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Truly Meshless L ocal Petrov-Galerkin (MLPG) Solutions of Traction &
Displacement BIEs

Z.D.Han! and S. N. Atluril

Abstract: The numerical implementation of the truly
Meshless Local Petrov-Galerkin (MLPG) type weak-
forms of the displacement and traction boundary inte-
gral equationsis presented, for solids undergoing small
deformations. In the accompanying part | of this pa
per, the general MLPG/BIE weak-forms were presented
[Atluri, Han and Shen (2003)]. The MLPG weak forms
provide the most general basis for the numerical solu-
tion of the non-hyper-singular displacement and traction
BIEs [given in Han, and Atluri (2003)], which are sim-
ply derived by using the gradients of the displacements
of the fundamental solutions[Okada, Rajiyah, and Atluri
(1989a,b)]. By employing the various types of test func-
tions, in the MLPG-type weak-forms of the non-hyper-
singular dBIE and tBIE over the local sub-boundary sur-
faces, several typesof MLPG/BIEs are formulated, while
also using severa types of non-element meshless in-
terpolations for trial functions over the surface of the
solid. Specifically, three types of MLPG/BIEs are for-
mulated in that paper, i.e. MLPG/BIEL1, MLPG/BIE2,
and MLPG/BIES, as per the consistent categorizations of
the MLPG domain methods [Atluri and Shen (2002a)].
As the accompanying part |1, this paper is devoted to
MLPG/BIE6. In particular, the moving least squares
(MLS) method has been extended for the approximation
on three dimensional surfaces, which makes it possible
for the MLPG/BIE methodsto betruly meshless. Numer-
ical examples, including crack problems, are presented to
demonstrate that the present methods are very promising,
especially for solving the elastic problems in which the
singularities in displacements, strains, and stresses, are
of primary concern.
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1 Introduction

The meshless local Petrov-Galerkin (MLPG) approach
has become very attractive as a very promising method
for solving partial differential equations. The MLPG
method was originally applied for domain discretizations
in Atluri and Zhu (1998). The main advantage of this
method over the widely used finite element methods is
that it does not need any mesh either for the interpo-
lation of the solution variables or for the integration of
the weak forms. The MLPG approach is very general,
and can be based on the symmetric or unsymmetric lo-
cal weak-forms of the PDEs, and uses a variety of in-
terpolation methods (trial functions), test functions, inte-
gration schemes with/without background cells, and their
flexible combinations. Such generality has been widely
investigated [Atluri and Shen (2002a,b)]. The many re-
search successes in solving PDES, demonstrate that the
MLPG method, and its variants, become some of the
most promising alternative methods for computational
mechanics.

The boundary integral equations (BIEs) have also been
developed for solving PDES, because of their efficiency
in certain applications, in comparison to the domain-
solution methods. They have been applied to solve lin-
ear elastic isotropic solid mechanics problems [Okada,
Rajiyah, and Atluri (1990)], 3-D dynamic problems
[Hatzigeorgiou, and Beskos (2002)], cracked plate prob-
lems [Wen, Aliabadi, and Young (2003), El-Zafrany
(2001)], acoustic problems [Gaul, Fischer,and Nacken-
horst (2003)], and biological systems [Muller-Karger,
Gonzaez, Aliabadi and Cerrolaza] (2001)]. It is well
known that the hyper-singularities of the traction BIES,
as derived directly from differentiating the displacement
BIEs, hinder their applications in various numerical im-
plementations. The hyper-singular BIEs need some spe-
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cia treatments, such as the various de-singularization
techniques [Richardson and Cruse (1996)]. In contrast,
asfar back as 1989, Okada, Rajiyah, and Atluri (1989a,b,
1990) have proposed a smple way to directly derive the
integral eguations for the gradients of displacements. It
resulted in “non-hyper-singular” boundary integral equa-
tions for the gradients of displacements, and these have
been applied to solve the nonlinear problems success-
fully. Recently, this concept has been followed and
extended for a directly-derived traction BIE [Han and
Atluri (2002, 2003)], whichis also “non-hyper-singular”
[1/r?], as opposed to being “hyper-singular” [1/r3]. Han
and Atluri (2003) have aso proposed a very straight-
forward and simple procedure to de-singularize the “ non-
hyper-singular” integrals, in order to render them nu-
merically tractable, with only a weak singularity. These
weakly-singular dBIE and tBIE are solved here by using
the ML PG approaches, by writing their local weak-forms
in the local sub-boundary surfaces. These meshless solu-
tion methods for solving BIEs are labeled as MLPG/BIE
approaches. The generdities of the MLPG/BIE ap-
proaches have been discussed in the accompanying part |
of the paper [Atluri, Han and Shen (2003)], in which vari-
ousforms of MLPG/BIEswere proposed. Some issuesin
the numerical implementation have also been addressed
there.

