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Micropolar Theory and Its Applicationsto Mesoscopic and Microscopic Problems

Youping Chen', James D Lee? and Azim Eskandarian®

Abstract: This paper addresses the need of theories
and simulationsfor material body of mesoscopic and mi-
croscopic sizes. An overview of polar theories is pre-
sented. The micropolar theory proposed by Eringenisin-
troduced and compared with other polar theories. Consti-
tutive eguations of micropolar thermo-visco-elastic solid
are derived. Finite element analyses have been per-
formed for a few sample problems with wide range of
length scales. Based on the discussion, comparison and
computer simulations, the unique feature and applicabil-
ity of micropolar theory are demonstrated.

continuum, micropolar, finite element,

keyword:
length scale.

1 Introduction

The entire physical science is based on two fundamen-
tal physical models: (1) discrete atomic models, (2) con-
tinuum field theories. Those two models provide foun-
dations for al physical theories and the success of both
models has been demonstrated and tested throughout the
history of science in explaining and predicting diverse
physical phenomena. There is no doubt that quantum
mechanics, molecular dynamics and lattice dynamics are
fundamental to science. On the other hand, the resort to
the continuum model is often justified on the basis of ex-
pediency and practicality.

In the enormous gap between two physical models re-
sides a very rich physical world that is extremely rele-
vant to science and technology. Hence, significant efforts
have been made to try to reach this region from either
the atomic or the continuum end. Molecular dynamics
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simulation with several hundreds to severa millions of
atoms has become an extremely popular tool to explore
the nanotechnology and to reveal the hidden mechanisms
and correl ations underlying the macroscopic behavior. It
is estimated that one billion atoms can be included in a
calculation with the current most advanced parallel com-
puting technology; this would allow a specimen size up
to four microns on the time scale of picoseconds. Obvi-
oudly, thisis still too far to reach area time simulation
for a specimen of finite size.

The approach to this intermediate region from the con-
tinuum end begins with polar theories. Those theories
supply just the necessary apparatusto treat various prob-
lemsrelevant to material s with microstructure and micro-
motion. The aim of this paper is to illustrate why polar
theoriesare complimentary, and when used properly they
bear fruits that cannot be harvested by means of either
atomic model or classic continuum model alone.

2 An Overview of Polar Theories

The beginning of the rational theories of polar continua
goesback to E. and F. Cosserat (1909) in 1909, who, ina
remarkable memoir, developed atheory of elasticity with
the concept of “triedre” by means of avariational princi-
ple. The Cosserats obtained equations for the balance of
momenta in the dynamic case. But they did not give a
specific microinertia, nor did a conservation law for the
microinertiatensor, which are crucia to the construction
of constitutive equations and dynamical problems. The
rigid directors used by the Cosserats and later by others
to represent rigid rotations did not have metrical signifi-
cance. Conseguently, difficulties are encountered in the
treatment of material symmetry regulations in constitu-
tive equations. Gunther (1958) and Schaefer (1967) reca-
pitul ated the Cosserats el asticity and remarked onits con-
nection to dislocations. In that theory, the anti-symmetric
part of the stresstensor is redundant and it remains unde-
termined.

Extensive devel opments, however, have taken place dur-
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ing the past decades. Among the various contributors
to this field it is worthwhile to mention Truesdell and
Toupin (1960)], Mindlin and Tiersten (1962), Toupin
(1962), and Eringen (1962). These early theories are
mostly known as the “constrained” continuum theories.
Later Mindlin (1964) constructed a theory of elasticity
with microstructure, Green and Rivilin (1964) a gen-
eral multipolar theory. These theories, as well as “con-
strained” continuum theories, have close contact with
Eringen’s polar (micromorphic and micropolar) theory
(Eringen and Suhubi (1964), Eringen (1965, 1967), Lee
(1971), Lee and Eringen (1971a, 1971b, 1974)). In this
polar theory, the material body is envisioned as a collec-
tion of alarge number of deformable particles (point par-
ticles), each was endowed with three directors. A mate-
rial point is then equipped with the independent degrees
of freedom for rigid rotations (micropolar) or for both
stretches and rotations (micromorphic), in additionto the
classical trandation degrees of freedom of the center. A
new conservation law of microinertia, which was miss-
ing from all other polar theories, was derived in both the
micropolar and micromorphic theories. The evolution of
the inertiatensor with motion determines the anisotropic
character of the body at any time. Moreover, the phase
transitions are the results of the change of the microiner-
tia tensor with temperature. Without the balance law of
the microinertia tensor, basic field equations are incom-
plete and the evolution of the constitution of the body
with motion cannot be determined.

