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Micropolar Theory and Its Applications to Mesoscopic and Microscopic Problems

Youping Chen1, James D Lee2 and Azim Eskandarian1

Abstract: This paper addresses the need of theories
and simulations for material body of mesoscopic and mi-
croscopic sizes. An overview of polar theories is pre-
sented. The micropolar theory proposed by Eringen is in-
troduced and compared with other polar theories. Consti-
tutive equations of micropolar thermo-visco-elastic solid
are derived. Finite element analyses have been per-
formed for a few sample problems with wide range of
length scales. Based on the discussion, comparison and
computer simulations, the unique feature and applicabil-
ity of micropolar theory are demonstrated.

keyword: continuum, micropolar, finite element,
length scale.

1 Introduction

The entire physical science is based on two fundamen-
tal physical models: (1) discrete atomic models, (2) con-
tinuum field theories. Those two models provide foun-
dations for all physical theories and the success of both
models has been demonstrated and tested throughout the
history of science in explaining and predicting diverse
physical phenomena. There is no doubt that quantum
mechanics, molecular dynamics and lattice dynamics are
fundamental to science. On the other hand, the resort to
the continuum model is often justified on the basis of ex-
pediency and practicality.

In the enormous gap between two physical models re-
sides a very rich physical world that is extremely rele-
vant to science and technology. Hence, significant efforts
have been made to try to reach this region from either
the atomic or the continuum end. Molecular dynamics
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simulation with several hundreds to several millions of
atoms has become an extremely popular tool to explore
the nanotechnology and to reveal the hidden mechanisms
and correlations underlying the macroscopic behavior. It
is estimated that one billion atoms can be included in a
calculation with the current most advanced parallel com-
puting technology; this would allow a specimen size up
to four microns on the time scale of picoseconds. Obvi-
ously, this is still too far to reach a real time simulation
for a specimen of finite size.

The approach to this intermediate region from the con-
tinuum end begins with polar theories. Those theories
supply just the necessary apparatus to treat various prob-
lems relevant to materials with microstructure and micro-
motion. The aim of this paper is to illustrate why polar
theories are complimentary, and when used properly they
bear fruits that cannot be harvested by means of either
atomic model or classic continuum model alone.

2 An Overview of Polar Theories

The beginning of the rational theories of polar continua
goes back to E. and F. Cosserat (1909) in 1909, who, in a
remarkable memoir, developed a theory of elasticity with
the concept of “triedre” by means of a variational princi-
ple. The Cosserats obtained equations for the balance of
momenta in the dynamic case. But they did not give a
specific microinertia, nor did a conservation law for the
microinertia tensor, which are crucial to the construction
of constitutive equations and dynamical problems. The
rigid directors used by the Cosserats and later by others
to represent rigid rotations did not have metrical signifi-
cance. Consequently, difficulties are encountered in the
treatment of material symmetry regulations in constitu-
tive equations. Gunther (1958) and Schaefer (1967) reca-
pitulated the Cosserats elasticity and remarked on its con-
nection to dislocations. In that theory, the anti-symmetric
part of the stress tensor is redundant and it remains unde-
termined.

Extensive developments, however, have taken place dur-
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ing the past decades. Among the various contributors
to this field it is worthwhile to mention Truesdell and
Toupin (1960)], Mindlin and Tiersten (1962), Toupin
(1962), and Eringen (1962). These early theories are
mostly known as the “constrained” continuum theories.
Later Mindlin (1964) constructed a theory of elasticity
with microstructure, Green and Rivilin (1964) a gen-
eral multipolar theory. These theories, as well as “con-
strained” continuum theories, have close contact with
Eringen’s polar (micromorphic and micropolar) theory
(Eringen and Suhubi (1964), Eringen (1965, 1967), Lee
(1971), Lee and Eringen (1971a, 1971b, 1974)). In this
polar theory, the material body is envisioned as a collec-
tion of a large number of deformable particles (point par-
ticles), each was endowed with three directors. A mate-
rial point is then equipped with the independent degrees
of freedom for rigid rotations (micropolar) or for both
stretches and rotations (micromorphic), in addition to the
classical translation degrees of freedom of the center. A
new conservation law of microinertia, which was miss-
ing from all other polar theories, was derived in both the
micropolar and micromorphic theories. The evolution of
the inertia tensor with motion determines the anisotropic
character of the body at any time. Moreover, the phase
transitions are the results of the change of the microiner-
tia tensor with temperature. Without the balance law of
the microinertia tensor, basic field equations are incom-
plete and the evolution of the constitution of the body
with motion cannot be determined.

