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Truly Meshless Local Petrov-Galerkin (MLPG) Solutions of Traction &
Displacement BIEs

Z. D. Han1 and S. N. Atluri1

Abstract: The numerical implementation of the truly
Meshless Local Petrov-Galerkin (MLPG) type weak-
forms of the displacement and traction boundary inte-
gral equations is presented, for solids undergoing small
deformations. In the accompanying part I of this pa-
per, the general MLPG/BIE weak-forms were presented
[Atluri, Han and Shen (2003)]. The MLPG weak forms
provide the most general basis for the numerical solu-
tion of the non-hyper-singular displacement and traction
BIEs [given in Han, and Atluri (2003)], which are sim-
ply derived by using the gradients of the displacements
of the fundamental solutions [Okada, Rajiyah, and Atluri
(1989a,b)]. By employing the various types of test func-
tions, in the MLPG-type weak-forms of the non-hyper-
singular dBIE and tBIE over the local sub-boundary sur-
faces, several types of MLPG/BIEs are formulated, while
also using several types of non-element meshless in-
terpolations for trial functions over the surface of the
solid. Specifically, three types of MLPG/BIEs are for-
mulated in that paper, i.e. MLPG/BIE1, MLPG/BIE2,
and MLPG/BIE6, as per the consistent categorizations of
the MLPG domain methods [Atluri and Shen (2002a)].
As the accompanying part II, this paper is devoted to
MLPG/BIE6. In particular, the moving least squares
(MLS) method has been extended for the approximation
on three dimensional surfaces, which makes it possible
for the MLPG/BIE methods to be truly meshless. Numer-
ical examples, including crack problems, are presented to
demonstrate that the present methods are very promising,
especially for solving the elastic problems in which the
singularities in displacements, strains, and stresses, are
of primary concern.
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1 Introduction

The meshless local Petrov-Galerkin (MLPG) approach
has become very attractive as a very promising method
for solving partial differential equations. The MLPG
method was originally applied for domain discretizations
in Atluri and Zhu (1998). The main advantage of this
method over the widely used finite element methods is
that it does not need any mesh either for the interpo-
lation of the solution variables or for the integration of
the weak forms. The MLPG approach is very general,
and can be based on the symmetric or unsymmetric lo-
cal weak-forms of the PDEs, and uses a variety of in-
terpolation methods (trial functions), test functions, inte-
gration schemes with/without background cells, and their
flexible combinations. Such generality has been widely
investigated [Atluri and Shen (2002a,b)]. The many re-
search successes in solving PDEs, demonstrate that the
MLPG method, and its variants, become some of the
most promising alternative methods for computational
mechanics.

The boundary integral equations (BIEs) have also been
developed for solving PDEs, because of their efficiency
in certain applications, in comparison to the domain-
solution methods. They have been applied to solve lin-
ear elastic isotropic solid mechanics problems [Okada,
Rajiyah, and Atluri (1990)], 3-D dynamic problems
[Hatzigeorgiou, and Beskos (2002)], cracked plate prob-
lems [Wen, Aliabadi, and Young (2003), El-Zafrany
(2001)], acoustic problems [Gaul, Fischer,and Nacken-
horst (2003)], and biological systems [Muller-Karger,
Gonzalez, Aliabadi and Cerrolaza] (2001)]. It is well
known that the hyper-singularities of the traction BIEs,
as derived directly from differentiating the displacement
BIEs, hinder their applications in various numerical im-
plementations. The hyper-singular BIEs need some spe-
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cial treatments, such as the various de-singularization
techniques [Richardson and Cruse (1996)]. In contrast,
as far back as 1989, Okada, Rajiyah, and Atluri (1989a,b,
1990) have proposed a simple way to directly derive the
integral equations for the gradients of displacements. It
resulted in “non-hyper-singular” boundary integral equa-
tions for the gradients of displacements, and these have
been applied to solve the nonlinear problems success-
fully. Recently, this concept has been followed and
extended for a directly-derived traction BIE [Han and
Atluri (2002, 2003)], which is also “non-hyper-singular”
[1/r2], as opposed to being “hyper-singular” [1/r3]. Han
and Atluri (2003) have also proposed a very straight-
forward and simple procedure to de-singularize the “non-
hyper-singular” integrals, in order to render them nu-
merically tractable, with only a weak singularity. These
weakly-singular dBIE and tBIE are solved here by using
the MLPG approaches, by writing their local weak-forms
in the local sub-boundary surfaces. These meshless solu-
tion methods for solving BIEs are labeled as MLPG/BIE
approaches. The generalities of the MLPG/BIE ap-
proaches have been discussed in the accompanying part I
of the paper [Atluri, Han and Shen (2003)], in which vari-
ous forms of MLPG/BIEs were proposed. Some issues in
the numerical implementation have also been addressed
there.