In the present paper, we implement the formulations
proposed in Atluri, Han and Shen (2003) for the
MLPG/BIE6 and solve some elastic problems, includ-
ing fracture mechanics problems of non-planar crack-
growth. The MLS method is used to construct the inter-
polation functions on the surface of a three-dimensional
body. It is well unknown that the moment matrix be-
comes singular or nearly singular, if the 3-D Cartesian
coordinates are used in the ML S over ageneral 3-D sur-
face. For three dimensional surface cases, the curvilin-
ear coordinates are used in the boundary node method
(BNM) [Gowrishankar and Mukherjee (2002)], in which
the background cells are required for the approximation,
as well as for the integration. It prevents the meshless
BIE methods to be truly meshless, since it till involves
the mesh generation and re-meshing. As an alternateim-
plementation, the varying polynomial basis may be cho-
sen, with the use of Cartesian coordinates, so that the
singularity in the MLS is eliminated, as proposed for the
boundary cloud method (BCM) [Li and Aluru (2003)].
However, it is difficult to choose the polynomial basis
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for the arbitrary 3D surfaces. Secondly, the local geome-
try information is required to help in choosing the basis.
The idea of the varying basis is promising, but is diffi-
cult for the numerical implementation, as worse results
were reported by the authors [Li and Aluru (2003)]. In
the present paper, we check the singularity of the mo-
ment matrix, and determine the local normal direction of
3D surfacesfrom itslowest eigenvector. Then, the singu-
larity of the moment matrix has been cancelled, by using
thisinformation on the local normal direction. With this
extension, the local geometry information or the back-
ground cells are not required for the MLS, to construct
the interpolation functions. It leads to truly meshless
BIE methods, if the integration schemes are based on
nodal influence domains, asdiscussedin [Atluri, Han and
Shen (2003)]. In this paper, we focus on the displace-
ment and traction MLPG/BIES in their local symmetric
weak-forms, with the combination of the enhanced MLS
surface interpolation method.

The outline of the paper is as follows: Section 2 sum-
marizes the non-hypersingular displacement and trac-
tion BIEs [Han and Atluri (2003)], and their MLGP ap-
proaches [Atluri, Han and Shen (2003)]; In Section 3,
the MLS approximation is extended to recondition the
singular or nearly singular moment matrix when it is ap-
plied for the approximation over the three dimensional
surface; Section 4 discusses the numerical results by us-
ing the moving least squaresin the ML PG/BIE6 method.
Some conclusionsare made in Section 5.

2 Non-Hyper-singular MLPG Displacement and
Traction BIEs

This section summarizes, for the sake of completeness,
the non-hypersingular MLPG displacement and traction
BIEs for a linear elastic, homogeneous, isotropic solid.
They were proposed and discussed in detail in [Atluri,
Han and Shen (2003)], by extending the general non-
hyper-singular dBIE and tBIEs through the MLPG ap-
proaches [Han and Atluri (2003)].

2.1 BIEs for elastic problems

Consider alinear elastic, homogeneous, isotropic body in
adomain Q, with a boundary 0Q. The Lame' constants
of the linear elastic isotropic body are A and ; and the
corresponding Young's modulus and Poisson’'s ratio are
E and v, respectively. We use Cartesian coordinates &,
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and the attendant base vectors g;, to describe the geom-
etry in Q. The solid is assumed to undergo infinitesimal
deformations. The equations of balance of linear and an-
gular momentum can be written as:

S A

O-0+f=0, o=0
0&;

)
The strain-displacement relations are:

€= %(DquuEI) 2

The constitutiverelationsof anisotropiclinear elastic ho-
mogeneous solid are:

o=Al(0O-u)+2ue (3)
The forms of the boundary integral equations, which are

used in the present paper, are given by [Han and Atluri
2003], for displacement,

() = [ 1i(8)iP(x.8) ds

- /a _Mi(&)ui(E)of(x.€) dS (43)
and for traction
600 = [_t®na(oi(xE) ds

v /a _ Dplig(€)na(X) Zippq(x.£) S (4b)

where u;?, o/ and 2, are kernel functions, which
werefirst givenin Han and Atluri (2003) and listedin the
appendix for 2D and 3D problems separately; the surface
tangential operator Dy is defined as,

0
Di=neg— (5)

0&s

It should be pointed out that dBIE and tBIE in Eq.
(4) are directly derived without hyper-singularities, as
originally presented in [Okada, Rajiyah, and Atluri
(1989a,b)]. They are both numerically tractable after de-
singulariztion by using the identities of the fundamental
solution [Han and Atluri (2003)].
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2.2 MLPG Approaches

The meshless approach for solving PDEs has attracted
much attention during the past decades. As a genera
method, the ML PG approach wasfirst proposed by Atluri
and Zhu (1998) for solving linear potential problems, by
using either alocal symmetric weak form, or an unsym-
metric weak form of the governing equation over the lo-
cal sub domain, and such local domains may overlap
each other. The generality of the MLPG, and its vari-
ants, are comprehensively investigatedin Atluri and Shen
(2002a,b). This approach can also be used for solving
BIEs, instead of using traditional element-based meth-
ods, such as the Boundary Element Method. Following
the genera idea as presented in Atluri and Zhu (1998),
onemay consider alocal sub-boundary surfacedQ, , with
itsboundary contour I' |, as a part of the whole boundary-
surface, as shown in Figure 1, for a 3-D solid. Eq. (4)
may be satisfied in weak-forms over the sub-boundary
surface 0Q,, by using a Local Petrov-Galerkin scheme,
as:

)i’%

€,X €,,X,

Figurel1: A sub-part of the boundary around point x

/aQL Wp(X)Up(X)dS,
- /aQL Wp(X)dS¢ /(,Qwi)u}‘p(x,z) ds
_/aQLWp(X)de/aQ n(E)u(E)aP(x,E)dS  (6a)
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- [, w0ots00ds,
1S | _ta(Ema(x)03x.8) ds;

+ [, oS, /a _ Dti(&)1a(X)Zippg(x.8) S
(6b)

= W (X
o

where w(x) is a vector test function. If w(x) is cho-
sen as a Dirac delta function, i.e. wp(X) = &(X,Xm) a
0Q,, we obtain the standard “collocation” method for
displacement and traction BIEs, at the collocation point
Xm. Their detail de-singularized forms have been pre-
sented in Atluri, Han and Shen (2003). One may also
choose w(x) in such way that it is continuous over the
local sub boundary-surface 0Q, and zero at the contour
L, and apply Stokes' theorem to Eq. (6), and re-write it
as:

%/asn Wp(X)Up(X)dS,
—/Q%uma/n&mead%

+ [ wp0aSc | Di(8)ui(8)GiP(x.8) as

cPv
+ Wp(x)dS,(/BQ ni(E)u

0Q

(@7 (x.8) ds

(7a)

_ % /a ()W),

:/ Dawb(x)dsx / ta(§)Gap (X, &) dS
/aQ q(®) dSE ”(X)Wb(X)wZﬂ(X,E)dS(

+/BQL DaWp(X) de/aQ DpUq(E)Hgbpq()QE) d
(7b)

where G, @ and Happq @€ fundamental solution re-
lated kernel functions and given in the appendix for both
2D and 3D problems.
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In the present implementation, the test function wp(X)
is chosen to be identical to a function that is energy-
conjugate to up (for dBIE) and t, (for tBIE), namely,
the nodal trial function fp(x) and U (x), respectively, we
obtain the local symmetric Galerkin weak-forms of the
weakly singular dBIE and tBIE, as:

1 ~
5/BQLtp(x)u X)dS,

= [, B0ES, / §(E)UP(0 ) oS
+ o B090S [ DIEuEGFE) ds
/BQL /Q Mi(&)u;(€) *ip(X7E) ds  (8a)

—% / 1)),
_/ Dalb(X dS,(/tq )GI(x,€) dS;
- @ [ naasix s,
+ /a . Dalb()ds, /a _ Dylg(8)Hipq(.) 05