As the recent application of metals and polymers at the
micron scale are multiplying, several plasticity theories
for application in micron region have been proposed. The
theory invoking strengthening by the Laplacians of ef-
fective strain has proved effective in dealing with plas-
tic instabilities at dislocation patterning or shear local-
ization (Aifantis (1984), Zbib and Afantis (1989), Poliz-
zotto and Borino (1998), Shizawa and Zbib (1999)). A
variety of size dependent phenomena, including torsion
of thin wires, growth of microvoids, indentation tests, et
al., have been interpreted in terms of stretching gradient
effect or rotation gradient effect or both by a strain gradi-
ent plasticity (Fleck and Hutchinson (1997)). This theory
involves all components of the strain gradient tensor and
work conjugate higher-order stresses in the form of cou-
ple stresses and double stresses, and falls within Toupin’s
(1962) couple stress theory. Shizawa and Zbib (1999) de-
veloped a gradient theory for thermo-elastic-plasticity, in

which the concept of dislocation density tensor was in-
troduced and thermodynamically consistent constitutive
equations for plastic stretch, plastic spin and back stress
were derived. For numerical implementation of strain
gradient theories it is worthwhile to mention the recent
works by Tenek and Aifantis (2002), Chen, Huang and
Wittmann (2002), and Tang, Shen and Atluri (2003).

The basic objective of those recently developed gradi-
ent theories is the extension of continuum mechanics to
the micron range for applications to phenomena involv-
ing size effect. They are close to polar theory. However,
the essential difference between Eringen’s polar theory
and those newly developed strain gradient theories is ob-
vious: the micromotion in Eringen’s theory is not treated
as the gradient of the macro-strain.

2.1 The Framework of Polar Theories (micromorphic
and micropolar)

Eringen’s microcontinuum field theories constitute ex-
tensions of the classical field theories to microscopic
space and time scales. In terms of a physical picture,
a material body is envisioned as a continuous collection
of a large number of deformable particles whose motions
can be expressed as

xk = xk(X , t) , (1)

ξk = χkK(X , t)ΞK (2)

It is seen that the macromotion, eqn. (1), accounts for
the motion of the centroid of the particle while the mi-
cromotion, eqn. (2), specifies the changing of orientation
and the deformation of the inner structures of the particle.
The inverse motions can be written as

XK = XK(x, t) , ΞK = χKk(x, t)ξk , (3)

with

χkK χKl = δkl , χKk χkL = δKL . (4)

The balance laws of micromorphic continuum were
obtained by Eringen and Suhubi (1964) and Eringen
(1964,1992) as follows:

ρ̇+ρvk,k = 0 , (5)

d
dt ikl = ikmωlm + ilmωkm , (6)

tkl,k +ρ fl = ρv̇l , (7)
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mklm,k + tml − sml +ρllm = σlm , (8)

ρė = tklvl,k +(skl −tkl)ωlk +mklmωlm,k−qk,k +ρh , (9)

−ρ(ψ̇+ηθ̇)+ tklvl,k +(skl − tkl)ωlk

+mklmωlm,k −qkθ,k/θ≥ 0 , (10)

where the Helmholtz free energy is defined as ψ ≡ e−
ηθ; and ρ, i, f, l, v, θ, q, η, e are mass density, microin-
ertia, body force, body moment, velocity, absolute tem-
perature, heat flux, entropy, internal energy, respectively;
t, s, m may be named as the stress, micro-stress average,
and moment stress, respectively. The microgyation ten-
sor ωωω and the spin inertia σσσ are defined as

ωkl ≡ χ̇kK χKl , (11)

σkl = iml(ω̇km +ωknωnm) . (12)

Notice that, from eqn. (6), the microinertia tensor i is not
constant; together with the microgyation tensor and its
time rate, it forms the spin inertia σσσ that plays a vital role
in the dynamic equations for the balance of moment of
momentum, eqn. (8). It should also be pointed out that in
micromorphic (micropolar) theory the micromotion (mi-
crorotation) is independent of the macromotion. With-
out this property, one cannot address the change of ori-
entations of long chain molecules in liquid crystals (Lee
(1971), Lee and Eringen (1971a, 1971b, 1974).

