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Free and Forced Vibrations of Thick Rectangular Plates using Higher-Order
Shear and Normal Deformable Plate Theory and Meshless Petrov-Galerkin

(MLPG) Method

L. F. Qian1,2, R. C. Batra3 and L. M. Chen1

Abstract: We use a meshless local Petrov-Galerkin
(MLPG) method to analyze three-dimensional infinitesi-
mal elastodynamic deformations of a homogeneous rect-
angular plate subjected to different edge conditions. We
employ a higher-order plate theory in which both trans-
verse shear and transverse normal deformations are con-
sidered. Natural frequencies and the transient response
to external loads have been computed for isotropic
and orthotropic plates. Computed results are found to
agree with those obtained from the analysis of the 3-
dimensional problem either analytically or by the finite
element method.

1 Introduction

Numerical methods used to find an approximate solution
of an initial-boundary-value problem include the finite
element method (FEM), the finite-difference method, the
boundary element method and meshless methods. Ad-
vantages of a meshless method over the FEM include
the flexibility of placing nodes in the domain of study
and not having to connect them to form closed polygons.
Out of several meshless methods available in the litera-
ture, e.g. see Belytschko et al. (1994), we use here the
Meshless Local Petrov-Galerkin (MLPG) method pro-
posed by Atluri and Zhu (1998) and further developed
by Atluri et al. (1999, 2000, 2002a,b), Lin and Atluri
(2000), and Long and Atluri (2002). Kim and Atluri
(2000) and Ching and Batra (2001) used it to analyze
plane strain elastostatic deformations of an edge-cracked
plate. Warlock et al. (2002) adopted it to study the ef-
fect of frictional forces in a contact problem. Gu and
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Liu (2001) have used the MLPG method to find natu-
ral frequencies and forced plane strain deformations of
a cantilever beam. Batra and Ching (2002) have delin-
eated the time evolution of the stress-intensity factor in a
double edge-cracked plate.

Atluri and Shen (2002a,b) have compared the perfor-
mance of six variants of the MLPG method for solving
Poisson’s equation. Qian et al. (2002) used two of these
formulations to study elastostatic deformations of a thick
rectangular plate with a compatible higher-order shear
and normal deformable plate theory (HOSNDPT) pro-
posed by Batra and Vidoli (2002). Batra et al. (2002)
have shown that for the same order of the plate theory
the mixed HOSNDPT derived from a Hellinger-Reissner
principle in which stresses satisfy natural boundary con-
ditions at the major surfaces of the plate gives results
closer to the 3-dimensional solution of the problem than
the compatible HOSNDPT in which stresses are derived
from the assumed displacement field and Hooke’s law.
However, the compatible HOSNDPT is easier to use
than the mixed HOSNDPT. We use the former and the
MLPG1 formulation to analyze natural frequencies and
the forced transient response of a thick rectangular plate.
We compare computed results with those obtained ei-
ther from the 3-dimensional analysis of the problem by
the FEM or available in the literature. In the MLPG1
method, the test function is set equal to the weight func-
tion of the moving least squares (MLS) approximation
(see Lancaster and Salkauskas (1981)) of the trial solu-
tion.

The paper is organized as follows. Sections 2, 3 and 4
briefly review respectively the HOSNDPT, the weak for-
mulation of the problem and the MLPG1 formulation.
Section 5 gives results and compares them with those
found either from the analysis of the 3-dimensional prob-
lem by the FEM or analytical solutions available in the
literature. Conclusions are summarized in Section 6.
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2 Brief Review of the Compatible HOSNDPT

Figure 1 : Schematic sketch of the problem

Figure 1 shows a schematic sketch of the problem stud-
ied, the rectangular Cartesian coordinate axes used to
describe deformations of the homogeneous plate, and
dimensions of the rectangular plate which in the un-
stressed reference configuration occupies the region Ω =
[0,a]× [0,b]× [−h/2,h/2]. The midsurface of the plate
is denoted by S, the boundary of S by Γ, and displace-
ments of a point along the x, y and z-axes by u, v and
w respectively. By using Legendre polynomials in z or-
thonormalized by

∫ h/2

−h/2
Li(z)L j(z)dz = δi j, (1)

we write

u(x,y, z, t) =




u(x,y, z, t)
v(x,y, z, t)
w(x,y, z, t)


=

K

∑
i=0




ui(x,y, t)
vi(x,y, t)
wi(x,y, t)


Li(z).