(8b)

3 MeshlessInterpolation

The MLS method of interpolation is generally consid-
ered to be one of the best schemes to interpolate random
datawith areasonable accuracy [Atluri and Zhu (1998)].
Although the nodal shape functions that arise from the
ML S approximation have a very complex nature, they al-
ways preserve completeness up to the order of the chosen
basis, and robustly interpolate the irregularly distributed
nodal information. The MLS scheme has been widely
used in domain discretization methods [Atluri and Shen
(2002b)]. If we consider the MLS approximation on the
boundary of a 3D solid domain, i.e., a 3D surface, the
moment matrix in the MLS interpolation sometimes be-
comes singular, if global Cartesian coordinates are used
indescribing the surface, and if the surface containingthe
nodes in the domain of influence of the node in question
becomes nearly planar. The two surface-curvilinear co-
ordinatesmay be used here as an alternative choice, but it
requires the background cells, which hindersit from be-
ing a true meshless implementation. In the present study,
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we present a method to recondition the singular moment
matrix, while still using the global Cartesian coordinates
to approximate the trial function over a surface.

Consider a local sub-part of the boundary 0Q, of a 3-
D solid, denoted as 0Q, the neighborhood of a point X,
whichisalocal region inthe globa boundary 0Q. To ap-
proximate the function u in 0Qy, over a number of scat-
tered points{x, }, (1 =1,2,...,n) (wherex isgiven, inthe
global Cartesian coordinates by x1, X andxs), the mov-
ing least squares approximation u(x) of u, Vx € dQy, can
be defined by

u(x) =p'(x)ax) vx e aQy

(9)

where pT (x) = [p1(X), p2(X), ..., pm(X)] is @ monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1, X2, 3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L, norm, defined, as:

3060 = 5 w0 )20 -8

=[P-a(x)— 0]"W[P-a(x) — Q] (10)

where wi(x) are the weight functions and 0;are the ficti-
tious nodal values.

The stationarity of J in Eq. (10), with respect to a(x)
leads to following linear relation between a(x) and @,

A(x)a(x) =B(x)a (1)
where matrices A(x) and B(x) are defined by
A(X)=PTWP B(x)=P'W Vx e dQ, (12)

The MLS approximation is well defined only when the
matrix A(X) in Eq. (11) is non-singular. It needs to be
reconditioned, if the monomial basisdefined inthe global
Cartesian coordinate system for an approximation of u
asin Eq. (9), becomes nearly linearly dependent on a
3-D surface. One may define a local set of orthogonal
coordinates, X asin Figure 1, on Q. One may rewrite
Eq. (9) as.

U= [15X0; X3 X33 X33 X5 XG5 XaXa; XoXa; XaXas -
[a1(x); @2(X); a3(X); aa(x); ... T

= (13 % X5 X1 X 2 X 5 X 10, XX X -
(8 (x); a(x); @(x); & (X); ...] T

for vx € 0Qy (13)
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Suppose 0Qy becomes nearly planar, which may be de-
fined in the local-set of orthogonal coordinates , for in-
stance, as x; = constant. It is then clear that the mono-
mia basis in Eq. (13), in terms of becomes linearly
dependent. In fact, one may make the basis to be lin-
early indepent again in Eq. (13), for instance, for x5 =
constant, by setting the corresponding coefficients a’(x)
to be zero. When this is done, the order of the vector
p’(x) is correspondingly reduced; and thus, correspond-
ingly, the order of A(x) in Eq. (11) isreduced. Thus,
it can be seen that if one proceeds with a full monomial
basis, with mbasis functionsin x; coordinatesin Eq. (9),
and if the pointson 0Q are not al in the same plane, the
matrix A(x) in Eq. (11) will have thefull rank of m. One
the other hand, if dQy becomes almost planar, say nor-
mal to x5, then the rank of A(x) is clearly only (m—n),
where n is the reduction in the number of basis due to
the fact that x5 = constant. Thus, by simply monitoring
the eigen-values of A(x), and if a set of eigen-values be-
comes nearly or precisely zero, we automatically detect
that 0Qy isbecoming nearly planar. Inaddition, itimplies
that the normal to the surface can be determined from the
lowest eigenvalue of matrix A(x) when it is singular or
nearly-singular, without the local geometry information.
It makes the present method to be truly meshless, which
does need any background cells to define the geometry
as well asthe normal direction, if the boundary integrals
are handled based on the nodal influence domain [Atluri,
Han, and Shen (2003)].

