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A Geometric Embedding Algorithm for Efficiently Generating Semiflexible
Chains in the Molten State

M. Kröger1, M. Müller2, and J. Nievergelt2

Abstract: We present a novel method for generating
starting polymer structures for molecular simulations in
the dense phase. The work describes the ingredients of
an algorithm for the creation of large, dense or diluted
amorphous polymeric systems close to equilibrium and
provides measures for its quality. The model systems
are made of semiflexible (wormlike) repulsive multibead
chains. The key feature of the method is its efficiency,
in particular for large systems, while approaching given
local and global chain characteristics. Its output has
been proven to serve as an excellent basis for subse-
quent off-lattice molecular dynamics computer simula-
tion. By combining chain growing with an iterative relax-
ation technique we remove overlaps of monomers. The
computing time is linear in the number of beads and in-
dependent of chain length. The method succeeds in gen-
erating large and dense (bulky and confined) systems of
up to 100,000 beads in less than an hour on todays work-
stations.

keyword: semiflexible polymers, equilibrium struc-
ture, generation, benchmark, algorithm

1 Introduction

Computer simulations provide a powerful tool to investi-
gate the microscopic origins of macroscopically observ-
able transport phenomena. Monte Carlo type simulations
are successfully used in the determination of conforma-
tional properties and phase diagrams of polymers [Binder
and Ciccotti (1996)], molecular dynamics (MD) simula-
tions are used to analyze the dynamics of polymeric sys-
tems and their response to external forces [Kremer et al.
(1995), Allen and Tildesley (1987), Heermann (1988),
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Kröger (1998)]. Based on model fluids which are gener-
ated by our geometric embedding algorithm we use a MD
simulation to provide information about the microstruc-
tural relaxation dynamics towards the equilibrium state,
which - by definition - cannot be generated by a sample
generator. In order to be feasible particulate simulations
have to be based on simple, but not too simple, models
[McLeish (2002)]. For modern perspectives on the va-
riety of methods and a vision for future developments
in multiscale simulations for nano- and micro-mechanics
of materials see, e.g., [Ghoniem and Cho (2002), Srivas-
tava and Atluri (2002)]. Recent results have confirmed
that simulations can be used to predict rheological be-
havior of real polymers, even when the simulation model
does not contain specific chemical details. This finding
is not surprising in view that polymer melts possess cer-
tain ’universal’ properties, cf. [de Gennes (1979)]. Al-
though polymers may differ in flexibility or length, an
appropriate reference parameter exists in each case that
indicates the polymers are indeed similar in their inherent
form. Because flow behavior is related to the polymer’s
inherent structure, qualitative rheological properties of
polymer melts are largely independent of the chemical
structure of the monomer repeat units. To visualize the
features of the code we model a polymer melt in sim-
ple form as a mixtures of beads (soft balls), with N
beads per chain whose connectivity is realized by (non-
linear) springs (along the chains contours). In this flexi-
ble chain model a bead represents a number of chemical
monomers.

A main difficulty when attempting to compute the stat-
ics and dynamics of dense model polymeric systems in
equilibrium or even nonequilibrium situations by molec-
ular/Brownian dynamics computer simulations is to gen-
erate and pre-equilibrate homogeneous samples by which
these simulations can and should be started off, see
[Kotelyanskii (1997), Brown et al (1994), Akkermans et
al. (1998), Paul et al. (1997), Neyertz et al. (1996), Lin
et al. (1996), Johnson (1996), Kröger (1999)]. This ini-
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tial phase may occupy up to the half of the overall CPU
time needed to analyze the system properties. One of
the reasons is the particularly small integration time step
during this ‘fluctuating’ phase, another one is the enor-
mous increase of characteristic relaxation time of poly-
mer chains with chain length (powers of 2 in dilute solu-
tion and 3.5 in melts are common). Hence it seems to be
of help to distribute an efficient method to create poly-
meric samples with specific characteristics, which, for
any choice of the break off criterion, represent as close
as possible an equilibrated sample, i.e., a sample with not
only the ‘correct’ local but also realistic global features.
For the novel method the break off criterion is the mini-
mum distance between center coordinates of nonbonded
monomers. The minimum distance criterion has the fea-
ture that the maximum force (amplitude) acting between
pairs of particles is thereby fixed for the sample, after be-
ing created. The force amplitudes, and more precisely the
Einstein frequency, gives an accurate estimate for the in-
tegration time step of a subsequent molecular or Brown-
ian dynamics run [Allen and Tildesley (1987), Heermann
(1988)]. For the homogeneous system this procedure is
comparable with a minimum energy criterion.