As the recent application of metals and polymers at the
micron scale are multiplying, severa plasticity theories
for applicationin micron region have been proposed. The
theory invoking strengthening by the Laplacians of ef-
fective strain has proved effective in dealing with plas-
tic instabilities at didocation patterning or shear local-
ization (Aifantis (1984), Zbib and Afantis (1989), Poliz-
zotto and Borino (1998), Shizawa and Zbib (1999)). A
variety of size dependent phenomena, including torsion
of thin wires, growth of microvoids, indentation tests, et
al., have been interpreted in terms of stretching gradient
effect or rotation gradient effect or both by astrain gradi-
ent plasticity (Fleck and Hutchinson (1997)). Thistheory
involves all components of the strain gradient tensor and
work conjugate higher-order stresses in the form of cou-
ple stresses and doubl e stresses, and fallswithin Toupin's
(1962) couple stresstheory. Shizawaand Zbib (1999) de-
veloped agradient theory for thermo-€lastic-plasticity, in
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which the concept of dislocation density tensor was in-
troduced and thermodynamically consistent constitutive
equations for plastic stretch, plastic spin and back stress
were derived. For numerical implementation of strain
gradient theories it is worthwhile to mention the recent
works by Tenek and Aifantis (2002), Chen, Huang and
Wittmann (2002), and Tang, Shen and Atluri (2003).

The basic objective of those recently developed gradi-
ent theories is the extension of continuum mechanics to
the micron range for applications to phenomena involv-
ing size effect. They are closeto polar theory. However,
the essential difference between Eringen’s polar theory
and those newly developed strain gradient theoriesis ob-
vious. the micromotion in Eringen’ stheory is not treated
asthe gradient of the macro-strain.

2.1 TheFramework of Polar Theories (micromorphic
and micropolar)

Eringen’s microcontinuum field theories constitute ex-
tensions of the classical field theories to microscopic
gpace and time scales. In terms of a physical picture,
amaterial body is envisioned as a continuous collection
of alarge number of deformable particleswhose motions
can be expressed as

X = Xe(X, 1) ()
& = Xkk (X, 1) =k (2

It is seen that the macromotion, egn. (1), accounts for
the motion of the centroid of the particle while the mi-
cromotion, egn. (2), specifies the changing of orientation
and the deformation of theinner structuresof the particle.
The inverse motions can be written as

XK = XK(X7t) ; EK = XKk(X7t)Eka (3)

with
Xkk Xk1 = O 5 Xik XkL = OkL (4)

The balance laws of micromorphic continuum were
obtained by Eringen and Suhubi (1964) and Eringen
(1964,1992) asfollows:

Q)

(6)
(7)

p+ka,k:0 )
iy = ikmOm+ iimkm

twk+pfi=pv
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Mamk +tm —Sm +Plim=0im (8)

pe=tiVi k+ (S —t ) Wk +MdmWmk — k. k+ph , (9)
—p(W+nB) +tyVi k+ (Su —tu) Ik
+MimWmk— kB k/6>0 (10)

where the Helmholtz free energy is defined as ) = e —
ne; andp, i, f, I, v, 6, g, n, € are mass density, microin-
ertia, body force, body moment, velocity, absolute tem-
perature, heat flux, entropy, internal energy, respectively;
t, s, m may be named as the stress, micro-stress average,
and moment stress, respectively. The microgyation ten-
sor w and the spininertiag are defined as

W = Xkk XKI (11)

Ok = imi (Gxm+ WxnWnm) (12)

Noticethat, from egn. (6), the microinertiatensor i isnot
constant; together with the microgyation tensor and its
timerate, it formsthe spininertiag that playsavital role
in the dynamic equations for the balance of moment of
momentum, egn. (8). It should also be pointed out that in
micromorphic (micropolar) theory the micromotion (mi-
crorotation) is independent of the macromotion. With-
out this property, one cannot address the change of ori-
entations of long chain moleculesin liquid crystals (Lee
(1971), Lee and Eringen (1971a, 1971b, 1974).

