling adiabatically for 250-1000 time steps of 10 −16

seconds each. The quenching process involves setting

the velocity of an atom to zero whenever the energy of
that atom rises above its value from the previous time
step. The process continues until the total kinetic en-
ergy reaches a small tolerance value. For 1000 quenching
steps the average tolerance is 3×10−6 eV, for 500 steps
2×10−5 eV, and for 250 steps 1×10−4 eV.

Two sheets of graphene one atom thick were tested. The
first has 66 atoms and is depicted by Sheet A in Figure 4.
The second has 1952 atoms and is depicted by Sheet B
in Figure 5.

Figure 4 : Sheet A: Graphene with 66 atoms of dimen-
sions 12.5632 Å× 11.6054 Å.

Figure 5 : Sheet B: Graphene with 1952 atoms of dimen-
sions 75.3794 Å× 68.1819 Å.

Varying levels of mesh refinement were tested for both
load conditions. The number of elements used in Sheet
A are 4, 9, 16, and 25. The number of elements used for
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Sheet B are 4, 36, 100, 225, 400, 625, and 900. The ex-
tent of the refinement is limited by the size restriction on
each element established in equation (26). For the exam-
ples considered, each mesh is composed of quadrilateral
elements. The local atom positions within each deformed
element are interpolated using the isoparametric shape
functions. The local position coordinates (η 1α ,η2α ) and
global position coordinates in the reference configuration
(X1α ,X2α) are related by

η1α =
2
L

X1α −1

η2α =
2

W
X2α −1.

(38)

where L and W are the element dimensions. Then, based
on (η1α ,η2α ), the position coordinates in the deformed
configuration xα = (x1α ,x2α ) are given by

xα =
4

∑
a=1

Na(ηηηα)xa. (39)

6.1 Bulk Elastic Properties

Using the second derivative of the Tersoff-Brenner po-
tential, the bulk values for the first Lagrangian elasticity
tensor (in units eV/atom) for graphene were computed,

C1111 = 66.51 C2112 = 21.63, (40)

C1122 = 20.06 C2121 = 24.83, (41)

C1212 = 24.83 C2211 = 20.06, (42)

C1221 = 21.63 C2222 = 66.51, (43)

and all remaining terms are zero. It is important to note
that although the bulk properties for graphene possess
several symmetry planes, the elements for the present
methodology will not generally possess the same sym-
metries because the number of atoms in each element is
much smaller than normally acceptable for bulk behav-
ior and the atoms and nodes in general do not coincide.
This also implies that the atom structure in each element
is nonperiodic, a necessary feature needed to capture
nonlocal behavior. The equilibrium energy is -7.37563
eV/atom and nearest neighbor bond length 1.4507 Å.
For an assumed layer thickness of 3.4 Å, which is the
standard layer separation thickness for graphite, the ef-
fective Young’s modulus from the present calculation
is Y = 1.261 TPa with an effective Poisson’s ratio of
0.302. These values agree well with measured values
for graphite and carbon nanotubes [Krishnan, Dujardin,
Ebbesen, Yianilos, and Treacy (1998)].

6.2 Numerical Performance

Comparisons between load steps and iterations are shown
in Table 2. Numerical tolerance or convergence is de-
fined as the point where doubling the number of dis-
placement increments (halving the size of each incre-
ment) changes the final energy of the system by less than
0.05%. The quench steps required in the molecular dy-
namics simulations to obtain the static configuration of
the atoms are analogous with the nonlinear iterations that
satisfy the convergence criteria above in the finite ele-
ment method.

Table 2 : Displacement increments and quench steps
needed for convergence at 20% strain.