Up to the authors knowledge the literature provides two
comparable algorithms, which are very efficient for small
system sizes and generate amorphous polymers both in
the melt and glassy states. i) The method presented in
[McKechnie et al. (1992)] possesses a three-stage struc-
ture. The basic chain topology was obtained by a simple
self-avoiding random walk using the part that restraining
bonds, bond angles, and torsions of the Hamiltonian but
without any van der Waals interactions except those be-
tween sites on the same chain separated by three others
(i.e., the pentane effect). Following chain growth, the
excluded volume effects are introduced and the whole
structure is relaxed by a molecular dynamics using the
full Hamiltonian. ii) The algorithm GenPol provided in
[Kröger (1999)] exhibits similarities, but the system pa-
rameters such as the integration time step are coupled
to the conformation of the system in order to speed up
the relaxation process. During a dynamical two-step pro-
cess of sample creation the initially (Monte Carlo step 1)
predicted global characteristics of the molecular confor-
mations remain quite unaffected (during molecular dy-
namics step 2) and the potential energy and the entropy
production are relaxing towards their minima. The po-
tentials, the distribution of bond lengths, the integration

time step and temperature are smoothly controlled during
the creation/relaxation process until they finally approach
their prescribed values. The quality of their algorithm is
by its nature independent of concentration, system size
or degree of polymerization; the CPU speed is quite in-
dependent of the latter quantity and linear in the system
size. Chains tethered to a surface (dry polymer brushes)
can be generated as well. The authors provided a bench-
mark table, whose entries will be compared with the ones
produced by the novel algorithm for same parameters.
Chain generation methods have been used for applica-
tions and also been extended, see, e.g., [Akkermans et
al. (1998), Paul et al. (1997), Neyertz et al. (1996), Lin
et al. (1996), Johnson (1996), Kröger and Voigt (1994),
Kröger (2001), Neyertz and Brown (1996), Brown et al.
(1996), Widmann and Suter (1995), Yang et al. (1999)].

In contrast to the techniques described in [McKech-
nie et al. (1992), Kröger (1999)] our new algorithm
‘PolyGrow’ constructs the initial system of polymer
chains by adding monomer beads one by one to a pri-
marily empty box. This method is termed chain grow-
ing in the literature [Meirovitch (1983), Theodorou and
Suter (1985)]. The new segments are added according
to a choice criterion for achieving the target chain prop-
erties. At early stages of the chain growing process, the
box is sparsely populated allowing the chains to grow in
any direction. However, at later stages, the remaining
monomers need to be fitted exactly into gaps left over by
early stages. This major problem of the chain growing
technique usually leads to asymmetric structures and to
large sphere overlaps in dense packings. We solve this
problem by combining chain growing with an iterative
relaxation technique to remove overlaps of monomers.
Since the relaxation is applied only locally, its time com-
plexity is independent of the size of the system. Thus,
the time complexity of the hybrid algorithm remains the
same as the one of pure chain growing. The computing
time is linear in the number of beads for the systems we
investigate. PolyGrow succeeds in generating large and
dense systems of up to 100,000 beads in less than an hour
on todays workstations.

The manuscript is organized as follows: Sec. 2 specifies
the potentials for the polymer chain model under consid-
eration and it describes the method to analyze its dynam-
ics. Sec. 3 is devoted to the description of the algorithm
to generate starting structures for dense polymers under
various conditions. The speed and reliability of the algo-
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rithm are investigated in detail in Sec. 4.1 and Sec. 4.2,
respectively.

2 The coarse grained polymer chain model

In the present context the ‘wormlike chain model’ is a
combination of the model presented in [Kratky and Porod
(1949)] and the finitely extendable nonlinear elastic force
(FENE) model of [Warner (1972)]. The algorithm to be
presented will still be useful if the precise form of the
repulsive and attractive potentials is to be changed.