2.2 Comparison with other Polar Theories

Actualy, Eringen’s polar theory can be reduced to
Mindlin's microstructure theory (1964) based on small
strain and slow motion assumptions. ldentifying the
micro-displacement u’j inMindlin’stheory as€ j — djk =«
in Eringen’s theory, then, by approximating the inverse
micro-motion Xy, (egn. (3)) to be the shifter dkx based
upon small strain assumption, one has

u’j %(XjK—éjK)éKkEk:(Xjk—éjk)Equka &k (13)

1/3p'd3 (Mindlin’stheory) < pi (Eringen’stheory).
(14

However, in Mindlin's theory, p’dZ are treated as con-
stants, and, as a consequence, the spin inertia gy in
egqn.  (12) is reduced to p'd2, /3 (Mindlin's egn.
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(4.1-2), based on the slow motion assumption. Further,
there is a specia case in Mindlin's theory, referred as
micro-homogeneousassumption: the distinction between
micro- and macro- motions is removed by making the
constraint Jj; = uj ;. Then the so-called relative stress
oij in Mindlin’s theory becomes indeterminate (cf. egn.
(3.4-2)). To eliminate the indeterminate relative stress
from the bal ance laws and to neglect the body couple and
inertia terms, Mindlin’s egn. (4.1-1) and (4.1-2) can be
combined as

—Hijkij +Tiki + k=0 (15)
which can be seen in many strain gradient theories (Fleck
and Hutchinson (1997)). Now it is obvious that the
micromorphic theory and its special case, micropolar
theory, stem from more elaborate considerations of mi-
crostructures and micro-motions.

3 Micropolar Theory

Micropolar theory isaspecial case of micromorphic the-
ory with the assumption that the micromotionisamicro-
rotation only, i.e.,

Xkk = XkK (16)
which implies
W = XkkXIK = —XkKXIK = — Wik 7

The anti-symmetry of the microgyration tensor leads to
the definition of micro-angular-vel ocity

W = —€ijWj/2 (18)

whereg€ isthe permutation tensor. Also, egn. (4) and egn.
(16) leads to the Rodrignes formula

XKL = COSQ&L —Sin@ & mnu + (1—cos@)nkn.
(19)

where Xk = dkk XkL , Okk 1S the shifter tensor, @k isthe

microrotation vector, = /@« and ng = ¢« /@ . For
small rotation, egn. (19) isreduced to

XKL = Okl — EKLM @M (20)

The balance laws for microinertia, moment of momen-
tum, and energy may be rewritten as

dj ] _
L + (Ekmnjim+ Em jkm)h =0,

gt (21)
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My k+ Emtm +ph = poy (22)
P& =t (VI k + ElkmWm) + M 0 k — Gk k +ph, (23)
where

Ji = iomOa — ik, (24)
= —eqjlij (25)
Ok = —&ij Oij = jK@ + Emnjni WGmG (26)
My = —&ljj Mij (27)

Define the generalized Lagrangian strain tensors and the
generalized Piola-Kirchhoff Stress tensors as follows:

ExL = Xk Kk XkL — OkL

FKL = —ELMNXKK XkM,N/2 (28)
Tkl = %OtkIXK,kXIL
Mk = %OmklxK,ka , (29)

then the Clausius-Duhem inequality, egn. (10), can be
rewritten as

—p°(Y+nNB) + Tk Exi + Mk ki —Qk8.x/0 >0, (30)

whereQK = %quXK,k .