2.2 Comparison with other Polar Theories

Actually, Eringen’s polar theory can be reduced to
Mindlin’s microstructure theory (1964) based on small
strain and slow motion assumptions. Identifying the
micro-displacement u ′

j in Mindlin’s theory as ξ j −δjKΞK

in Eringen’s theory, then, by approximating the inverse
micro-motion χKk (eqn. (3)) to be the shifter δKk based
upon small strain assumption, one has

u′j ≈ (χ jK −δjK )δKkξk = (χ jk −δjk)ξk ≡ ψk j ξk , (13)

1/3ρ′d 2
kl(Mindlin’s theory)⇔ ρikl(Eringen’s theory).

(14)

However, in Mindlin’s theory, ρ′d2
kl are treated as con-

stants, and, as a consequence, the spin inertia σkl in
eqn. (12) is reduced to ρ′d2

mkψ̈ml/3 (Mindlin’s eqn.

(4.1-2), based on the slow motion assumption. Further,
there is a special case in Mindlin’s theory, referred as
micro-homogeneous assumption: the distinction between
micro- and macro- motions is removed by making the
constraint ψi j = u j, i. Then the so-called relative stress
σi j in Mindlin’s theory becomes indeterminate (cf. eqn.
(3.4-2)). To eliminate the indeterminate relative stress
from the balance laws and to neglect the body couple and
inertia terms, Mindlin’s eqn. (4.1-1) and (4.1-2) can be
combined as

−µi jk, i j + τik, i + fk = 0 , (15)

which can be seen in many strain gradient theories (Fleck
and Hutchinson (1997)). Now it is obvious that the
micromorphic theory and its special case, micropolar
theory, stem from more elaborate considerations of mi-
crostructures and micro-motions.

3 Micropolar Theory

Micropolar theory is a special case of micromorphic the-
ory with the assumption that the micromotion is a micro-
rotation only, i.e.,

χKk = χkK , (16)

which implies

ωkl = χ̇kKχlK = −χkKχ̇lK = −ωlk . (17)

The anti-symmetry of the microgyration tensor leads to
the definition of micro-angular-velocity

ωk = −εki jωi j/2 , (18)

where εεε is the permutation tensor. Also, eqn. (4) and eqn.
(16) leads to the Rodrignes formula

χKL = cosφδKL − sinφεKLMnM +(1−cosφ)nKnL ,

(19)

where χKL ≡ δkKχkL , δkK is the shifter tensor, φK is the
microrotation vector, φ≡ √

φKφK and nK ≡ φK/φ . For
small rotation, eqn. (19) is reduced to

χKL
∼= δKL −εKLMφM . (20)

The balance laws for microinertia, moment of momen-
tum, and energy may be rewritten as

d jkl

dt
+(εkmn jlm +εlmn jkm)ωn = 0 , (21)
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mkl,k +εlmntmn +ρll = ρσl , (22)

ρė = tkl(vl,k +εlkmωm)+mklωl,k −qk,k +ρh , (23)

where

jkl ≡ immδkl − ikl , (24)

lk ≡ −εki j li j , (25)

σk ≡−εki j σi j = jklω̇l +εkmn jnlωmωl , (26)

mkl ≡ −εli j mki j . (27)

Define the generalized Lagrangian strain tensors and the
generalized Piola-Kirchhoff Stress tensors as follows:

EKL ≡ xk,K χkL −δKL

ΓKL ≡−εLMNχkK χkM,N/2 , (28)

TKL ≡ ρo

ρ tklXK,kχlL

MKL ≡ ρo

ρ mklXK,kχlL , (29)

then the Clausius-Duhem inequality, eqn. (10), can be
rewritten as

−ρo(ψ̇+ηθ̇)+TKLĖKL +MKLΓ̇KL−QKθ,K/θ≥ 0, (30)

where QK ≡ ρo

ρ qkXK,k .