Each linear, semiflexible polymer chain within the bulk
of surrounding polymers consists of M beads, whereby
neighboring beads along the chain are connected by an
anharmonic attractive FENE spring [Kremer and Grest
(1990), Warner (1972)]. In order to prevent beads from
overlapping, all pairs of beads (inter- and intramolecular
pairs) interact with a repulsive Lennard-Jones potential
[Weeks et al. (1971)]

ULJ
i j =

{
4[(r∗i j)

−12 − (r∗i j)
−6 +1/4] for r∗i j ≤ 21/6

0 for r∗i j ≥ 21/6 ,

(1)

where r∗i j ≡ r j − ri denotes the vector between beads at
space coordinates ri (with i = 1, ...,N) and r∗i j ≡ |r∗i j|.
Here and in the following all quantities which are re-
duced to the usual LJ-units are denoted by an asterisk
if otherwise ambiguities could arise. For beads which
are nearest neighbors along the chain (for N > 1), an
attractive potential (FENE-potential) is added, see e.g.
[Kröger, Luap and Muller (1997)]:

UFENE
i j =

{ −0.5k∗R2
0 ln[1− (r∗i j/R0)2] for r∗i j ≤ R0

∞ for r∗i j ≥ R0
.

(2)

So far, these potentials set up a widely used model for
flexible chains. Kratky and Porod introduced a semiflexi-
bility by assuming an elastic bending energy for the chain

Ubend =
κ
2

∫ L

0
ds (

∂u
∂s

)2 = κ a0

N−2

∑
i=1

(1− ui ·ui+1

|ui ·ui+1| ), (3)

with segment vectors ui ≡ ri+1 − ri, temperature T ,
Boltzmann’s constant kB, bond length a0 ≡ 〈|u|〉 and a
persistence length l p ≡ κ/kBT , see e.g. [Doi and Ed-
wards (1996)].

The novel algorithm is also designed to generate polymer
brushes – in addition to free polymeric chain systems –
in order to compare with previous works. For the case of
a brush one of the tails of each molecule is conveniently
located in the (x-y) plane, and chains do not cross this
plane. For these systems the only additional parameter is
the surface concentration σ (number of tails per area).

To summarize, the parameters of our wormlike (free)
chain model are: the total number of beads N, the number
of beads per chain M or the number of chains N/M, the
bond length a0, the bending rigidity κ, the temperature
T , the bead number concentration ρ, the maximum ex-
tensibility R0 and spring coefficient k of the FENE chain,
and the surface concentration σ for polymer brushes.

The wormlike chain model can be simulated by molec-
ular dynamics (MD) starting from an equilibrated ini-
tial start configuration. A MD computer simulation is
a method for solving a classical many-particle problem.
Using the model potential as a basis, the discretized New-
tonian equations of motions are solved iteratively. A
polymers physical quantities are extracted within a cen-
tral simulation cell that contains all the monomers. Since
we are interested in bulk properties, this original cell with
all its particles is repeated periodically in all directions of
space, except for the case of brushes (see previous sec-
tion). The interaction between two monomers is calcu-
lated for their spatially closest representant; which can
be original or image particles in neighboring cells. Based
on previous research [Kremer and Grest (1990), Kröger
et al. (1993)], a short-ranged Lennard-Jones, Eq. 1, upon
a long-ranged intermolecular potential is used, which -
for dense systems - covers the main physics and is ad-
vantageous in terms of the required calculation time.

3 The PolyGrow Algorithm

PolyGrow handles the following problem: Given the
model parameters d < dmax, a0, κ, the number of beads
N, the number of chains N/M and the number of beads
per cube unit ρ, find coordinates for the centers of all
N beads such that the spheres do not overlap and that a
given distribution of bond angles is obtained. The quan-
tity dmax corresponds to the actual maximum packing
density at given bead density ρ.

To generate appropriate starting structures of wormlike
polymers described in the previous section we hence pro-
cess a simplified geometric model. The polymer is mod-
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eled by a sequence of beads with fixed diameter d, which
are connected by bonds of fixed length a0. The target ini-
tial distribution of bond angles (θ), according to Eq. 3 is
given by: prob(θ) ∝ exp[κ(1−cosθ)].