Once coefficients a(x) in Eq. (11) are determined, one
may obtain the approximation from the nodal values at
the local scattered points, by substituting them into Eq.
(9), s

ux) =@ (x)0  ¥x € aQy (14)
where ®(x) is the so-called shape function of the MLS
approximation, defined as,
®(x) =p" (XA H(x)B(x) (15)
The weight function in Eq. (10) defines the range of in-
fluence of node I. Normally it has a compact support.
The possible choices are the Gaussian and spline weight
functions with compact supports, which have been fully
studied in Atluri and Shen (2002a).

It should be pointed out that the shape functionsgiven in
Eqg. (15) are based on the fictitious nodal values. This
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2/3 1/3

Figure2: A cube under uniform tension, and its nodal configurations

introduces an additional complication, sinceall the nodal
values in BIEs are the direct boundary values, a situa-
tion which is totally different from the domain meshless
methods. As a practical way, a conversion matrix is used
to map the fictitious values to true values and applied to
the system equations.

4 Numerical Experiments

Several problems in three-dimensional linear elagticity
are solved to illustrate the effectiveness of the present
method. The numerical results of the MLPG/BIE6
method as applied to problems in 3D elasto-statics,
specifically (i) acube, (ii) ahollow sphere, (iii) aconcen-
trated load on a semi-infinite space, and (iv) non-planar
fatigue growth of an dliptical crack, are discussed.

4.1 Cube under uniform tension

The first example is the standard patch test, shown in
Figure 2. A cube under the uniform tension is consid-
ered. The material parameters are taken asE = 1.0, and
v = 0.25. All six faces are modeled with the same con-
figurations with 9 nodes. Two nodal configurations are
used for the testing purpose: oneisregular and another is
irregular, asshownin Figure 2. In the patch tests, the uni-
form tension stress is applied on the upper face and the
proper displacement constraints are applied to the lower
face.

The satisfaction of the patch test requires that the dis-
placements are linear on the lateral faces, and are con-
stant on the upper face; and the stresses are constant
on al faces. It is found that the present method passes
the patch tests. The maximum numerical errors are

1.7 x 10~ and 3.5 x 10~/ for two nodal configurations,
respectively, which may be limited by the computer.

4.2 3D Lan® problem

The 3D Lame problem consists of a hollow sphere under
internal pressure, asillustratedin Figure 3. The geometry
is defined with the inner and outer radius of 1.0 and 4.0,
respectively. The Young's modulusis chosen as and the
Poissonratio. Theinternal pressureisapplied. Theinner
and outer surfaces are modeled with 772 nodes in the
present analysis.

Theradia displacement field is given in [Timoshenko &

7

Figure 3 : A hollow sphere under internal pressure
(Lame problem)
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Figure 4 : Interna radia displacement for the Lame
problem

Goodier (1976)],
u_% (1—2v)+(1+v)% (16)
Theradia and tangential stressesare
o — pad(b® — R®)
R3(a3 —bs)
_ pad(b®+2R®) 17)

%0~ R0 a0

The displacements are shown in Figure 4, and are com-
pared with the analytical solution. As shown in Figure
5, the radial and tangential stresses are compared with
the analytical solution. They agree with each other very
well.

4.3 A concentrated load on a semi-infinite space

(Boussinesq problem)

The Boussinesq problem can simply be described as
a concentrated load acting on a semi-infinite elastic
medium with no body force, as shown in Figure 6. Be-
cause of its strong singularity, it is difficult for mesh-
based domain methods without special treatments. As
one of the MLPG domain methods, ML PG5 was applied
to thisproblemin [Li, Shen, Han and Atluri (2003)]. We
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0.6

04 »

0.2 4 \G\_

-0.2 4

Radial Stress [Theory]

-0.4 4
- - = =Tangential Stress [Theory]

-0.6 1 O Radial Stress [MLPG/BIE6]
¢  Tangential Stress [MLPG/BIEG]

Radial and tangential stresses

-0.8 4

Figure5: Internal radial and tangential stresses for the
Lame problem

solve this problem here by using the MLPG/BIE meth-
ods to handle the strong singularity. A circular surface
with a radius of 20 is used to simulate the semi-infinite
gpace. It is modeled aternatively with two nodal config-
urations, as shown in Figure 7: one has 649 nodes and
another has 1417 nodes. Young's modulus and Poisson’s
ratio are chosen to be 1.0 and 0.25, respectively.