To derive the constitutive equations for micropo-
lar thermo-visco-elasticsolid, following the axiom of
equipresence, let ψ, η, Q, T, and M be functions of
θ, θ̇, ∇θ , E, Ė, ΓΓΓ, and Γ̇̇Γ̇Γ. Then the Clausius-Duhem in-
equality leads to

−ρo{∂ψ
∂θ

θ̇+
∂ψ
∂θ̇

θ̈+
∂ψ

∂∇θ
· ∇ θ̇+

∂ψ
∂E

: Ė

+
∂ψ
∂Ė

: Ë +
∂ψ
∂ΓΓΓ

: Γ̇̇Γ̇Γ +
∂ψ
∂Γ̇̇Γ̇Γ

: Γ̈̈Γ̈Γ +ηθ̇} .

+T : Ė+M : Γ̇̇Γ̇Γ− Q · ∇θ
θ

≥ 0 (31)

Because this inequality is linear in θ̈, ∇ θ̇, Ë, Γ̈̈Γ̈Γ, it can
only be valid if

ψ = ψ(θ, E, ΓΓΓ) , (32)

−ρo(
∂ψ
∂θ

+η)θ̇+(T−ρo ∂ψ
∂E

) : Ė

+(M−ρo ∂ψ
∂ΓΓΓ

) : Γ̇̇Γ̇Γ− Q · ∇θ
θ

≥ 0 . (33)

We may now decompose the entropy and the generalized
Piola-Kirchhoff Stresses into two parts: the elastic (re-
versible) part and the dissipative (irreversible) part as fol-
lows.

η = ηe +ηd ≡−∂ψ
∂θ

+ηd (θ, θ̇, ∇θ ,E, Ė,ΓΓΓ, Γ̇̇Γ̇Γ), (34)

T = Te +Td ≡ ρo ∂ψ
∂E

+Td (θ, θ̇, ∇θ ,E, Ė,ΓΓΓ, Γ̇̇Γ̇Γ). (35)

M = Me +Md ≡ ρo ∂ψ
∂ΓΓΓ

+Md(θ, θ̇, ∇θ ,E, Ė,ΓΓΓ, Γ̇̇Γ̇Γ) , (36)

and then

−ρoηd θ̇+Td : Ė+Md : Γ̇̇Γ̇Γ −Q · ∇θ /θ ≥ 0 . (37)

It is seen that {ηd , θ̇} , {Q, ∇θ } , {Td, Ė} , and {Md, Γ̇̇Γ̇Γ}
are four pairs of thermodynamic conjugates in microp-
olar theory. From now on we assume that the material
considered is orthotropic. Also, it is noticed that, under
the Lagrangian coordinate transformation

X∗
K = SKLXL , (38)

M and ΓΓΓare transformed as

M∗
KL = det(S)SKMSLNMMN

Γ∗
KL = det(S)SKMSLNΓMN . (39)

To derive linear constitutive equations, let
ψ , ηd , Td , Md , Q be expanded as polynomials of
their arguments as follows.

ρoψ = Σo −ρoηoT − γT 2

2T o −αKLT EKL

+ 1
2 AKLMNEKLEMN + 1

2BKLMNΓKLΓMN , (40)

ηd = −(a1Ṫ +a3
KLĖKL)/ρoT o, (41)

QK = −b2
KLT,L −b4

KLMΓ̇LM , (42)

T d
KL = c1

KLṪ +c3
KLMNĖMN , (43)

M d
KL = d2

KLMT,M +d4
KLMN Γ̇MN , (44)

where T ≡ θ− T o , T o > 0 , |T | < T o; T o is the refer-
ence temperature and T is the temperature variation. The
elastic parts of the entropy and the stresses are obtained
as