3.1 Chain growing

The main loop of PolyGrow adds n chains of m beads to a
primarily empty periodic box. This is done by repeatedly
calling a procedure AddBead. If AddBead fails, the actual
chain is removed and regrown at a new location. The
pseudo code for AddBead reads

procedure AddBead:Boolean;
begin

forall p ∈ possible positions do
if LookAhead(p, searchDepth) then

attach new bead at position p;
return true;

endif;
endfor;
forall p ∈ possible positions do

attach new bead at position p;
if Relax() then return true;
remove new bead;

endfor;
return false;

end;

AddBead evaluates a discrete set of possible positions
for the new bead. This step depends on the particular
model of the polymer system e.g. the parameters a0

and κ. Then, the positions are tested by the procedure
LookAhead in random order. LookAhead performs a
backtrack search of constant depth. It checks whether
the chain can be elongated via the new position by a
certain number of beads without overlaps. This step is
necessary because the chains are not completely flexible.
Their local flexibility is biased by the bending rigidity κ:

procedure LookAhead(p, depth):Boolean;
begin

if depth ≤ 0 then return true;
forall psucc ∈ possible successors of p do

if psucc does not overlap then
if LookAhead(psucc, depth-1)

then return true;
endif;

endfor;
return false;

end;

If inside the first loop of AddBead a position p is found
that can be extended by at least depth beads without
overlaps, a new bead is attached at this location. Oth-
erwise another strategy is applied: The second loop tests
all possible positions in the order of their expected qual-
ity. The quality is measured by the overlap of p or by
the number of beads the chain can grow via p without
overlap.

The new bead is attached at position p although it may
generate overlaps with existing beads. If the new bead
does not overlap with any other beads, AddBead returns
successfully. Otherwise, the newly produced overlaps
need to be removed. This is not a trivial task, since
the colliding beads belong to earlier generated chains. If
these beads are moved, adjacent bond lengths as well as
bond angles will change. However, neither bond lengths,
nor bond angle statistics should be disturbed during the
collision correction. The only way to modify the posi-
tions of beads inside a chain while keeping bond lengths
and bond angles fixed, is a simultaneous (concerted) ro-
tation of at least seven torsion angles. This move is de-
scribed in detail in [Dodd et al. (1993)] where a complex
procedure to evaluate the values of the seven torsion an-
gles is presented. This procedure needs to be performed
simultaneously on all the chains, contributing to the col-
lisions of the newly positioned bead.

3.2 Local relaxation

Fortunately there is a way to avoid the complex compu-
tations of concerted rotations. Since the set of beads that
need to be moved form a rather small and local system
of particles, a simple relaxation algorithm is suitable to
solve the local packing problem. The algorithm Relax
we use is simple and general in the sense that it can
handle problems of the following form: Given a set of



Embedding algorithm for dense polymeric systems 563

Table 1 : Benchmarks obtained with GenPol (R10000 at 195 MHz) and PolyGrow (Ultra-Sparc-II at 248 MHz) for
the generation of monodisperse polymer systems of different size, bulk density and different choices for the final
minimum distance between monomers. The specified samples S1-S5 are discussed in more detail in this work.

total chain chains bead surface minimum GenPol PolyGrow
beads length density density distance time time

sample N M N/M ρ σ d (s) (s)
— 1000 1000 1 0.8 — 0.8 22 8
S1 1000 1000 1 0.9 — 0.9 – 16
— 1000 1000 1 1.0 — 0.8 27 12
S2 1000 100 10 0.9 — 0.9 24 26
— 1000 100 10 1.0 — 0.9 25 57
— 5000 100 50 0.8 — 0.8 130 39
— 10000 100 100 0.8 — 0.8 340 82
S5 30000 50 600 0.8 — 0.9 – 287
— 100000 100 1000 0.8 — 0.8 8050 959
S3 5000 100 50 0.4 0.2 0.8 69 23
S4 5000 100 50 0.8 0.4 0.8 240 206

3.3 The Complexity of PolyGrow

To analyze the time complexity of PolyGrow, we split
the computing time into the time used by AddBead to
add a new bead to the system and the number of times
AddBead is called.

The time used by AddBead is independent of the prob-
lem size. The number of possible positions for the new
bead is constant. For each position, a search of constant
depth is started. If there is no space for the new bead,
Relax is called at most once for each new position. The
number of particles Relax moves is independent of the
problem size. Therefore, the total time used to add one
bead is independent of the total number of particles in the
system.