(2)

In (1), δi j is the Kronecker delta. Expansion (2) for dis-
placements has been used by Mindlin and Medick (1959)
who attributed it to W. Prager, Batra and Vidoli (2002),
and Batra et al. (2002). When K ≥ 2, the plate theory
is called higher-order. Equation (2) elucidates that both
transverse normal and transverse shear deformations are
being considered. Expressions for L0(z),L1(z), . . .,L7(z)
are given in the Appendix. We note that Li(z) is a poly-
nomial of degree i in z. Hence L′

i(z) = dLi/dz can be
written as

L′
i(z) =

K

∑
j=0

di jL j(z), (3)

where di j are independent of z. The matrix di j is given in
Batra and Vidoli’s (2002) paper for K = 0,1,2, . . .,7 and
for K = 7 is also listed in the Appendix.

For infinitesimal deformations, strains ε are given by

ε=




εxx
εyy
εzz

2εyz
2εzx
2εxy


=

K

∑
i=0




∂ui(x,y)
∂x

∂vi(x,y)
∂y

K

∑
j=0

wj(x,y)d ji

∂wi(x,y)
∂y

+
K

∑
j=0

v j(x,y)d ji

∂wi(x,y)
∂x

+
K

∑
j=0

u j(x,y)d ji

∂vi(x,y)
∂x

+
∂ui(x,y)

∂y




Li(z)≡
K

∑
i=0

{ηi}Li(z),

(4)

where for i = 0,1,2, . . .,K, ηi is a 6-dimensional vector
with components given by

ηi(1) = ∂ui/∂x, ηi(2) = ∂vi/∂y, ηi(3) =
K

∑
j=0

d jiw j,

ηi(4) = ∂wi/∂y+
K

∑
j=0

v jd ji, ηi(5) = ∂wi/∂x+
K

∑
j=0

u jd ji,

ηi(6) = ∂vi/∂x+∂ui/∂y.
(5)

Since di j ≡/ 0, the transverse normal and the trans-
verse shear strains for K > 1 depend upon displacements
u0,v0,w0,u1,v1,w1, . . .uK−1,vK−1,wK−1. Using Hooke’s
law, stresses at a point x = (x,y, z) are given by

σ = {σxx σyy σzz σyz σzx σxy}T = Dε, (6)

where D is the matrix of elastic constants. The plate has
been assumed to be initially stress free. Substitution from
(4) and (5) into (6) gives stresses at the point x in terms
of displacements and in-plane gradients of displacements
of the point (x,y) on the midsurface S.

We omit here derivation of the plate equations which are
given in Batra and Vidoli (2002) for a piezoelectric plate
based on the mixed variational principle of Yang and Ba-
tra (1995) and in Batra et al. (2002) for an elastic plate
based on the Hellinger-Reissner principle. The weak for-
mulation of the problem used here is described below.

Denoting the velocity of a point by u̇ and the acceleration
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by ü, it follows from equation (2) that

u̇(x,y, z, t)=




u̇(x,y, z, t)
v̇(x,y, z, t)
ẇ(x,y, z, t)


=

K

∑
i=0




u̇i(x,y, t)
v̇i(x,y, t)
ẇi(x,y, t)


Li(z),

(7)

and a similar expression holds for ü. Knowing
u̇(x,y, z,0), u̇i(x,y,0), v̇i(x,y,0) and ẇi(x,y,0) can be
computed from (7) by multiplying both sides with L j(z)
and integrating the resulting expression with respect to z
from −h/2 to h/2.