Displacement Increments Quench Steps
Present 200 ≤10

MD 4000 250–1000

6.3 Strain Energy and Deformation Comparisons

Strain energies computed for Sheet A using Load Case I
are shown for both the present finite element method and
quenched MD in Figure 6. The results for 4, 9, 16, and 25
elements are indistinguishable at small strains (roughly
≤ 5%). No noticeable trends in the strain energies can
be observed with refinement. At an edge displacement
of approximately 3 Å, the finite element and quenched
MD results diverge significantly. This is attributable to
the larger cut-off zone used in the the MD simulations.
Whereas the present finite element cut-off zone begins
earlier and ranges between (1.7 Å, 2.0 Å), the MD cut-
off zone ranges between (1.8 Å, 2.1 Å). The cut-off zones
specify the ranges beyond which atom interactions are
neglected. That is, any pair of atoms whose distance
apart exceeds the range of the cut-off zone are omitted
in the calculation of the potential. It is useful to note that
3 Å corresponds to approximately 25% strain which is far
larger than conventionally accepted for the elastic regime
and therefore presently indicates good agreement far into
the inelastic regime.

The linear elastic curve is also shown for comparison.
This result is equivalent to a straight application of the
Cauchy-Born rule without iterating for the converged
material response at each load step.

Strain energies for Sheet B using Load Case I are shown
in Figure 7. Again, the mesh refinement produces no
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Figure 6 : Strain energy for Sheet A under Load Case I.

distinguishable differences among the different meshes,
further demonstrating the viability of the present method
for small scales. Also, as in Sheet A, the agreement in
the elastic regime (roughly all strains smaller than 5%)
is nearly exact, and shows excellent agreement up to
approximately 25% strain. The linear result again also
shows a stiffer response. This time, however, the differ-
ence is more pronounced because of the more complex
interactions accompanying a problem with many more
atoms.
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Figure 7 : Strain energy for Sheet B under Load Case I.

For the twisting deformations in Load Case II, the
strain energy comparisons between finite elements and
quenched MD are shown in Figures 8 and 9. As in Load
Case I, differences at small strains are not noticeable.
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Figure 8 : Strain energy for Sheet A under Load Case II.
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Figure 9 : Strain energy for Sheet B under Load Case II.

The deformation shape for Sheet B under Load Case II at
21% elongation at the lower edge is shown in Figure 10
with the analogous atomistic solution in Figure 11.

At sufficiently large strain, the lower edge exhibits
bond breaking which characterizes material failure. The
present finite element method accurately predicts the
bond breaking zone in a qualitative sense but does not
predict the bond breaking itself. The inability to predict
broken bonds is due to the assumption of the kinematic
mapping scheme from equation (39). In the event of ma-
terial failure, the atoms detach and create a free surface.
Equation (39) prevents this from occuring by artificially
forcing the atoms to remain in positions that have one-
to-one correspondence with the original undeformed lat-
tice. Therefore, it is envisioned that energetically acti-
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Figure 10 : Deformation configurations for finite ele-
ments and quenched MD at 21% elongation at the lower
edge for Sheet B Load Case I. Mesh and lattice deformed
configurations.

vated phenomena such as crack propagation cannot be
modeled using the proposed approach. Instead, in re-
gions where highly energetic processes occur, a molecu-
lar dynamics scheme at finite temperature with full atom-
istic resolution should be used.

Figure 12 shows the high strain region (showing
√

F : F)
at 20% elongation at the lower edge. As the edge is fur-
ther elongated, the strain magnitudes increase and the
sheet of atoms begin to tear at this leading edge as de-
picted in Figure 13. At this extent of elongation, the fi-
nite element result has difficulty converging numerically.

It is of further interest to note that at the material failure
event, the energy computed by finite elements discon-
tinuously increases while the quenched MD result dis-
continuously decreases. The reason for this follows the
explanation for the inability of finite elements to predict
broken bonds. The isoparametric mapping scheme forces
atoms that have debonded to remain unrealistically sus-
pended, thus isolating them and creating an artificially
high energy equivalent to the lattice dissociation energy
of graphite. This leads to a very high energy being stored
in the lattice and appears in a positive energy jump in
the calculations. In reality, the material failure event cre-
ates two distinct surfaces with few or no atoms left sus-
pended (this is an assumed quasistatic process) which has
a far lower energy than a dissociated lattice. Hence this
is characterized by a sudden energy decrease or energy
release.

Figure 11 : Deformation configurations for finite ele-
ments and quenched MD at 21% elongation at the lower
edge for Sheet B Load Case I. Quenched MD lattice in
deformed configuration.

Figure 12 : Deformation magnitudes for Sheet B using
900 elements under Load Case II.