The exact displacement field within the semi-infinite

4

Figure6: A concentrated load on a semi-infinite space
(Bossinesq Problem)
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(b)

Figure 7 : two nodal configurations for the Bossinesqg
Problem: (a) 672 nodes, and (b) 1417 nodes

medium is given in [Timoshenko & Goodier (1976)],

(1—2v)r
R+z ]

u— (I+v)P [z
T 2EMR |R2

(2

where u, istheradia displacement, and u,, is the verti-

(18)
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cal one, R is the distance to the loading point, r is the
projection of R on the loading surface.

The theoretical stressesfieldis:

P _3r22+(1—2\))R
TomR?| RO R+z
(1-2v)P [z R
Og=——F— | =— ——
21R2 R R+z
3P
Oy=———=
21Rd
3PrZ
TZI‘ - TI’Z - —m (19)

Itisclear that the displacements and stresses are strongly
singular and approach to infinity; with the displacement
being O(1/R) and the stresses being O(1/R?).
Thevertical displacement u,, alonethe z-axisisshownin
Figure 8, and the radial and tangential stressesare shown
in Figure 9 and Figure 10. The analytical solutionfor the
displacement and stress are plotted on the same figures
for comparison purpose. The zoom-in views within the
shorter distance from the loading point are also shown
in each figure. The shortest distance is 0.0025, where
is very close the loading point and displacement and
stresses increase rapidly. It can be clearly seen that both
the MLPG/BI E displacement and stress resultsmatch the
analytical solution very well, even within the very short
distance, from the point of load application.

4.4 Non-planar Crack Growth

Aninclined elliptical crack with semi-axes ¢ and a, sub-
jected to fatigue loading, is shown in Figure 11. Its ori-
entation is characterized by an angle, a. This problem
has been solved by using the boundary element method
in [Nikishkov, Park, JH., Atluri, S. N. (2001)] but it was
reported that only K, was obtained with the satisfactory
agreement with the theoretical solution while failing in
Ky and Kj;;. The present meshless method is applied
to solve this problem, again. The nodal configuration
is used to model the crack inclined at 45 degrees with
249 nodes, as shown in Figure 12. The exact solution
for atensile loading ¢ is given in [Tada, Paris and Irwin
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(2000)]:

K =

K| =

K= Kosin20(

Ko(1+ cosZa)

k%(a/c) cosp
B f(¢)
K2(1-v) sinp

B f(¢)

Kosin2

(20)

673

6000

—— Theory
5000 <& MLPG/BIE6[1417 nodes]
A MLPG/BIE6[672 nodes]
4000
13
g
(Z 3000
s
T
©
.4
2000 1
1000 ¢
0 2 4 6 8 10
R
6000
— Theory
5000 1 & MLPG/BIE6[1417 nodes]
A MLPG/BIE6[672 nodes]
4000 -
[}
g
§ 3000 -
s
T°
©
.4
2000 -
1000 ¢
<
(- = & S
0.0 0.1 0.2 0.3 0.4 0.5

Figure 9 : Radia stress alone z-axis for the Bossinesg
problem

where ¢ isthe elliptical angle and

f(¢) = (SN0 + (a/c)’cos’§)"*
k?=1-(a/c)?

(21)

B= (k®—Vv)E(k) +Vv(a/c)?K (k)

Thedlliptical integrals of the first and second kind, E (k)
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Figure11: Inclined eliptical crack under tension
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Figure 10 : Tangential stress alone z-axis for the Bossi-
nesq problem

and K (k), are defined as

/2
K (K) = / L Figure 12 : Noda configuration for an inclined elliptical
-2
5 v/1—k?sin“@ crack
/2