3 Weak Formulation of the Problem

In the absence of body forces, equations governing tran-
sient deformations of the plate are

divσ = ρü in Ω× (0,T ),

σn = f on Γ f ×
[
−h

2
,

h
2

]
× (0,T),

u = u on Γu ×
[
−h

2
,

h
2

]
× (0,T ),

σn = q± on S±× (0,T),

u(x,y, z,0) = u0(x,y, z) in Ω,

u̇(x,y, z,0) = u̇0(x,y, z) in Ω.

(8)

Equation (8)1 expresses the balance of linear momentum,
equations (8)2-(8)4 boundary conditions, and equations
(8)5 and (8)6 initial conditions. Here ρ is the mass den-
sity, div the three-dimensional divergence operator, n is
an outward unit normal to the surface, and a superim-
posed dot denotes partial derivative with respect to time
t. S+ and S− are the top and the bottom surfaces of the
plate where surface tractions are prescribed respectively
as qqq+ and qqq−. Γu and Γ f are parts of the boundary ∂S of S.
On the edge surfaces of the plate, displacements and sur-
face tractions are prescribed as u and f on Γu ×

[−h
2 , h

2

]
and Γ f ×

[−h
2 , h

2

]
respectively.

Let ũ, ṽ and w̃ be three linearly independent functions de-
fined on Ω. Like u, v and w in eqn. (2), ũ, ṽ and w̃ are
expanded in terms of Legendre polynomials in z. Mul-
tiplying the three equations (8)1 expressing the balance
of linear momentum in x, y, and z directions by ũ, ṽ and
w̃ respectively, adding the three resulting equations, and
using the divergence theorem, we obtain∫

Ω
ε̃T σdΩ−

∫
∂Ω

ũT σndS +
∫

Ω
ρũT üdΩ = 0. (9)

Here ε̃ is the 6-dimensional strain vector derived from
displacements ũ = (ũ, ṽ, w̃), and ∂Ω is the boundary of
Ω. Substitution from (4), (6), and (8)2-(8)4 into (9) and
integration with respect to z from −h/2 to h/2 give

K

∑
i=0

[∫
S
{η̃i}[D]{ηi}dS−

∫
Γu

{ũi}T [n][D]{ηi}dΓ

−
∫

Γ f

{ũi}T{ f i}dΓ +
∫

S
{ũi}T ρ{üi}dS

−Li

(
±h

2

)∫
S
{ũi}T{q±}dS

]
= 0, (10)

where

{ f i} =
∫ h/2

−h/2
Li(z){ f}dz. (11)

In the Galerkin formulation of the problem {ũ i} is usu-
ally taken to vanish on Γ u. However, in the MLPG
formulation, it is not necessary to do so since essential
boundary conditions are imposed either by the penalty
method or by the elimination of the corresponding de-
grees of freedom or by the method of Lagrange multipli-
ers.

4 Implementation of the MLPG Method

4.1 Semidiscrete formulation

Let M nodes be placed on S, and S1,S2, . . . ,SM

be smooth two-dimensional closed regions enclosing

nodes 1,2, . . .,M respectively such that
M∪

α = 1
Sα = S.

S1,S2, . . . ,SM need not be of the same shape and size, and
the intersection of any two or more of them need not be
empty. Let φ1,φ2, . . .,φN and ψ1,ψ2, . . .,ψN be linearly
independent functions defined on Sα . For a Kth order
plate theory there are 3(K + 1) unknowns u0,u1, . . . ,uK

at a point in Sα. We write these as a 3(K+1) dimensional
array {u}, and set

{u(x,y, t)}=
N

∑
J=1

[φJ(x,y)]{δJ(t)}, (12)

{ũ(x,y)}=
N

∑
J=1

[ψJ(x,y)]{δ̃J}, (13)

where, for each value of J, {δJ} is a 3(K + 1) dimen-
sional array and {φJ} is a square matrix of 3(K+1) rows;
similar remarks apply to {ũ}, [ψJ] and {δ̃J}. Note that
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δJ vary with time t. The 3(K + 1)× 3(K + 1) matrix
{φJ} can be divided into (K +1) submatrices each of size
3×3(K +1). The ith such submatrix is given by

[ith submatrix of φJ] =


0︷ ︸︸ ︷
0 0 0
0 0 0
0 0 0

. . .