To derive the constitutive eguations for micropo-
lar thermo-visco-elasticsolid, following the axiom of
equipresence, let Y, n, Q, T, and M be functions of
8,6, ,E, E, I, andl. Then the Clausius-Duhem in-
equality leadsto

oy
oM

oy
re —r
+6F

Qb
)

oy
0E

F+r]9}

. Ay
—p%{Zrh 6
p{ 0%t 358 3
oy oy
0E E+a_r

+T:E4M -

00+ =

>0 (31)

Because this inequality is linear in 8, 00, E, [, it can
only bevalid if

oy 00y
—P°(5g +M)8+(T—p°3E) :E
,OU Q-B
+(M—p°3F): r— 5 20 (33)
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We may now decompose the entropy and the generalized
Piola-Kirchhoff Stresses into two parts. the elastic (re-
versible) part and the dissipative (irreversible) part asfol-
lows.

n:ne+ndz—g—g+nd(9,é,tﬂ JEEMD), (39
T*Te—|—Td — A0 l'l’l d
= p +T9(6, 9 ® .E E,F,F) (35)

oE

M =M md=po¥

dre : ..
r M®(0,6,0 ,E,E,I",l") , (36)

and then

—p°n%0+T9:E+M9:F—Q-® /6>0 (37)
Itisseenthat {n%,6} ,{Q,® }, {T9 E},and {M% I}
are four pairs of thermodynamic conjugates in microp-
olar theory. From now on we assume that the materia
considered is orthotropic. Also, it is noticed that, under
the Lagrangian coordinate transformation

X = SX (38)
M and I"are transformed as
Mk = det(S)SkmSInMun

kL = det(S)SckmSINMmn (39)
To derive linear constitutive equations, et

p,n%, T9, M9, Q be expanded as polynomias of
their arguments as follows.

0 0 00 yT2
PU=2"—pNnT— o5 — Ok TR

+ 2AKLMNEKLEMN + 3BkivnT kL VN (40)
N’ = —(aT +ag Ex1)/p°T", (41)
Q= —bg TL—bgmlm (42)
TéL =G T+ CimnEnn (43)
ML= dZimTm +diimnlun (44)

whereT=0-T°,T°> 0, |T| < T® T° is the refer-
ence temperature and T isthe temperature variation. The
elastic parts of the entropy and the stresses are obtained
as

yT  okiExe

n®=n° +p°T°+T ; (45)
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(46)
(47)

TeL = —aki T +AcvnEwn
Mg = BkLmnT M

The Clausius-Duheminequality now requiresthat, for al
T, ,Eandrl,

1

ar . .. .

ﬁ(T)Z + G L MNEKLEMN + A L un T kLT N
2

bk, ag,
+ TT,KT,L + (== o + ¢k ) TEkL

+ (dZ

4 -
MeKL JTkLTm >0

4  Finite Element Formulation

The law of conservation of energy can now be expressed
as

(T +T°){ T +ak ExL

—(alT —l—aKLEKL)/T }+Qk k

where

1

al . ..

®= ﬁ(T)ZJrC?}%LMNEKLEMN
3

+ dﬁLMN.rKL.rMN + (&

To + C%L)TEKL

+dZiml kLT M (50)

If the temperature variationissmall, i.e,, |T| < T, then
eqgn. (49) isfurther reduced to

—alT —a Ex. +yT + Tk ExL + Q. k

=®+p°h (51)

Multiply egn. (51) by &T, integrate over the volume, use
the Green-Gauss theorem, and then one obtains

{—al'f — aﬁLEKL —I—yT +TOGKLEKL}6TdV
_ / QT aV

(®+p°h)STAV — / q5TdS | (52)

S

!

where Qg Nk is specified to be g* on §;; Nk isthe out- +

ward normal of the surface in question.
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From egn. (7) and egn. (22),

[ Altasc+p(t — )13
\

+ [My k+ Emtm + p(I — 01) ]800 }dV
=0 ; (53)
and it leadsto

/ {P° (Vv + OmBwm) + Tk OBk + Ml kL }aV

(48) v

:/p"(fMévM +|M50M)dV—|—/t,’(,|5VMdS+
\

[ musends (54

where Tx XmL Nk isspecifiedtobety, on §; Mk Xme Nk
is specified to be m{, on Sy, {vm,wwm, fm,Om} =
6mM {Vn’h Wm, fn’h Cm}-