In the present paper, we implement the formulations
proposed in Atluri, Han and Shen (2003) for the
MLPG/BIE6 and solve some elastic problems, includ-
ing fracture mechanics problems of non-planar crack-
growth. The MLS method is used to construct the inter-
polation functions on the surface of a three-dimensional
body. It is well unknown that the moment matrix be-
comes singular or nearly singular, if the 3-D Cartesian
coordinates are used in the MLS over a general 3-D sur-
face. For three dimensional surface cases, the curvilin-
ear coordinates are used in the boundary node method
(BNM) [Gowrishankar and Mukherjee (2002)], in which
the background cells are required for the approximation,
as well as for the integration. It prevents the meshless
BIE methods to be truly meshless, since it still involves
the mesh generation and re-meshing. As an alternate im-
plementation, the varying polynomial basis may be cho-
sen, with the use of Cartesian coordinates, so that the
singularity in the MLS is eliminated, as proposed for the
boundary cloud method (BCM) [Li and Aluru (2003)].
However, it is difficult to choose the polynomial basis

for the arbitrary 3D surfaces. Secondly, the local geome-
try information is required to help in choosing the basis.
The idea of the varying basis is promising, but is diffi-
cult for the numerical implementation, as worse results
were reported by the authors [Li and Aluru (2003)]. In
the present paper, we check the singularity of the mo-
ment matrix, and determine the local normal direction of
3D surfaces from its lowest eigenvector. Then, the singu-
larity of the moment matrix has been cancelled, by using
this information on the local normal direction. With this
extension, the local geometry information or the back-
ground cells are not required for the MLS, to construct
the interpolation functions. It leads to truly meshless
BIE methods, if the integration schemes are based on
nodal influence domains, as discussed in [Atluri, Han and
Shen (2003)]. In this paper, we focus on the displace-
ment and traction MLPG/BIEs in their local symmetric
weak-forms, with the combination of the enhanced MLS
surface interpolation method.

The outline of the paper is as follows: Section 2 sum-
marizes the non-hypersingular displacement and trac-
tion BIEs [Han and Atluri (2003)], and their MLGP ap-
proaches [Atluri, Han and Shen (2003)]; In Section 3,
the MLS approximation is extended to recondition the
singular or nearly singular moment matrix when it is ap-
plied for the approximation over the three dimensional
surface; Section 4 discusses the numerical results by us-
ing the moving least squares in the MLPG/BIE6 method.
Some conclusions are made in Section 5.

2 Non-Hyper-singular MLPG Displacement and
Traction BIEs

This section summarizes, for the sake of completeness,
the non-hypersingular MLPG displacement and traction
BIEs for a linear elastic, homogeneous, isotropic solid.
They were proposed and discussed in detail in [Atluri,
Han and Shen (2003)], by extending the general non-
hyper-singular dBIE and tBIEs through the MLPG ap-
proaches [Han and Atluri (2003)].