. . .

. . .

i︷ ︸︸ ︷
φJ 0 0
0 φJ 0
0 0 φJ

. . .

. . .

. . .

K︷ ︸︸ ︷
0 0 0
0 0 0
0 0 0


 . (14)

Note that the location of the 3× 3 diagonal matrix φJI,
where I is a 3×3 unit matrix, depends upon the value of
i. For example, for i = 0, φJI occupies the first three
rows and columns of [φJ]; for i = 1, the second three
rows and columns etc. The analogue of unknowns {δJ}
is the nodal displacements in the FEM. However, in the
MLPG method, {δJ} do not generally equal nodal dis-
placements. Substitution from (12) and (13) into (5)
gives

{η} =
N

∑
J=1

[BJ]{δJ}, {η̃} =
N

∑
J=1

[B̃J]{δ̃J}, (15)

where {η} is a 6(K + 1) dimensional array and B is a
6(K + 1)× 3(K + 1) matrix which can be divided into
(K + 1) submatrices each of size 6× 3(K + 1). The ith
such submatrix is given by

[ith submatrix of BJ ] =


0︷ ︸︸ ︷
0 0 0
0 0 0
0 0 φJd0i

0 φJd0i 0
φJd0i 0 0

0 0 0

..

..

..

..

..

..

i︷ ︸︸ ︷
∂φJ/∂x 0 0

0 ∂φJ/∂y 0
0 0 φJdii

0 φJdii ∂φJ/∂y
φJdii 0 ∂φJ/∂x

∂φJ/∂y ∂φJ/∂x 0

..

..

..

..

..

..

K︷ ︸︸ ︷
0 0 0
0 0 0
0 0 φJdKi

0 φJdKi 0
φJdKi 0 0

0 0 0




(16)

where the repeated index i in dii is not summed. The
matrix B̃J is obtained from BJ by substituting ψJ for φJ.

We now replace the domain of integration S in equation
(10) by Sα , substitute for {η}, {η̃}, {u} and {ũ} from
equations (12), (13) and (15), require that the resulting
equation hold for all choices of { δ̃}, and arrive at the fol-
lowing system of coupled ordinary differential equations
(ODEs).

[KIJ]{δJ}+[MIJ]{δ̈J} = {FI}. (17)

Here

[KIJ]=
∫

Sα

(
[B̃I]T [D][BJ]

)
dS−

∫
Γαu

(
[ψI ]T [n][D][BJ]

)
dΓ

−
∫

Γα0

(
[ψI ]T [n][D][BJ]

)
dΓ, (18)

{FI} =
∫

Sα

[ψI]T{q}dS +
∫

Γα f

[ψI ]T{ f i}dΓ

+Li(±h/2)
∫

Sα

[ψI]T{q±}dS, (19)

[MIJ]=
∫

Sα

ρ[ψI]T [φJ]dS, (20)

where Γα0 = ∂Sα − Γαu − Γα f , Γαu = ∂Sα ∩ Γu, Γα f =
∂Sα ∩Γ f . The matrix [KIJ] is usually called the stiffness
matrix, [MIJ] the mass matrix, and {FI} the load vector.
For the MLPG formulation, M and K need not be sym-
metric and K may not be positive definite even after es-
sential boundary conditions have been imposed. Equa-
tions like (17) are derived for each Sα, α = 1,2, . . .,M.
Initial conditions on {δJ} are obtained by substituting
from (12), (8)5 and (8)6 into (7) and following the proce-
dure outlined after equation (7). For u0 = 0 = u̇0, {δJ(0)}
and {δ̇J(0)} are null matrices. Essential boundary con-
ditions (8)3 are satisfied by following the procedure out-
lined in section 4.3.