7 Discussion and Concluding Remarks

A finite element method based on lattice statics has been
developed. Its purpose is to provide a computational me-
chanics framework for replacing small volumes (or ar-
eas) of atoms with a coarser finite element mesh. This
capability is potentially useful in application for multi-
scale methods at the interface region, where continuum
and atomistic domains are juxtaposed, and for estimating
the mechanical response of very small scale devices.

The method provides several advantages over lattice stat-
ics or quenched molecular dynamics calculations. It cre-
ates a reduced number of degrees of freedom, which de-
creases the total number of equations to solve. An ar-
bitrary reduction in the number of equations was tested
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Figure 13 : Quenched MD simulation of sheet tearing.
Bonds begin to break in lower right corner.

with different meshes and was found to yield accurate
results for all refinements. The total number of nonlin-
ear material iterations was found to be at least one or-
der of magnitude smaller than the number of quenching
steps needed in a molecular dynamics calculation to get
the static configuration of the lattice. The size of each
displacement increment was also allowed to be at least
one order of magnitude larger than in the quenched MD
simulations, allowing the lattice to reach its final config-
uration much faster.

As evidenced in the examples of small sheets of graphene
under inhomogeneous deformation up to the moment of
failure, the present method also provides insight into
the mechanics of nanoscale devices. In a pseudo-linear
regime where strains and deformation are very large
(about 20% strain) but before gross material failure has
occurred, the method is very accurate relative to the lat-
tice statics calculations and even correctly predicts inho-
mogeneous strain patterns which sheds light on regions
of potential atomistic/material failure. Adaptive tech-
niques such as the quasicontinuum method [Tadmor, Or-
tiz, and Phillips (1996)] can then be applied to refine the
calculations in these regions by substituting the element
with more accurate molecular dynamics. The method
may also be useful for studies of mechanical instabilities
in nanotubes by predicting regions along the tube axis
that are subject to buckling, kinking, or the like.

Some limitations of the method are also evident from the
present study. Although the method correctly accounts
for the material symmetries of the crystal because it is
based on a finite element continuum method, it is not

yet general enough to handle energy invariant deforma-
tions. That is, deformations that map the lattice onto
itself, such as shear along a plane of atoms or along a
stacking fault which require extensive gross deformation
of the elements, cannot be considered using the present
models alone. Such problems are the topics of numerous
investigations currently underway.
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Appendix A: Derivatives of the Tersoff-Brenner Po-
tential

The derivatives needed to form the first Piola-Kirchoff
stress and first Lagrangian elasticity tensor are shown
here in detail. To simplify the notation, we define the
following expressions,

r(i j) =
∣∣r(i j)

∣∣ , (44)
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f
′
(i j)(r) =

∂ f(i j)

∂r(i j)
f
′′
(i j)(r) =

∂2 f(i j)

∂r2
(i j)

. (45)

Note that although the equations are written in compo-
nent form with respect to atoms, it is still in dyadic no-
tation due to the multi-axial components of r (i j). That
is r(i j) · e1 is the component of the vector originating at
atom i and terminating at atom j in the direction of e 1,
r(i j) ·e2 is the component in the direction of e2, etc. From
equations (17)–(22), the derivatives in equation (35) are
defined by

∂Eb

∂r(i j)
= ∑

i
∑

j(>i)

[
V

′
R

∂r(i j)

∂r(i j)
−VA

∂B
∂r(i j)

−BV
′
A

∂r(i j)

∂r(i j)

]
,

(46)

∂Eb

∂r(ik)
= ∑

i
∑

j(>i)

[
−VA

∂B
∂r(ik)

]
, (47)

∂Eb

∂r( jk)
= ∑

i
∑

j(>i)

[
−VA

∂B
∂r( jk)

]
, (48)

∂VR

∂r(i j)
= V

′
R = f

′
(i j)

D(e)

(S−1)
e−α1(r(i j)−R(e))−

α1
f(i j)D

(e)

(S−1)
e−α1(r(i j)−R(e)), (49)

∂VA

∂r(i j)
= V

′
A = f

′
(i j)