2.1 BIEs for elastic problems

Consider a linear elastic, homogeneous, isotropic body in
a domain Ω, with a boundary ∂Ω. The Lame’ constants
of the linear elastic isotropic body are λ and µ; and the
corresponding Young’s modulus and Poisson’s ratio are
E and υ, respectively. We use Cartesian coordinates ξ i,
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and the attendant base vectors e i, to describe the geom-
etry in Ω. The solid is assumed to undergo infinitesimal
deformations. The equations of balance of linear and an-
gular momentum can be written as:

∇∇∇ ·σσσ+ f = 0; σσσ = σσσt; ∇∇∇ = ei
∂

∂ξi
(1)

The strain-displacement relations are:

εεε =
1
2
(∇∇∇ u+u∇∇∇ ) (2)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σσσ = λ I(∇∇∇ ·u)+2µεεε (3)

The forms of the boundary integral equations, which are
used in the present paper, are given by [Han and Atluri
2003], for displacement,

up(x) =
∫

∂Ω
t j(ξ)u∗p

j (x,ξ) dS

−
∫

∂Ω
ni(ξ)u j(ξ)σ

∗p
i j (x,ξ) dS (4a)

and for traction

− tb(x) =
∫

∂Ω
tq(ξ)na(x)σ∗q

ab(x,ξ) dS

+
∫

∂Ω
Dpuq(ξ)na(x)Σ∗

abpq(x,ξ) dS (4b)

where u∗p
j , σ∗p

i j and Σ∗
abpq are kernel functions, which

were first given in Han and Atluri (2003) and listed in the
appendix for 2D and 3D problems separately; the surface
tangential operator Dt is defined as,

Dt = nrerst
∂

∂ξs
(5)

It should be pointed out that dBIE and tBIE in Eq.
(4) are directly derived without hyper-singularities, as
originally presented in [Okada, Rajiyah, and Atluri
(1989a,b)]. They are both numerically tractable after de-
singulariztion by using the identities of the fundamental
solution [Han and Atluri (2003)].

2.2 MLPG Approaches

The meshless approach for solving PDEs has attracted
much attention during the past decades. As a general
method, the MLPG approach was first proposed by Atluri
and Zhu (1998) for solving linear potential problems, by
using either a local symmetric weak form, or an unsym-
metric weak form of the governing equation over the lo-
cal sub domain, and such local domains may overlap
each other. The generality of the MLPG, and its vari-
ants, are comprehensively investigated in Atluri and Shen
(2002a,b). This approach can also be used for solving
BIEs, instead of using traditional element-based meth-
ods, such as the Boundary Element Method. Following
the general idea as presented in Atluri and Zhu (1998),
one may consider a local sub-boundary surface ∂ΩL, with
its boundary contour Γ L, as a part of the whole boundary-
surface, as shown in Figure 1, for a 3-D solid. Eq. (4)
may be satisfied in weak-forms over the sub-boundary
surface ∂ΩL, by using a Local Petrov-Galerkin scheme,
as:

x

33, xe

22
, xe

11
, xe

x

33
, xe

22 , xe11, xe

Figure 1 : A sub-part of the boundary around point x

∫
∂ΩL

wp(x)up(x)dSx

=
∫

∂ΩL

wp(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dS

−
∫

∂ΩL

wp(x)dSx

∫
∂Ω

ni(ξ)u j(ξ)σ
∗p
i j (x,ξ) dS (6a)
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−
∫

∂ΩL

wb(x)tb(x)dSx

=
∫

∂ΩL

wb(x)dSx

∫
∂Ω

tq(ξ)na(x)σ∗q
ab(x,ξ) dSξ

+
∫

∂ΩL

wb(x)dSx

∫
∂Ω

Dpuq(ξ)na(x)Σ∗
abpq(x,ξ) dSξ

(6b)

where w(x) is a vector test function. If w(x) is cho-
sen as a Dirac delta function, i.e. wb(x) = δ(x,xm) at
∂ΩL, we obtain the standard “collocation” method for
displacement and traction BIEs, at the collocation point
xm. Their detail de-singularized forms have been pre-
sented in Atluri, Han and Shen (2003). One may also
choose w(x) in such way that it is continuous over the
local sub boundary-surface ∂ΩL and zero at the contour
ΓL, and apply Stokes’ theorem to Eq. (6), and re-write it
as:

1
2

∫
∂ΩL

wp(x)up(x)dSx

=
∫

∂ΩL

wp(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dSξ

+
∫

∂ΩL

wp(x)dSx

∫
∂Ω

Di(ξ)u j(ξ)G∗p
i j (x,ξ) dSξ

+
∫

∂ΩL

wp(x)dSx

∫ CPV

∂Ω
ni(ξ)u j(ξ)φ∗p

i j (x,ξ) dSξ

(7a)