E(k) = / V1-K2sin?6de 22)
0

ment of the present numerical results with the theoretical
Asamixed-mode crack, the distributionof all threestress  Solution is obtained.
intensity factors, K|, K;; and K}, along the crack front The fatigue growth is also performed for this inclined
are shown in Figure 13, after being normalized by Kg as crack. The Paris model is used to simulate fatigue crack
defined in Eq. (21). It can be seen that a good agree-  growth. The crack growth rate with respect to theloading
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Figure 14 : Normalized stressintensity factors for the mixed-mode fatigue growth of an inclined elliptical crack

cycles, da/dN, is defined as:

da n
— = 2

4 = C(OKer1) (23)
in which the material parameters C and n are taken for
7075 Aluminum as C = 1.49 x 10~8 and n = 3.21 [Nik-
ishkov, Park and Atluri(2001)]. The crack growth is

simulated by adding nodes along the crack front. The

newly added points are determined through the K solu-
tions. Seven increments are performed to grow the crack
from the initial size a = 1 to the fina size a = 2.65.
The normalized stress intensity factors during the crack
growing are given in Figure 14, which are also normal-
ized by Ko in Eq. (21). The results show that K; keeps
increasing while K|, and K, are decreasing during the
crack growth. It confirms that this mixed-mode crack
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Figure 15 : Fina shape of an inclined eliptical crack
after mixed-model growth

becomes a mode-1 dominated one, while growing. The
shape of the final crack isshownin Figure 15. It isclear
that whilethe crack, initsinitial configuration, starts out

as a mixed-mode crack; and after a substantial growth,
the crack configuration is such that it isin a pure mode-|

state.

5 Closure

In this paper, we numerically implemented the specific
symmetric form of “Meshless Local Petrov-Galerkin
BIE Method” (MLPG/BIES6). It is one of the general
ML PG/BIE methods, which are derived for displacement
and traction BIEs, by using the concept of the general
meshlesslocal Petrov-Galerkin (MLPG) approach devel-
oped in Atluri et a [1998, 2002a,b, 2003]. The MLS
surface-interpolation, with the use of Cartesian coordi-
nates, isenhanced for the three dimensional surface with-
out the requirement of a mesh or cells, to define the lo-
cal geometry. It leads to the truly meshless BIE meth-
ods with the use of the nodal influence domain for the
boundary integrations. The accuracy and efficiency of
the present MLPG approach are demonstrated with nu-
merical results.
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Appendix

The displacement solution corresponding to this unit
point load is given by the Gal erkin-vector-displacement-
potential:
¢P=(1-v)F*e’ (24)
The corresponding displacements are derived from the
Galerkin-vector-displacement- potentia as:

UP(E) = (1 0)8pF iy — =

SFh (25)

The gradients of the displacements are:

1
=

>Fhij (26)

U(x,€) = (1—0)8piF g —

The corresponding stresses are given by:

o;F(x,&) = Eijuuy)
= M[(1—)dpiF i + Vi F i — F i

+ (1 —0)dpj F i (27)

Three functions ¢, G/, i,

[Han and Atluri (2003)]

and Hj ,, are defined as

@P(x&) = —p(1—-0)3p;Fiy (28)
GP(x,&) = H[(1—V)ep;Fix — kiF pul (29)
%i0q(% &) = Eijk€n pOhg(%,€) (30)
Hi pg (X, €)

= W[—8ijF pq + 28ipF jg + 28jqFip — 8pqFij

— 20pdjqF b + 208idj pF b + (1- U)5ij 5qu,bb)] (3D)
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For 3D problems,

* r
F = o) (32)

wherer = || —X||

1

uP(x,&) = m[(3—4u)6ip+r,ir,p] (33)
GiPOE) = g gy (L2 ewricsl (34
. 1

0jj (x,€) = Bi—u)r2
[(1—20)(8ijr p—Bipr j —Bjpri) —3rirjrpl (39
) u

+ijI pf q+Opqlif j — 20ipl jF g — Ojqr il p) (36)

For 2D problems,

—r2Inr

T )
* 1
uP(x,&) = m[—@—%)mr&p—l—r,ir,p] (38)
* 1
Gi,-p(x,E) = an(1-v)
[—(1—2v)Inrepj + el kr p (39)
p 1

i (X,&) = an(1—uyr

[(l— 2U)(6ijl‘,p — 5ipl‘,j — 5jp|',i) — zr,ir,jr,p] (40)

u

+20Inrd;;0pq  +&ijr pl g
—|—6pqr,ir,j —26ipl‘,jl‘,q—5qu‘,il‘,p] (41)
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