D(e)S
(S−1)

e−α2(r(i j)−R(e))−

α2
f(i j)D(e)S

(S−1)
e−α2(r(i j)−R(e)), (50)

∂B
∂r(i j)

=
1
2

{
−δB

1+ 1
δ

(i j) ∑
k �=(i, j)

[∂G(θ(i jk))
∂r(i j)

f(ik)

]
−

δB
1+ 1

δ
( ji) ∑

k �=(i, j)

[∂G(θ( jik))
∂r(i j)

f(ik)

]}
, (51)

∂B
∂r(ik)

= −δ
2

B
1+ 1

δ
(i j) ∑

k �=(i, j)

[∂G(θ(i jk))
∂r(ik)

f(ik)+

G(θ(i jk)) f
′
(ik)

∂r(ik)

∂r(ik)

]
, (52)

∂B
∂r( jk)

= −δ
2

B
1+ 1

δ
( ji) ∑

k �=(i, j)

[∂G(θ( jik))
∂r( jk)

f jk+

G(θ( jik)) f
′
jk

∂r( jk)

∂r( jk)

]
, (53)

∂G(θγ)
∂r(mn)

=
2aoc2

o(1+cosθγ)[
d2

o +(1+cos θγ)2
]2 ∂cosθγ

∂r(mn)
, (54)

for (mn) = (i j), (ik) when γ= (i jk) and (mn)= (i j), ( jk)
when γ = ( jik). The angles θ(i jk) and θ( jik), shown in
Figure 14, are the angles subtending the connecting lines
at the atoms i and j, respectively. Note that r (i j) =−r( ji).
The following identities can also be shown

j

k

i

r

θ(jik)

(ij)r

(jk)

(ji)r

(ijk)θ

(ik)r

Figure 14 : Angles and inter-atom vectors.

∂r(i j)

∂r(i j)
=

∂(r(i j) · r(i j))1/2

∂r(i j)

=
1
2

1
r(i j)

2r(i j)

=
r(i j)

r(i j)
,

(55)

∂cosθ(i jk)

∂r(i j)
=

∂
∂r(i j)

(
r(i j) · r(ik)

r(i j)r(ik)

)

=
r(ik)

r(i j)r(ik)
− r(i j)

r2
(i j)

cosθ(i jk), (56)

∂cosθ(i jk)

∂r(ik)
=

r(i j)

r(i j)r(ik)
− r(ik)

r2
(ik)

cosθ(i jk), (57)

∂cosθ( jik)

∂r(i j)
= − r( jk)

r( ji)r( jk)
+

r( ji)

r2
( ji)

cosθ( jik), (58)

∂cosθ( jik)

∂r( jk)
=

r( ji)

r( ji)r( jk)
− r( jk)

r2
( jk)

cosθ( jik). (59)

It is important to note that

∂r(i j)

∂q(m)
=




−I m = i
I m = j
0 m �= (i, j)

, (60)
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where I is the 3×3 identity tensor for a system in a three
dimensional domain. The derivative with respect to r (ik)
can be obtained likewise. This indicates that the summa-
tions in equations (46), (47), (51), and (52), when mul-
tiplied by (60) in (35) are nontrivial if and only if m is
equal to i, j, or k.

For the first Lagrangian elasticity tensor in equation (36),
the differential terms are defined by,

∂2Eb

∂r(i j)∂r(i j)
=∑

i
∑

j(>i)

[(
V

′′
R −BV

′′
A

)(∂r(i j)

∂r(i j)
⊗ ∂r(i j)

∂r(i j)

)

+V
′
A

∂2r(i j)

∂r(i j)∂r(i j)
−V

′
A

(
∂B

∂r(i j)
⊗ ∂r(i j)

∂r(i j)

)

−VA
∂2B

∂r(i j)∂r(i j)
−V

′
A

(∂r(i j)

∂r(i j)
⊗ ∂B

∂r(i j)

)]
,

(61)

∂2Eb

∂r(i j)∂r(ik)
=∑

i
∑

j(>i)

[
−V

′
A

(
∂B

∂r(ik)
⊗ ∂r(i j)

∂r(i j)

)

−VA
∂2B

∂r(i j)∂r(ik)

]
,

(62)