− 1
2

∫
∂ΩL

tb(x)wb(x)dSx

=
∫

∂ΩL

Dawb(x)dSx

∫
∂Ω

tq(ξ)G∗q
ab(x,ξ) dSξ

−
∫

∂Ω
tq(ξ) dSξ

∫ CPV

∂ΩL

na(x)wb(x)φ∗q
ab(x,ξ)dSx

+
∫

∂ΩL

Dawb(x)dSx

∫
∂Ω

Dpuq(ξ)H∗
abpq(x,ξ) dSξ

(7b)

where G∗q
ab, φ∗q

ab and H∗
abpq are fundamental solution re-

lated kernel functions and given in the appendix for both
2D and 3D problems.

In the present implementation, the test function w b(x)
is chosen to be identical to a function that is energy-
conjugate to up (for dBIE) and tb (for tBIE), namely,
the nodal trial function t̂p(x) and ûb(x), respectively, we
obtain the local symmetric Galerkin weak-forms of the
weakly singular dBIE and tBIE, as:

1
2

∫
∂ΩL

t̂p(x)up(x)dSx

=
∫

∂ΩL

t̂p(x)dSx

∫
∂Ω

t j(ξ)u∗p
j (x,ξ) dSξ

+
∫

∂ΩL

t̂p(x)dSx

∫
∂Ω

Di(ξ)u j(ξ)G∗p
i j (x,ξ) dSξ

+
∫

∂ΩL

t̂p(x)dSx

∫ CPV

∂Ω
ni(ξ)u j(ξ)φ

∗p
i j (x,ξ) dSξ (8a)

− 1
2

∫
∂ΩL

tb(x)ûb(x)dSx

=
∫

∂ΩL

Daûb(x)dSx

∫
∂Ω

tq(ξ)G∗q
ab(x,ξ) dSξ

−
∫

∂Ω
tq(ξ) dSξ

∫ CPV

∂ΩL

na(x)ûb(x)φ∗q
ab(x,ξ)dSx

+
∫

∂ΩL

Daûb(x)dSx

∫
∂Ω

Dpuq(ξ)H∗
abpq(x,ξ) dSξ

(8b)

3 Meshless Interpolation

The MLS method of interpolation is generally consid-
ered to be one of the best schemes to interpolate random
data with a reasonable accuracy [Atluri and Zhu (1998)].
Although the nodal shape functions that arise from the
MLS approximation have a very complex nature, they al-
ways preserve completeness up to the order of the chosen
basis, and robustly interpolate the irregularly distributed
nodal information. The MLS scheme has been widely
used in domain discretization methods [Atluri and Shen
(2002b)]. If we consider the MLS approximation on the
boundary of a 3D solid domain, i.e., a 3D surface, the
moment matrix in the MLS interpolation sometimes be-
comes singular, if global Cartesian coordinates are used
in describing the surface, and if the surface containing the
nodes in the domain of influence of the node in question
becomes nearly planar. The two surface-curvilinear co-
ordinates may be used here as an alternative choice, but it
requires the background cells, which hinders it from be-
ing a true meshless implementation. In the present study,
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we present a method to recondition the singular moment
matrix, while still using the global Cartesian coordinates
to approximate the trial function over a surface.

Consider a local sub-part of the boundary ∂Ω, of a 3-
D solid, denoted as ∂Ωx, the neighborhood of a point x,
which is a local region in the global boundary ∂Ω. To ap-
proximate the function u in ∂Ωx, over a number of scat-
tered points {xI}, (I = 1,2, ...,n) (where x is given, in the
global Cartesian coordinates by x1, x2 andx3), the mov-
ing least squares approximation u(x) of u, ∀x ∈ ∂Ω x, can
be defined by

u(x) = pT (x)a(x) ∀x ∈ ∂Ωx (9)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
They are determined by minimizing a weighted discrete
L2 norm, defined, as:

J(x) =
m

∑
i=1

wi(x)[pT(xi)a(x)− ûi]2

≡ [P ·a(x)− û]T W[P ·a(x)− û] (10)

where wi(x) are the weight functions and û iare the ficti-
tious nodal values.