ηe = ηo +
γT

ρoT o +
αKLEKL

ρo , (45)
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T e
KL = −αKLT +AKLMNEMN , (46)

Me
KL = BKLMNΓMN . (47)

The Clausius-Duhem inequality now requires that, for all
Ṫ , ∇θ , Ė and Γ̇̇Γ̇Γ,

a1

T o (Ṫ )2 +c3
KLMNĖKLĖMN +d4

KLMN Γ̇KLΓ̇MN

+
b2

KL

θ
T,KT,L +(

a3
KL

T o +c1
KL)Ṫ ĖKL

+(d2
KLM +

b4
MKL

θ
)Γ̇KLT,M ≥ 0 . (48)

4 Finite Element Formulation

The law of conservation of energy can now be expressed
as

(T +T o){ γ
To Ṫ +αKLĖKL

− (a1T̈ +a3
KLËKL)/T o}+QK,K

= Φ+ρoh , (49)

where

Φ≡ a1

T o (Ṫ )2 +c3
KLMNĖKLĖMN

+d4
KLMN Γ̇KLΓ̇MN +(

a3
KL

T o
+c1

KL)Ṫ ĖKL

+d2
KLMΓ̇KLT,M . (50)

If the temperature variation is small, i.e., |T | 
 T o, then
eqn. (49) is further reduced to

−a1T̈ −a3
KLËKL +γṪ +T oαKLĖKL +QK,K

= Φ+ρoh . (51)

Multiply eqn. (51) by δT , integrate over the volume, use
the Green-Gauss theorem, and then one obtains
∫

V

{−a1T̈ −a3
KLËKL +γṪ +T oαKLĖKL}δT dV

−
∫

V

QKδT,KdV

=
∫

V

(Φ+ρoh)δT dV −
∫

Sq

q∗δT dS , (52)

where QKNK is specified to be q∗ on Sq; NK is the out-
ward normal of the surface in question.

From eqn. (7) and eqn. (22),
∫

V

{[tkl,k +ρ( fl − v̇l)]δvl

+[mkl,k +εlmntmn +ρ(ll −σl)]δωl}dV

= 0 , (53)

and it leads to∫

V

{ρo(v̇MδvM +σMδωM)+TKLδĖKL +MKLδΓ̇KL}dV

=
∫

V

ρo( fMδvM + lMδωM)dV +
∫

St

t∗MδvMdS +

∫

Sm

m∗
MδωMdS , (54)

where TKL χML NK is specified to be t ∗M on St; MKL χML NK

is specified to be m∗
M on Sm; {vM,ωM, fM,σM} =

δmM{vm,ωm, fm,σm}.

In finite element formulation, the temperature T, dis-
placements UK, microrotation φK at a generic point
within an element can be linked to the corresponding
nodal values through the shape functions, i.e.,

T = NαTα
UK = NKαUα
φK = NKαφα

. (55)

The temperature gradient and the strains can be ex-
pressed as

T,K = Nα,KTα
∆= CKαTα

EKL
∼= UL,K +εLKMφM

∆= BLKαUα +εLKMNMαφα

ΓKL
∼= φL,K

∆= BLKαφα

. (56)

After lengthy but straightforward derivation, the follow-
ing dynamic finite element equations are obtained
∣∣∣∣∣∣

M11 0 0
0 M22 0
M31 M32 M33

∣∣∣∣∣∣

∣∣∣∣∣∣
ü
φ̈
T̈

∣∣∣∣∣∣+
∣∣∣∣∣∣

C11 C12 C13

C21 C22 C23

C31 C32 C33

∣∣∣∣∣∣

∣∣∣∣∣∣
u̇
φ̇
Ṫ

∣∣∣∣∣∣

+

∣∣∣∣∣∣
K11 K12 K13

K21 K22 K23

0 0 K33

∣∣∣∣∣∣

∣∣∣∣∣∣
u
φ
T

∣∣∣∣∣∣=
∣∣∣∣∣∣

F
L
Q

∣∣∣∣∣∣ , (57)
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where

M11
αβ =

∫
ρoNKαNKβdV = M11

βα , (58)