∂2Eb

∂r(ik)∂r(i j)
=∑

i
∑

j(>i)

[
−V

′
A

(∂r(i j)

∂r(i j)
⊗ ∂B

∂r(ik)

)

−VA
∂2B

∂r(ik)∂r(i j)

]
, (63)

∂2Eb

∂r(ik)∂r(ik)
=∑

i
∑

j(>i)

[
−VA

∂2B
∂r(ik)∂r(ik)

]
, (64)

∂2Eb

∂r( jk)∂r( jk)
=∑

i
∑

j(>i)

[
−VA

∂2B
∂r( jk)∂r( jk)

]
, (65)

∂2Eb

∂r(i j)∂r( jk)
=∑

i
∑

j(>i)

[
−V

′
A

(∂r(i j)

∂r(i j)
⊗ ∂B

∂r( jk)

)

−VA
∂2B

∂r(i j)∂r( jk)

]
, (66)

∂2Eb

∂r( jk)∂r(i j)
=∑

i
∑

j(>i)

[
−V

′
A

(
∂B

∂r( jk)
⊗ ∂r(i j)

∂r(i j)

)

−VA
∂2B

∂r( jk)∂r(i j)

]
, (67)

∂2Eb

∂r(ik)∂r( jk)
=∑

i
∑

j(>i)

[
−VA

∂2B
∂r(ik)∂r( jk)

]
, (68)

∂2Eb

∂r( jk)∂r(ik)
=∑

i
∑

j(>i)

[
−VA

∂2B
∂r( jk)∂r(ik)

]
, (69)

and additional algebra yields,

V
′′
R =

∂2VR

∂r(i j)∂r(i j)
=

[
f
′′
(i j)D

(e)

(S−1)
−

2α1 f
′
(i j)D

(e)

(S−1)

+
α2

1 f(i j)D(e)

(S−1)

]
e−α1(r(i j)−R(e)), (70)

V
′′
A =

∂2VA

∂r(i j)∂r(i j)
=

[
f
′′
(i j)D

(e)S

(S−1)
−

2α2 f
′
(i j)D

(e)S

(S−1)

+
α2

2 f(i j)D(e)S

(S−1)

]
e−α2(r(i j)−R(e)), (71)

∂2B
∂r(i j)∂r(i j)

= −(δ+1)
2

B
1
δ
(i j) ∑

k �=(i, j)
f(ik)

(∂G(θ(i jk))
∂r(i j)

⊗ ∂B(i j)

∂r(i j)

)

− δ
2

B
1+ 1

δ
(i j) ∑

k �=(i, j)

(
f(ik)

∂2G(θ(i jk))
∂r(i j)∂r(i j)

)

− (δ+1)
2

B
1
δ
( ji) ∑

k �=(i, j)
f jk

(∂G(θ( jik))
∂r(i j)

⊗ ∂B( ji)

∂r(i j)

)

− δ
2

B
1+ 1

δ
( ji) ∑

k �=(i, j)

(
f jk

∂2G(θ( jik))
∂r(i j)∂r(i j)

)

(72)

∂2B
∂r(i j)∂r(ik)

= −(δ+1)
2

B
1
δ
(i j) ∑

k �=(i, j)

[
f(ik)

(
∂G(θ(i jk))

∂r(ik)
⊗ ∂B(i j)

∂r(i j)

)

+G(θ(i jk)) f
′
(ik)

(∂r(ik)

∂r(ik)
⊗ ∂B(i j)

∂r(i j)

)]

− δ
2

B
1+ 1

δ
(i j) ∑

k �=(i, j)

[
f(ik)

∂2G(θ(i jk))
∂r(i j)∂r(ik)

+ f
′
(ik)

(
∂r(ik)

∂r(ik)
⊗ ∂G(θ(i jk))

∂r(i j)

)]
,

(73)
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∂2B
∂r(ik)∂r(i j)

= −(δ+1)
2

B
1
δ
(i j) ∑

k �=(i, j)

[
f(ik)

(∂G(θ(i jk))
∂r(i j)

⊗ ∂B(i j)

∂r(ik)

)]

− δ
2

B
1+ 1

δ
(i j) ∑

k �=(i, j)