Since AddBead can fail, it is difficult to predict how many
times it is called during the packing process. If N is the
number of beads, AddBead is called exactly N times in
case it never fails. This leads to linear time complexity
O(N) in the best case.

As our experiments show, PolyGrow reaches linear time
complexity for realistic systems of wormlike polymer
chains (see section 4.1).

3.4 Polymer brushes and z-alignment

PolyGrow allows to generate special kinds of polymer
systems such as polymer brushes and z-aligned chains.

These additional constraints only affect the part of the
code inside AddBead where the set of possible positions
is produced. For polymer brushes, the first bead is fixed
in the z = 0 - plane. Additional distance constraints pre-
vent the chains from crossing the top and bottom planes
of the periodic box. Z-alignment is implemented by
favouring new positions along the z-axis.

4 Results

4.1 Time needed to generate pre-equilibrated samples

To analyze the time complexity of PolyGrowwe adopted
the default system parameters from [Kröger (1999)]: sys-
tems size N = 1,000, chain length M = 100, density
ρ = 0.9, diameter (break off criterion) d = 0.9 and stiff-
ness κ = 4 and varied the three relevant parameters: N,ρ
and M.

Figure 1 depicts the time used by PolyGrow to pack sys-
tems of various sizes N. We compare our results with
the performance of GenPol [Kröger (1999)], the fastest
method to generate wormlike amorphous polymer sys-
tems at present. PolyGrow shows a linear behavior while
the time used by GenPol increases slightly steeper. The
squares show the time used by GenPol, the triangles rep-
resent average values over 5 runs of PolyGrow. The two
lines above and below the triangles show the standard de-
viation. PolyGrow is between two and five times faster
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Figure 1 : Computing time of PolyGrow (MIPS R5000
at 180 MHz) versus system size N compared to results
obtained with GenPol (MIPS R10000 at 195 MHz). Sys-
tem parameters: N = 1,000 . . .100,000, M = 100, ρ =
0.8, d = 0.8 and κ = 4.

than GenPol depending on the system size.

The dependence of the execution time on the systems
density ρ is nonlinear. Above a certain value for ρ the
problem becomes unsolvable, there is no way to pack
the chains without overlapping spheres. Up to the con-
ventional melt density of 0.9 particles per cube unit, the
execution time does not increase dramatically, as Fig. 2
shows. However, PolyGrow is unsuitable for densities
above 1.0. For very high densities, GenPol is more ef-
ficient. It is able to pack systems up to 1.5 particles per
cube unit.

The final parameter to be analyzed is the chain length M.
As depicted in Fig. 3, the execution time of PolyGrow is
independent of the lengths of the chains. The standard
deviations over 20 runs are much higher than the differ-
ences in the average values. The task to finish a chain and
to begin an new one during the chain growing process
does neither take too much time, nor does this additional
degree of freedom simplify the problem significantly.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0.5 0.6 0.7 0.8 0.9 1

Density

T
im

e 
(s

)

Figure 2 : Computing time of PolyGrow versus system
density (Ultra-Sparc-II at 248 MHz). System parameters:
N = 1,000, M = 100, ρ = 0.5 . . .1.0, d = 0.9 and κ =
4. The dashed line represents reference results obtained
with GenPol [Kröger (1999)].

4.2 The quality of generated structures

In order to check the quality of the algorithm and the re-
liability of the generated samples we will show some dy-
namical quantities, i.e. relaxation behavior obtained by
subsequent conventional molecular dynamics (MD) sim-
ulation [Kröger et al. (1993), Kröger, Luap and Muller
(1997)].

All the samples listed in Tab. 1 were generated by our ge-
ometric embedding algorithm and used as starting con-
figuration for the MD. In addition to the listed parame-
ters the MD requires to specify the interaction potential
between neighboring beads within chains and the inter-
molecular interaction potentials as well as the integration
time step. Newton’s equation of motion were integrated
using the velocity Verlet algorithm, neighbor lists, lay-
ered link cells, see e.g. [Allen and Tildesley (1987), Ra-
paport (1991), Kremer and Grest (1990), Kröger et al.
(1993)] and Lees-Edwards boundary conditions [Allen
and Tildesley (1987)]. with a time step of 	t = 1/200.
With the choice for the finite extensibility of the FENE-
spring R0 = 1.5 and k∗ = 30 we follow previous investi-
gations [Kremer and Grest (1990), Kröger et al. (1993),
Kröger (2001)].