The stationarity of J in Eq. (10), with respect to a(x)
leads to following linear relation between a(x) and û,

A(x)a(x) = B(x)û (11)

where matrices A(x) and B(x) are defined by

A(x) = PT WP B(x) = PT W ∀x ∈ ∂Ωx (12)

The MLS approximation is well defined only when the
matrix A(x) in Eq. (11) is non-singular. It needs to be
reconditioned, if the monomial basis defined in the global
Cartesian coordinate system for an approximation of u
as in Eq. (9), becomes nearly linearly dependent on a
3-D surface. One may define a local set of orthogonal
coordinates, x′i as in Figure 1, on ∂Ωx. One may rewrite
Eq. (9) as:

u = [1;x1;x2;x3;x2
1;x2

2;x2
3;x1x2;x2x3;x3x1; ...]

[a1(x);a2(x);a3(x);a4(x); ...]T

≡ [1;x′1;x′2;x′3;x′21;x′22;x′23;x′1x′2;x′2x′3;x′3x′1; ...]
[a′1(x);a′

2(x);a′
3(x);a′

4(x); ...]T

for ∀x ∈ ∂Ωx (13)

Suppose ∂Ωx becomes nearly planar, which may be de-
fined in the local-set of orthogonal coordinates , for in-
stance, as x′3 = constant. It is then clear that the mono-
mial basis in Eq. (13), in terms of becomes linearly
dependent. In fact, one may make the basis to be lin-
early indepent again in Eq. (13), for instance, for x ′

3 =
constant, by setting the corresponding coefficients a ′(x)
to be zero. When this is done, the order of the vector
p′(x) is correspondingly reduced; and thus, correspond-
ingly, the order of A(x) in Eq. (11) is reduced. Thus,
it can be seen that if one proceeds with a full monomial
basis, with m basis functions in x i coordinates in Eq. (9),
and if the points on ∂Ωx are not all in the same plane, the
matrix A(x) in Eq. (11) will have the full rank of m. One
the other hand, if ∂Ωx becomes almost planar, say nor-
mal to x′3, then the rank of A(x) is clearly only (m−n),
where n is the reduction in the number of basis due to
the fact that x′3 = constant. Thus, by simply monitoring
the eigen-values of A(x), and if a set of eigen-values be-
comes nearly or precisely zero, we automatically detect
that ∂Ωx is becoming nearly planar. In addition, it implies
that the normal to the surface can be determined from the
lowest eigenvalue of matrix A(x) when it is singular or
nearly-singular, without the local geometry information.
It makes the present method to be truly meshless, which
does need any background cells to define the geometry
as well as the normal direction, if the boundary integrals
are handled based on the nodal influence domain [Atluri,
Han, and Shen (2003)].

Once coefficients a(x) in Eq. (11) are determined, one
may obtain the approximation from the nodal values at
the local scattered points, by substituting them into Eq.
(9), as

u(x) = ΦΦΦT (x)û ∀x ∈ ∂Ωx (14)

where ΦΦΦ(x) is the so-called shape function of the MLS
approximation, defined as,

ΦΦΦ(x) = pT (x)A−1(x)B(x) (15)

The weight function in Eq. (10) defines the range of in-
fluence of node I. Normally it has a compact support.
The possible choices are the Gaussian and spline weight
functions with compact supports, which have been fully
studied in Atluri and Shen (2002a).

It should be pointed out that the shape functions given in
Eq. (15) are based on the fictitious nodal values. This
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2/3 1/3

Figure 2 : A cube under uniform tension, and its nodal configurations

introduces an additional complication, since all the nodal
values in BIEs are the direct boundary values, a situa-
tion which is totally different from the domain meshless
methods. As a practical way, a conversion matrix is used
to map the fictitious values to true values and applied to
the system equations.

4 Numerical Experiments

Several problems in three-dimensional linear elasticity
are solved to illustrate the effectiveness of the present
method. The numerical results of the MLPG/BIE6
method as applied to problems in 3D elasto-statics,
specifically (i) a cube, (ii) a hollow sphere, (iii) a concen-
trated load on a semi-infinite space, and (iv) non-planar
fatigue growth of an elliptical crack, are discussed.