[
f(ik)

∂2G(θ(i jk))
∂r(ik)∂r(i j)

+ f
′
(ik)

(∂G(θ(i jk))
∂r(i j)

⊗ ∂r(ik)

∂r(ik)

)]
,

(74)

∂2B
∂r(ik)∂r(ik)

= −(δ+1)
2

B
1
δ
(i j) ∑

k �=(i, j)

[
f(ik)

(∂G(θ(i jk))
∂r(ik)

⊗ ∂B(i j)

∂r(ik)

)

+G(θ(i jk)) f
′
(ik)

(
∂r(ik)

∂r(ik)
⊗ ∂B(i j)

∂r(ik)

)]

− δ
2

B
1+ 1

δ
(i j) ∑

k �=(i, j)

[
f(ik)

∂2G(θ(i jk))
∂r(ik)∂r(ik)

+2 f
′
(ik)

(∂r(ik)

∂r(ik)
⊗ ∂G(θ(i jk))

∂r(ik)

)

+G(θ(i jk)) f
′′
(ik)

(∂r(ik)

∂r(ik)
⊗ ∂r(ik)

∂r(ik)

)

+G(θ(i jk)) f
′
(ik)

∂2r(ik)

∂r(ik)∂r(ik)

]
.

(75)

∂2B
∂r(i j)∂r( jk)

= −(δ+1)
2

B
1
δ
( ji) ∑

k �=(i, j)

[
f jk

(
∂G(θ( jik))

∂r( jk)
⊗ ∂B( ji)

∂r(i j)

)

+G(θ( jik)) f
′
jk

(∂r( jk)

∂r( jk)
⊗ ∂B( ji)

∂r(i j)

)]

− δ
2

B
1+ 1

δ
( ji) ∑

k �=(i, j)

[
f jk

∂2G(θ( jik))
∂r(i j)∂r( jk)

+ f
′
jk

(
∂r( jk)

∂r( jk)
⊗ ∂G(θ( jik))

∂r(i j)

)]
,

(76)

∂2B
∂r( jk)∂r(i j)

= −(δ+1)
2

B
1
δ
( ji) ∑

k �=(i, j)

[
f jk

(∂G(θ( jik))
∂r(i j)

⊗ ∂B( ji)

∂r( jk)

)]

− δ
2

B
1+ 1

δ
( ji) ∑

k �=(i, j)

[
f jk

∂2G(θ( jik))
∂r( jk)∂r(i j)

+ f
′
jk

(∂G(θ( jik))
∂r(i j)

⊗ ∂r( jk)

∂r( jk)

)]
,

(77)

∂2B
∂r( jk)∂r( jk)

= −(δ+1)
2

B
1
δ
( ji) ∑

k �=(i, j)

[
f jk

(∂G(θ( jik))
∂r( jk)

⊗ ∂B( ji)

∂r( jk)

)

+G(θ( jik)) f
′
jk

(∂r( jk)

∂r( jk)
⊗ ∂B( ji)

∂r( jk)

)]

− δ
2

B
1+ 1

δ
( ji) ∑

k �=(i, j)

[
f jk

∂2G(θ( jik))
∂r( jk)∂r( jk)

+2 f
′
jk

(∂r( jk)

∂r( jk)
⊗ ∂G(θ( jik))

∂r( jk)

)

+G(θ( jik)) f
′′
jk

(∂r( jk)

∂r( jk)
⊗ ∂r( jk)

∂r( jk)

)

+G(θ( jik)) f
′
jk

∂2r( jk)

∂r( jk)∂r( jk)

]
,

(78)

and finally,

∂2B
∂r(ik)∂r( jk)

=
∂2B

∂r( jk)∂r(ik)
= 0, (79)

∂2r(i j)

∂r(i j)∂r(i j)
=

I
r(i j)

− r(i j)⊗r(i j)

r3
(i j)

. (80)

To complete the derivation, the following identities are
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needed,

∂2G
∂r(mn)∂r(pq)

=
(−8aoc2

o(1+cosθγ)2

(d2
o +(1+cos θγ)2)3 +

2aoc2
o

(d2
o +(1+cos θγ)2)2

)