Next, we will analyze (and give the definitions for) quan-
tities which have been extracted from the bead trajecto-
ries during the coarse of the ‘computer’ relaxation exper-
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Figure 3 : Computing time of PolyGrow versus chain
length. (Ultra-Sparc-II at 248 MHz). System parameters:
N = 1,000, M = 10 . . .1000, ρ = 0.9, d = 0.9 and κ = 4.
As in Fig. 8 the dashed line represents reference results
obtained with GenPol.

iments.

Structure factor and radius of gyration

A structural quantity, which is directly related to the
conformation of polymers, and which can be measured
experimentally, e.g., by small angle Neutron scattering
methods, is the static structure factor of individual chains
Ssc(k). The structure factor provides information about
degree of the flow alignment on a local and global length
scale, from the segment length to the length of the ex-
tended polymer chain. From the MD computer simula-
tion this quantity can be extracted by a fast Fourier trans-
form of the pair correlation function, or explicitly from
the bead coordinates [Kröger et al. (1993)]

Ssc(k) =
1
N

N/M

∑
α

〈
|

M

∑
i

expik·rα
i |2

〉
, (4)

with rα
i being the position of the ith bead of molecule

α; N is the total number of beads, N/M is the number of
chains. The structure factor of individual chains is related
to the conformational properties of the polymers, e.g.,
the squared radius of gyration R2

g = ∑M−1
i> j (ri − r j)2/M2

is pursued from the initial slope by

M Ssc(k)−1 = (1−k2 R2
g

3
)−1 ≈ 1+k2 R2

g

3
for kRG � 1.

(5)

This expression is obtained by a Taylor series expansion
of Ssc in Eq. 4 around k = 0. It provides a direct measure
of the length M of polymer chains.
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Figure 4 : Single chain structure factors Ssc(q) vs wave
number q as a measure for the be ad-bead correlation on
all length scales (in reciprocal space) for samples S1-S4
(see Eq. 4).

The structure factors for the equilibrated samples S1-S4
are given in Fig. 4 and the quality of a specific sample is
demonstrated by Fig. 5. The chains are ‘pre-equilibrated’
on all lengths scales directly after their generation by the
novel algorithm. This is quite remarkable in view of pre-
vious studies, see [Kröger (1999)]. In addition to the
structure factors we extracted the relaxation of the radius
of gyrations RG towards its equilibrium value, see Fig. 6
for all samples.

Order parameter

A quantity characterizing the systems anisotropy is
called order parameter. For polymer brushes there is a
single distinguished, the one which is perpendicular to
the anchoring plane, which we have chosen to be x-y-
direction. The order parameter is defined as the aver-
age 〈P2(u · ez)〉 over all segment vectors u, where ez (in
our case) is directed along the z-axis and P2 is the sec-
ond Legendre polynomial. For bulk samples composed
of free flexible chains the order parameter has to van-
ish, as soon as the chains become less flexible, local or
even global ordering of chains may take place, result-
ing from steric interactions, and an isotropic to nematic
transition occurs. This leads to large fluctuations in the
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Figure 5 : Single chain structure factors q2 Ssc(q)
(Kratky-representation) vs wave number q for sample
S3. a) time average, b) initial configuration, c) final
configuration. The small differences between the three
curves actually prove the good quality of the generated
molecules on all length scales.

order parameter. The order parameter for the polymer
brushes S2, S3 is shown in Fig. 7. Both samples pos-
sess the same anisotropy at the startup of the equilibra-
tion phase (time t ≡ 0, the first extraction was made at
t = 	t), but relax to different values, in accord with the
different bead densities which do not enter our sample
generator. With increasing densities (bulk and surface)
the chains increase their alignment perpendicular to the
anchoring plane. The observed relaxation time is of the
order of magnitude of the orientational relaxation time of
chains, and thus, as fast as possible.

Persistence length

According to Eq. 3 the persistence length, a measure for
the local stiffness, is obtained from

lp =
1

2(M−2)

M−2

∑
i=1

ui ·ui+1. (6)

with segment vectors ui (i = 1, ..,M − 1). The relax-
ation of persistence lengths for all samples towards their
equilibrium values is reported in Fig. 8. Again, the de-
viation between equilibrium values and initial values (at
time=0) is small, as required for an algorithm which does
not only fulfill the constraint of minimum distance, but
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Figure 6 : Radius of gyration as a measure for the global
stiffness of chains vs time for samples S1-S4 (see Sec. 4).

which does also account for the quality of the conforma-
tional statistics.