In finite element formulation, the temperature T, dis-
placements Uk, microrotation @« at a generic point
within an element can be linked to the corresponding
nodal values through the shape functions, i.e.,

T = NaTa
Uk = NkaUq (55)
O« = Nka@u

The temperature gradient and the strains can be ex-
pressed as

A
T,K = Na,KTa = CKaTor

ExL = ULk +ELkm®u

A (56)
= BikaUa + €L.kmNMa @

A
MkL = @k = Bika®a

After lengthy but straightforward derivation, the follow-
ing dynamic finite element equations are obtained

M1 0 0

U Cll C12 C13 u
0 M 22 0 (p + cAgczczs (p
M3L M32 33 T C3l C32 C33 T
Kll K12 K13 u F
KZl K22 K23 [0) , (57)
0 0 KB ||T Q
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where
MZ3 —/p JkLNkaNkpdV = MEZ (59)

M3 = / —a'NgNgdV = M5y (60)

Mg = /—aﬁLBLKBNadV ) (61)
M5 = / —a3, eLkpNpgNadV, (62)
Kag = / AkLMN Buka BampdV = Kgg (63)
KaB
:/ BiLMNBLkaBnmg + AkLMNELKPENMQNPa Ngg ) dV
—KZ, (64)
KE = / b2, CLaCralV =K (65)
Kag = /AKLMN enmpNegBlka dV = K3y (66)
K3 = /AKLMN Brmp €Lkp Npa dV = K, (67)
KGB = / —0akL NgBrkadV (68)
Kég —/(—GKLSLKP Npg N[3+ dI%LM CMB BLKq)dV R
(69)
C&Lé - /CKLMNBLKGBNMBdV C&Lé 5 (70)
22
CorB
:/(dﬁLMNBNMBBLKa + CRLmN ELKPENMQNPaNgg ) AV
8 = /yNaNBdV ce (72)
C&LE — /CKLMN BLKG SNMP NPBdV CBG 5 (73)
CCZIé - /CKLMN BNMB SLKP NPCX dV C 5 (74)
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cl = / Gk BukaNgdV (75)
c _/T akL BugNadV (76)
CGB = /CKL €.kp Npq NB dv s (77)
CGB —/(TOGKLSLKPNPBNa + b mCraBuip)aV
(78)
Fo = / 0° fNka dV + / T¢Nka dS (79)
v S
Lq :/p°|KNKudv+/M;gNKa ds | (80)
Vv
Qu= [ (F°h+O)NaV — [ G'NalS . (81)
Vv
and, inegn. (57), u, @, T are the displacements, micro-
rotations, and temperatures at the nodes. We emphasize
that the dissipations @, defined in egn. (50), which are
nonlinear terms due to the thermodynamics second law,
are included in this formulation. Also, it is noticed that
theinclusionof T in egn. (57) isthe consequence of the
temperature-rate dependency incorporated in the consti-
tutive theory. On the other hand, if temperature-rate de-
pendency is excluded, then
at=ag =ck =0, (82)
and egn. (57) isreduced to
Mt 0 0 u cit ct2 |, .
0 MZ o |[¢|+|c2 c2||]
0 0 C33 . C13 C23 ¢
Kll K12 K13 u F
4 KZl K22 K23 (p L (83)
0 0 K37 Q

If the viscous effect is further excluded, then egn. (83)
can be rewritten as

CET+K®¥T=Q |, (84)
M 11 0 U Kll K12
0 M2 || & + K2 K2 || o
F—KBT
= ‘ L — K23T ‘ (85)
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and Q inegn. (84) isreduced to

Qa:/pohNadV—/q*NadS )
v S

(86)

which meansthereisno dissipation; thetemperaturefield
isnot influenced by the mechanical variables; the temper-
ature, which causes thermal stresses, will influence the
mechanical field as forcing terms.