×
(

∂cosθγ

∂r(pq)
⊗ ∂cosθγ

∂r(mn)

)

+
2aoc2

o(1+cosθγ)
(d2

o +(1+cosθγ)2)2

∂2 cosθγ

∂r(mn)∂r(pq)
,

(81)

with the appropriate combinations of (mn, pq) =
(i j, i j), (i j, ik),(ik, i j), (ik, ik) for γ= i jk and (mn, pq) =
(i j, jk), ( jk, i j), ( jk, jk) for γ= jik, and,

∂2 cosθ(i jk)

∂r(i j)∂r(i j)
=− 1

r3
(i j)r(ik)

(
r(i j) ⊗r(ik)

)

− cosθ(i jk)I

r2
(i j)

+
3cosθ(i jk)

r4
(i j)

(
r(i j) ⊗r(i j)

)

− 1

r3
(i j)r(ik)

(
r(ik)⊗r(i j)

)
, (82)

∂2 cosθ(i jk)

∂r(i j)∂r(ik)
=− 1

r3
(i j)r(ik)

(
r(i j) ⊗r(i j)

)

− 1

r(i j)r
3
(ik)

(
r(ik)⊗r(ik)

)
(83)

+
cosθ(i jk)

r2
(i j)r

2
(ik)

(
r(ik)⊗r(i j)

)
+

I
r(i j)r(ik)

,

∂2 cosθ(i jk)

∂r(ik)∂r(i j)
=− 1

r3
(i j)r(ik)

(
r(i j) ⊗r(i j)

)

− 1

r(i j)r
3
(ik)

(
r(ik)⊗r(ik)

)
(84)

+
cosθ(i jk)

r2
(i j)r

2
(ik)

(
r(i j)⊗r(ik)

)
+

I
r(i j)r(ik)

,

∂2 cosθ(i jk)

∂r(ik)∂r(ik)
=− 1

r(i j)r3
(ik)

(
r(ik)⊗r(i j)

)

− cosθ(i jk)I

r2
(ik)

+
3cosθ(i jk)

r4
(ik)

(
r(ik)⊗r(ik)

)

− 1

r(i j)r3
(ik)

(
r(i j) ⊗r(ik)

)
, (85)

∂2 cosθ( jik)

∂r(i j)∂r(i j)
=− 1

r3
( ji)r( jk)

(
r( jk)⊗r( ji)

)

+
cosθ( jik)I

r2
( ji)

+
3cosθ( jik)

r4
( ji)

(
r( ji)⊗r( ji)

)

− 1

r3
( ji)r( jk)

(
r( ji)⊗r( jk)

)
, (86)

∂2 cosθ( jik)

∂r(i j)∂r( jk)
=

1

r3
( ji)r( jk)

(
r( ji)⊗r( ji)

)

+
1

r( ji)r3
( jk)

(
r( jk)⊗r( jk)

)
(87)

− cosθ( jik)

r2
( ji)r

2
( jk)

(
r( jk)⊗r( ji)

)− I
r( ji)r( jk)

,

∂2 cosθ( jik)

∂r( jk)∂r( ji)

=
1

r3
( ji)r( jk)

(
r( ji)⊗r( ji)

)

+
1

r( ji)r3
( jk)

(
r( jk)⊗r( jk)

)

− cosθ( jik)

r2
( ji)r

2
( jk)

(
r( ji) ⊗r( jk)

)− I
r( ji)r( jk)

, (88)

∂2 cosθ( jik)

∂r( jk)∂r( jk)
=− 1

r( ji)r3
( jk)

(
r( ji)⊗r( jk)

)

− cosθ( jik)I

r2
( jk)

+
3cosθ( jik)

r4
( jk)

(
r( jk)⊗r( jk)

)

− 1

r( ji)r
3
( jk)

(
r( jk)⊗r( ji)

)
. (89)

This completes the derivatives of the potential.

Despite the relative algebraic complexity of the expres-
sions, the calculations can be performed readily using
computers. The algorithm is based on an additive as-
sembly process by casting the equations in their equiva-
lent matrix forms and then summing over all unique pairs
and triples of atoms, which translates well to an iterative
computational methodology.