4.1 Cube under uniform tension

The first example is the standard patch test, shown in
Figure 2. A cube under the uniform tension is consid-
ered. The material parameters are taken as E = 1.0, and
ν = 0.25. All six faces are modeled with the same con-
figurations with 9 nodes. Two nodal configurations are
used for the testing purpose: one is regular and another is
irregular, as shown in Figure 2. In the patch tests, the uni-
form tension stress is applied on the upper face and the
proper displacement constraints are applied to the lower
face.

The satisfaction of the patch test requires that the dis-
placements are linear on the lateral faces, and are con-
stant on the upper face; and the stresses are constant
on all faces. It is found that the present method passes
the patch tests. The maximum numerical errors are

1.7×10−7 and 3.5×10−7 for two nodal configurations,
respectively, which may be limited by the computer.

4.2 3D Lamé problem

The 3D Lame problem consists of a hollow sphere under
internal pressure, as illustrated in Figure 3. The geometry
is defined with the inner and outer radius of 1.0 and 4.0,
respectively. The Young’s modulus is chosen as and the
Poisson ratio . The internal pressure is applied. The inner
and outer surfaces are modeled with 772 nodes in the
present analysis.

The radial displacement field is given in [Timoshenko &

b

a

p

Figure 3 : A hollow sphere under internal pressure
(Lame problem)
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Figure 4 : Internal radial displacement for the Lame
problem

Goodier (1976)],

ur =
pRa3

E(b3−a3)

[
(1−2v)+(1+v)

b3

2R3

]
(16)

The radial and tangential stresses are

σr =
pa3(b3−R3)
R3(a3−b3)

σθ =
pa3(b3 +2R3)
2R3(b3 −a3)

(17)

The displacements are shown in Figure 4, and are com-
pared with the analytical solution. As shown in Figure
5, the radial and tangential stresses are compared with
the analytical solution. They agree with each other very
well.

4.3 A concentrated load on a semi-infinite space
(Boussinesq problem)

The Boussinesq problem can simply be described as
a concentrated load acting on a semi-infinite elastic
medium with no body force, as shown in Figure 6. Be-
cause of its strong singularity, it is difficult for mesh-
based domain methods without special treatments. As
one of the MLPG domain methods, MLPG5 was applied
to this problem in [Li, Shen, Han and Atluri (2003)]. We
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Figure 5 : Internal radial and tangential stresses for the
Lame problem

solve this problem here by using the MLPG/BIE meth-
ods to handle the strong singularity. A circular surface
with a radius of 20 is used to simulate the semi-infinite
space. It is modeled alternatively with two nodal config-
urations, as shown in Figure 7: one has 649 nodes and
another has 1417 nodes. Young’s modulus and Poisson’s
ratio are chosen to be 1.0 and 0.25, respectively.

The exact displacement field within the semi-infinite

P

y

x

r

R

z

Figure 6 : A concentrated load on a semi-infinite space
(Bossinesq Problem)
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(a)

(b)

Figure 7 : two nodal configurations for the Bossinesq
Problem: (a) 672 nodes, and (b) 1417 nodes

medium is given in [Timoshenko & Goodier (1976)],

ur =
(1+ν)P

2EπR

[
zr
R2 −

(1−2ν)r
R+ z

]

uw =
(1+ν)P

2EπR

[
z2

R2 +2(1−ν)
]

(18)

where ur is the radial displacement, and uw is the verti-

cal one, R is the distance to the loading point, r is the
projection of R on the loading surface.

The theoretical stresses field is:

σr =
P

2πR2

[
−3r2z

R3 +
(1−2ν)R

R+ z

]

σθ =
(1−2ν)P

2πR2

[
z
R
− R

R+ z

]

σz = − 3Pz3

2πR5

τzr = τrz = −3Prz2

2πR5
(19)

It is clear that the displacements and stresses are strongly
singular and approach to infinity; with the displacement
being O(1/R) and the stresses being O(1/R 2).