A finite element computer program, named POLAR, was
developed based on the general constitutive equations of
micropolar thermo-visco-elastic solid.

5 Numerical Results
Case 1: crack problem

For illustrative purpose, consider a specimen of rect-
angular shape be subjected to an applied normal stress
(tyy =T), perpendicular to a centered line crack along the
x-axis, at the boundary, as shownin Fig.1. Thismode |
fracture problem is analyzed by using POLAR. The nor-
malized stress, ty,/t, at the center of the element clos-
est to the crack tip are calculated. Specimens of differ-
ent length scales, keeping the ratios of the length-width-
thickness, thefinite element mesh, thematerial properties
and the applied stress unchanged, are analyzed and the
results are shown in Fig. 2. Because of the stress singu-
larity at the crack tip, the stresses at the center of the ele-
ment closest to the crack tip will increaseif the mesh near
the crack tip is refined. However, in this work, we keep
thefinite el ement mesh unchanged and weinvestigate the
polar effect as the length scale changes. It is clearly seen
that the classical elasticity predicts that the normalized
stress of specimens at different length scales (such as
meter, micron, and nanometer) remains to be constant.
On the other hand, the micropolar theory clearly indi-
cates the existence of the size effect as the stress at the
crack tip decreases as the length scale of the specimen
decreases; when the length goes up to larger scales, the
effect of polarity would diminish. Thisresult isin qual-
itative consistent with the experimental observations on
cellular material (Lakes (1995) and molecular dynamics
simulations of aloy system (Dang and Grujicic (1996),
deCelis, Argon and Yip (1983)).

Case 2: natural frequency of a beam

Next, POLAR is used to find the natural frequencies of
a cantilever beam (length/thickness = 10/1) with differ-
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Y

Ttyy:t x=W, y=[—]
—_ X —a » X

t o=t x=W, y=-H

w

Figure1: Center-cracked specimen subjected to mode-|
tensile stress (W/H/a=1/1.5/0.415)

95 p ‘
g |
o 925
n
% 9
N
®
€ 875
o
Z
8.5

1.0E-08 1.0E-06 1.0E-04

Length Scale (meter)

1.0E-02

Figure 2 : Effect of Length Scale on Stress Near the
Crack Tip Broke line: classical elasticity, solid line: mi-
cropolar elasticity

ent length scales. The classical elasticity predicts that
the product of the natural frequency and the length scale,
wl, remains to be constant. However, as can be seen in
Fig.3, the dimensionless quantity, wl /v, called normal-
ized natural frequency, (v is the speed of longitudinal
wave), changes as the length scale changes. It indicates
that as the length scale decreases, the material become
more rigid. Thisis also in good qualitative agreement
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with molecular dynamics simulation results of polycrys-
talline (Shibutani, Vitek and Bassani (1997), and exper-
imental observations on cellular and fibrous materials
(Lakes (1995)).

(o) RN

Normalized Frequency
(U8)

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02
Length Scale (Meter)

Figure 3: Natural Frequencies of Cantilever Beam with
Different Length Scales Broke line: classical elasticity,
solid line: micropolar elasticity

6 Discussions

The numerical examples have shown that, for a microp-
olar material such as molecular crystal or granular mate-
rial, the material may become more rigid as the length
scale decreases, which is consistent with atomic solu-
tions. It is worthwhile to naotice that this scaling effect
is different with that of nonlocal material since the later
becomesless gtiff asthelength scale decrease (Chen, Lee
and Eskandarian (2002)). Also, it isfound that the stress
at the crack tip decreases as the size decreases, and is
much smaller than that predicated by classical continuum
mechanics. Thisis consistent with a well-known obser-
vation “the smaller, the stronger”, which implies that the
yield strength reduces as the length scale increases, and
also, the real stresses may decrease as the length scale
decreases.

When the size of a specimen is reduced to small length
scales, individual subbody response to the external dis-
turbance may become too significant to be ignored. Mi-
cropolar theory stems from the considerations of mi-
crostructure and micromation. Its promise in applica-
tionsto granular type materials and small size problems
isillustrated in the current work.
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