A good indicator for the quality of a generated sample
is its Einstein frequency ωE ∝

〈
F2

i

〉
, and, in particular,

the relaxation time of this quantity. Here, F i denotes the
total force acting on bead i at a given time. Fast relax-
ation of ωE is crucial for choosing a large time step, i.e.,
for a large ratio: physical time/computing time. Figure
9 reports about the behavior for polymer brushes (sam-
ples S2, S3) - the nasty case -, where the relaxation time
is ‘large’ (but still below a single time unit). Compared
to the Einstein frequency in other nonequilibrium situ-
ations, this is more fast than expected and holds as an
additional plus for the presented generator.

5 Conclusions

This work provides the structural elements of a method
to generate macromolecular fluids close to equilibrium,
which is basically needed and a difficult task for all
types of molecular dynamics computer simulations deal-
ing with polymers in the glassy, molten or highly concen-
trated states. The problem is geometrical in nature and
does not occur for short molecules. The work includes
quantitative measures of the quality (local and global en-
tities, molecular structure factors) of the method as well
as a benchmark table in order to make the comparison
with earlier works transparent.

We combined a constructive chain growing process with
an iterative technique to remove local overlaps of beads.
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Figure 7 : Transient behavior of the order parameter for
the polymer brushes, samples S2-S3. The order param-
eter measures the degree of alignment in direction per-
pendicular to the anchoring plane, which is the x− y−
direction, and the order parameter is defined as the aver-
age 〈P2(u · ez)〉 over all segment vectors u, where ez is di-
rected along the z-axis. For samples S1, S4 (free chains)
the order parameter approximately vanishes, which is not
shown here, but is reflecting the quality of the sample
generator as well.

This hybrid algorithm permits to tackle the problem
of packing large systems of wormlike polymers (up to
100,000 beads) into periodic boxes five times faster than
the best of today’s methods. Chain growing is very ef-
ficient but it may run into troubles during the packing
process. On the other hand, relaxation is much more ex-
pensive but it is needed only locally in the environment
of the newly placed bead. The combination of the both
processes turns out to be a suitable way of construct-
ing large and dense polymer systems. The method was
clearly motivated by previous works [McKechnie et al.
(1992), Kröger (1999)].

The intra- and intermolecular potentials used in the sim-
ulations define the microscopic model of the polymer
fluid. The coarse grained model used here is able to
reproduce properties of real substances as well as pro-
viding complete information on the microscopic molec-
ular motions. Recent results have shown that simulations
can be used to predict rheological behavior of real poly-
mer melts, even if the simulation model does not contain
specific chemical details [Hess (1987), Gao and Weiner
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Figure 8 : Persistence length as a measure for the local
stiffness of chains vs time for samples S1-S4 (see Sec. 4,
Tab. 1).

0.1 1.0 10.0
time

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

~ 
E

in
st

ei
n 

fr
eq

ue
nc

y

S2

S3

Figure 9 : The sums of squared interaction forces for
samples S2 and S3 (polymer brushes, see Tab. 1), respec-
tively, which are proportional to the Einstein frequen-
cies of the particular systems. For these samples the re-
laxation of this quantity towards its mean value is slow
compared to that of the other samples containing uncon-
strained polymers.

(1992), Kröger (2001)] in accordance with predictions on
self-similarity and universality in polymer systems [de
Gennes (1979)].

(polymer brushes,

From a simulation of a polymer system one correlates the
polymer microstructure (i.e. the form and the orientation
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of the chains and entanglements between chains) with its
mechanical behavior. The simulation is conducted to test
and improve mesoscopic theories such as those that de-
scribe orientation and distribution functions of polymers
[Bird et al. (1987), Öttinger (1996)]. Only a portion
of the available microscopic information is reflected in
these theories. A further advantage of the simulation is
its capability of focusing on measuring a particular quan-
tity, such as specific contributions to the stress tensor, en-
tanglements between polymer chains or the scattering di-
agram of individual polymers.
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