M22
αβ =

∫
ρo jKLNKαNKβdV = M22

βα , (59)

M33
αβ =

∫
−a1NαNβdV = M33

βα , (60)

M31
αβ =

∫
−a3

KLBLKβNαdV , (61)

M32
αβ =

∫
−a3

KLεLKPNPβNαdV, (62)

K11
αβ =

∫
AKLMN BLKα BNMβdV = K11

βα , (63)

K22
αβ

=
∫

(BKLMNBLKαBNMβ +AKLMNεLKPεNMQNPαNQβ)dV

= K22
βα , (64)

K33
αβ =

∫
b2

KLCLβCKαdV = K33
βα , (65)

K12
αβ =

∫
AKLMN εNMP NPβ BLKα dV = K21

βα , (66)

K21
αβ =

∫
AKLMN BNMβ εLKP NPα dV = K12

βα , (67)

K13
αβ =

∫
−αKL Nβ BLKα dV , (68)

K23
αβ =

∫
(−αKL εLKP NPα Nβ + d2

KLM CMβ BLKα)dV ,

(69)

C11
αβ =

∫
c3

KLMNBLKαBNMβdV = C11
αβ , (70)

C22
αβ

=
∫

(d4
KLMNBNMβBLKα +c3

KLMN εLKPεNMQNPαNQβ)dV

= C22
βα , (71)

C33
αβ =

∫
γNαNβ dV = C33

βα , (72)

C12
αβ =

∫
c3

KLMN BLKα εNMP NPβ dV = C21
βα , (73)

C21
αβ =

∫
c3

KLMN BNMβ εLKP NPα dV = C12
βα , (74)

C13
αβ =

∫
c1

KL BLKα Nβ dV , (75)

C31
αβ =

∫
T oαKL BLKβ Nα dV , (76)

C23
αβ =

∫
c1

KL εLKP NPα Nβ dV , (77)

C32
αβ =

∫
(T oαKLεLKPNPβNα +b4

KLMCKαBMLβ)dV ,

(78)

Fα =
∫

V

ρo fKNKαdV +
∫

St

T ∗
K NKα dS, (79)

Lα =
∫

V

ρolKNKα dV +
∫

Sm

M∗
KNKα dS , (80)

Qα =
∫

V

(ρoh+Φ)Nα dV −
∫

Sq

q∗Nα dS , (81)

and, in eqn. (57), u, φ, T are the displacements, micro-
rotations, and temperatures at the nodes. We emphasize
that the dissipations Φ, defined in eqn. (50), which are
nonlinear terms due to the thermodynamics second law,
are included in this formulation. Also, it is noticed that
the inclusion of T̈ in eqn. (57) is the consequence of the
temperature-rate dependency incorporated in the consti-
tutive theory. On the other hand, if temperature-rate de-
pendency is excluded, then

a1 = a3
KL = c1

KL = 0, (82)

and eqn. (57) is reduced to
∣∣∣∣∣∣

M11 0 0
0 M22 0
0 0 C33

∣∣∣∣∣∣

∣∣∣∣∣∣
ü
φ̈
Ṫ

∣∣∣∣∣∣+
∣∣∣∣∣∣

C11

C12

C13

C12

C22

C23

∣∣∣∣∣∣
∣∣∣∣ u̇

φ̇

∣∣∣∣

+

∣∣∣∣∣∣
K11 K12 K13

K21 K22 K23

0 0 K33

∣∣∣∣∣∣

∣∣∣∣∣∣
u
φ
T

∣∣∣∣∣∣ =

∣∣∣∣∣∣
F
L
Q

∣∣∣∣∣∣ . (83)

If the viscous effect is further excluded, then eqn. (83)
can be rewritten as

C33Ṫ+K33T = Q , (84)

∣∣∣∣ M11 0
0 M22

∣∣∣∣
∣∣∣∣ ü

φ̈

∣∣∣∣+
∣∣∣∣ K11 K12

K21 K22

∣∣∣∣
∣∣∣∣ u

φ

∣∣∣∣
=

∣∣∣∣ F−K13T
L−K23T

∣∣∣∣ , (85)
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and Q in eqn. (84) is reduced to

Qα =
∫

V

ρohNα dV −
∫

Sq

q∗Nα dS , (86)

which means there is no dissipation; the temperature field
is not influenced by the mechanical variables; the temper-
ature, which causes thermal stresses, will influence the
mechanical field as forcing terms.