The vertical displacement uw alone the z-axis is shown in
Figure 8, and the radial and tangential stresses are shown
in Figure 9 and Figure 10. The analytical solution for the
displacement and stress are plotted on the same figures
for comparison purpose. The zoom-in views within the
shorter distance from the loading point are also shown
in each figure. The shortest distance is 0.0025, where
is very close the loading point and displacement and
stresses increase rapidly. It can be clearly seen that both
the MLPG/BIE displacement and stress results match the
analytical solution very well, even within the very short
distance, from the point of load application.

4.4 Non-planar Crack Growth

An inclined elliptical crack with semi-axes c and a, sub-
jected to fatigue loading, is shown in Figure 11. Its ori-
entation is characterized by an angle, α. This problem
has been solved by using the boundary element method
in [Nikishkov, Park, J.H., Atluri, S. N. (2001)] but it was
reported that only KI was obtained with the satisfactory
agreement with the theoretical solution while failing in
KII and KIII . The present meshless method is applied
to solve this problem, again. The nodal configuration
is used to model the crack inclined at 45 degrees with
249 nodes, as shown in Figure 12. The exact solution
for a tensile loading σ is given in [Tada, Paris and Irwin
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Figure 8 : Vertical displacement alone z-axis for the
Bossinesq problem

(2000)]:

KI = K0(1+cos2α)
1

E(k)
f (ϕ)

KII = K0 sin2α
k2(a/c)

B
cosϕ
f (ϕ)

KIII = K0 sin2α
k2(1−v)

B
sinϕ
f (ϕ)

(20)
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Figure 9 : Radial stress alone z-axis for the Bossinesq
problem

where ϕ is the elliptical angle and

K0 =
σ
√

πa
2

f (ϕ) = (sin2 ϕ +(a/c)2 cos2 ϕ)1/4

k2 = 1− (a/c)2

B = (k2−v)E(k)+v(a/c)2K(k) (21)

The elliptical integrals of the first and second kind, E(k)
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Figure 10 : Tangential stress alone z-axis for the Bossi-
nesq problem

and K(k), are defined as

K(k) =

π/2∫
0

dθ√
1−k2 sin2 θ

E(k) =

π/2∫
0

√
1−k2 sin2 θdθ (22)

As a mixed-mode crack, the distributionof all three stress
intensity factors, KI , KII and KIII, along the crack front
are shown in Figure 13, after being normalized by K0 as
defined in Eq. (21). It can be seen that a good agree-

2c

2a

Figure 11 : Inclined elliptical crack under tension

Figure 12 : Nodal configuration for an inclined elliptical
crack

ment of the present numerical results with the theoretical
solution is obtained.

The fatigue growth is also performed for this inclined
crack. The Paris model is used to simulate fatigue crack
growth. The crack growth rate with respect to the loading



Truly MLPG Solutions of Traction & Displacement BIEs 675

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 30 60 90 120 150 180 210 240 270 300 330 360

Elliptical Angle (deg)

N
o

rm
a
li
z
e
d

 S
IF

KI/K0 KII/K0 KIII/K0

KI/K0 KII/K0 KIII/K0

(Theoritical Solution)

(Present MLPG/BIE)

Figure 13 : Normalized stress intensity factors along the crack front of an inclined elliptical crack under tensile load
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Figure 14 : Normalized stress intensity factors for the mixed-mode fatigue growth of an inclined elliptical crack

cycles, da/dN, is defined as:

da
dN

= C (∆Ke f f )n (23)

in which the material parameters C and n are taken for
7075 Aluminum as C = 1.49×10−8 and n = 3.21 [Nik-
ishkov, Park and Atluri(2001)]. The crack growth is
simulated by adding nodes along the crack front. The

newly added points are determined through the K solu-
tions. Seven increments are performed to grow the crack
from the initial size a = 1 to the final size a = 2.65.
The normalized stress intensity factors during the crack
growing are given in Figure 14, which are also normal-
ized by K0 in Eq. (21). The results show that KI keeps
increasing while KII and KIII are decreasing during the
crack growth. It confirms that this mixed-mode crack
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Figure 15 : Final shape of an inclined elliptical crack
after mixed-model growth

becomes a mode-I dominated one, while growing. The
shape of the final crack is shown in Figure 15. It is clear
that while the crack, in its initial configuration, starts out
as a mixed-mode crack; and after a substantial growth,
the crack configuration is such that it is in a pure mode-I
state.