A finite element computer program, named POLAR, was
developed based on the general constitutive equations of
micropolar thermo-visco-elastic solid.

5 Numerical Results

Case 1: crack problem

For illustrative purpose, consider a specimen of rect-
angular shape be subjected to an applied normal stress
(tyy = t), perpendicular to a centered line crack along the
x-axis, at the boundary, as shown in Fig.1. This mode I
fracture problem is analyzed by using POLAR. The nor-
malized stress, tyy/t, at the center of the element clos-
est to the crack tip are calculated. Specimens of differ-
ent length scales, keeping the ratios of the length-width-
thickness, the finite element mesh, the material properties
and the applied stress unchanged, are analyzed and the
results are shown in Fig. 2. Because of the stress singu-
larity at the crack tip, the stresses at the center of the ele-
ment closest to the crack tip will increase if the mesh near
the crack tip is refined. However, in this work, we keep
the finite element mesh unchanged and we investigate the
polar effect as the length scale changes. It is clearly seen
that the classical elasticity predicts that the normalized
stress of specimens at different length scales (such as
meter, micron, and nanometer) remains to be constant.
On the other hand, the micropolar theory clearly indi-
cates the existence of the size effect as the stress at the
crack tip decreases as the length scale of the specimen
decreases; when the length goes up to larger scales, the
effect of polarity would diminish. This result is in qual-
itative consistent with the experimental observations on
cellular material (Lakes (1995) and molecular dynamics
simulations of alloy system (Dang and Grujicic (1996),
deCelis, Argon and Yip (1983)).

Case 2: natural frequency of a beam

Next, POLAR is used to find the natural frequencies of
a cantilever beam (length/thickness = 10/1) with differ-

yy
t t
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yy
t t
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x = W,   y = - H

x = W,   y =  H 

x =a 

Figure 1 : Center-cracked specimen subjected to mode-I
tensile stress (W/H/a =1/1.5/0.415)
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Figure 2 : Effect of Length Scale on Stress Near the
Crack Tip Broke line: classical elasticity, solid line: mi-
cropolar elasticity

ent length scales. The classical elasticity predicts that
the product of the natural frequency and the length scale,
ωl, remains to be constant. However, as can be seen in
Fig.3, the dimensionless quantity, ωl/v, called normal-
ized natural frequency, (v is the speed of longitudinal
wave), changes as the length scale changes. It indicates
that as the length scale decreases, the material become
more rigid. This is also in good qualitative agreement
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with molecular dynamics simulation results of polycrys-
talline (Shibutani, Vitek and Bassani (1997), and exper-
imental observations on cellular and fibrous materials
(Lakes (1995)).
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Figure 3 : Natural Frequencies of Cantilever Beam with
Different Length Scales Broke line: classical elasticity,
solid line: micropolar elasticity

6 Discussions

The numerical examples have shown that, for a microp-
olar material such as molecular crystal or granular mate-
rial, the material may become more rigid as the length
scale decreases, which is consistent with atomic solu-
tions. It is worthwhile to notice that this scaling effect
is different with that of nonlocal material since the later
becomes less stiff as the length scale decrease (Chen, Lee
and Eskandarian (2002)). Also, it is found that the stress
at the crack tip decreases as the size decreases, and is
much smaller than that predicated by classical continuum
mechanics. This is consistent with a well-known obser-
vation “the smaller, the stronger”, which implies that the
yield strength reduces as the length scale increases, and
also, the real stresses may decrease as the length scale
decreases.

When the size of a specimen is reduced to small length
scales, individual subbody response to the external dis-
turbance may become too significant to be ignored. Mi-
cropolar theory stems from the considerations of mi-
crostructure and micromotion. Its promise in applica-
tions to granular type materials and small size problems
is illustrated in the current work.
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