5 Closure

In this paper, we numerically implemented the specific
symmetric form of “Meshless Local Petrov-Galerkin
BIE Method” (MLPG/BIE6). It is one of the general
MLPG/BIE methods, which are derived for displacement
and traction BIEs, by using the concept of the general
meshless local Petrov-Galerkin (MLPG) approach devel-
oped in Atluri et al [1998, 2002a,b, 2003]. The MLS
surface-interpolation, with the use of Cartesian coordi-
nates, is enhanced for the three dimensional surface with-
out the requirement of a mesh or cells, to define the lo-
cal geometry. It leads to the truly meshless BIE meth-
ods with the use of the nodal influence domain for the
boundary integrations. The accuracy and efficiency of
the present MLPG approach are demonstrated with nu-
merical results.
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Appendix

The displacement solution corresponding to this unit
point load is given by the Galerkin-vector-displacement-
potential:

ϕϕϕ∗p = (1−υ)F∗ep (24)

The corresponding displacements are derived from the
Galerkin-vector-displacement- potential as:

u∗p
i (x,ξ) = (1−υ)δpiF

∗
,kk −

1
2

F∗
,pi (25)

The gradients of the displacements are:

u∗p
i, j(x,ξ) = (1−υ)δpiF

∗
,kk j −

1
2

F∗
,pi j (26)

The corresponding stresses are given by:

σ∗p
i j (x,ξ)≡ Ei jklu

∗p
k,l

= µ[(1−υ)δpiF
∗
,kk j +υδi jF

∗
,pkk −F∗

,pi j ]
+µ(1−υ)δp jF

∗
,kki (27)

Three functions φ∗p
i j , G∗p

i j , Σ∗
i jpq and H∗

i jpq are defined as
[Han and Atluri (2003)]

φ∗p
i j (x,ξ)≡−µ(1−υ)δp jF∗

,kki (28)

G∗p
i j (x,ξ) = µ[(1−υ)eip jF

∗
,kk −eik jF

∗
,pk] (29)

Σ∗
i jpq(x,ξ) = Ei jklenlpσ∗k

nq(x,ξ) (30)

H∗
i jpq(x,ξ)

= µ2[−δi jF,pq +2δipF, jq +2δjqF,ip −δpqF,i j

−2δipδjqF,bb +2υδiqδjpF,bb +(1−υ)δi jδpqF,bb)] (31)
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For 3D problems,

F∗ =
r

8πµ(1−υ)
(32)

where r = ‖ξ−x‖

u∗p
i (x,ξ) =

1
16πµ(1−υ)r

[(3−4υ)δip + r,ir,p] (33)

G∗p
i j (x,ξ) =

1
8π(1−υ)r

[(1−2υ)eip j +eik jr,kr,p] (34)

σ∗p
i j (x,ξ) =

1
8π(1−υ)r2

[(1−2υ)(δi jr,p −δipr, j −δjpr,i)−3r,ir, jr,p] (35)

H∗
i jpq(x,ξ) =

µ
8π(1−υ)r

[4υδiqδjp −δipδjq −2υδi jδpq

+δi jr,pr,q +δpqr,ir, j −2δipr, jr,q −δjqr,ir,p] (36)

For 2D problems,

F∗ =
−r2 lnr

8πµ(1−υ)
(37)

u∗p
i (x,ξ) =

1
8πµ(1−υ)

[−(3−4υ) lnrδip + r,ir,p] (38)

G∗p
i j (x,ξ) =

1
4π(1−υ)

[−(1−2υ) lnr eip j +eik jr,kr,p] (39)

σ∗p
i j (x,ξ) =

1
4π(1−υ)r

[(1−2υ)(δi jr,p −δipr, j −δjpr,i)−2r,ir, jr,p] (40)

H∗
i jpq(x,ξ) =

µ
4π(1−υ)

[−4υ lnrδiqδjp + lnrδipδjq

+2υ lnrδi jδpq +δi jr,pr,q

+δpqr,ir, j −2δipr, jr,q −δjqr,ir,p] (41)