For a free vibration problem, {FI}= {0} and

{δJ(t)}= eiωt{δJ}, (21)

where {δJ} is the amplitude vector and ω a natural fre-
quency. Thus natural frequencies are given by

det
[
[KIJ]−ω2[MIJ]

]
= 0 (22)

and the corresponding mode shapes {δJ} can be com-
puted from

[KIJ]{δJ} = ω2[MIJ]{δJ} (23)

by imposing a suitable normalization constraint on {δ J}.

In order to complete the formulation of the problem, we
now describe briefly the moving least squares (MLS) ap-
proximation (see Lancaster and Salkauskas (1981)) for
details) for finding basis functions {φJ}, and the tech-
nique to impose essential boundary conditions.

4.2 Brief Description of the MLS Basis Functions

In the MLS method, the approximation f h(x,y, t) of a
scalar-valued function f (x,y, t) defined on Sα is written
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as

f h(x,y, t) =
m

∑
j=1

p j(x,y)a j(x,y, t), (24)

where

pT (x,y) = {1,x,y,x2,xy,y2, . . .}, (25)

is a complete monomial in (x,y) having m terms. For
complete monomials of degrees 1, 2 and 3, m = 3, 6 and
10 respectively. The unknown coefficients a1,a2, . . . ,am

are functions of x = (x,y) and time t, and are determined
by minimizing J defined by

J =
n

∑
i=1

W(x−xi)[pT (xi)a(x, t)− f̂i(t)]2, (26)

where f̂i(t) is the fictitious value at time t of f at the point
(xi,yi), and n is the number of points in the domain of
influence of x for which the weight function W (x−x i) >

0. We take

W(x−xi)=


1−6

(
di

rw

)2

+8

(
di

rw

)3

−3

(
di

rw

)4

,0 ≤ di ≤ rw,

0 ,di ≥ rw,

(27)

where di = |x−xi| is the distance between points x and
xi, and rw is the size of the support of the weight function
W . Thus the support of W is a circle of radius r w with
center at the point xi.

The stationarity of J with respect to a(x, t) gives the fol-
lowing system of linear equations for the determination
of a(x, t):

A(x)a(x, t)= B(x)f̂(t), (28)

where

A(x) =
n

∑
i=1

W (x−xi)pT (xi)p(xi),

B(x) = [W(x−x1)p(x1), W(x−x2)p(x2), . . .,
W(x−xn)p(xn)].

(29)

Substitution for a(x, t) from (28) into (24) gives

f h(x, t) =
m

∑
j=1

φj(x) f̂ j(t), (30)

where

φk(x) =
m

∑
j=1

p j(x)[A−1(x)B(x)] jk, (31)

may be considered as the basis functions of the MLS ap-
proximation. It is clear that φk(x j) need not equal the
Kronecker delta δk j. In order for the matrix A, defined by
(29)1, to be invertible, the number n of points in the do-
main of influence of x must at least equal m. For m equal
to 3 or 6, Chati and Mukherjee (2000) have found that
15≤ n≤ 30 gives acceptable results for two-dimensional
elastostatic problems. For a two-dimensional elasto-
dynamic problem, Batra and Ching (2002) used Gauss
weight functions, the complete set of quadratic mono-
mials and rw = 3.5 times the distance to the third node
nearest to the node at xi. Thus rw and the locations of
nodes in Sα and hence S must be such that n satisfies the
required constraint. We take

rw = chi (32)

where hi is the distance from node i to its nearest neigh-
bor and c is a scaling parameter.

In Atluri and Shen’s (2002a,b) terminology we use the
MLPG1 formulation and set ψJ = W(x−xJ) with rw =
hJ. Thus the support of ψJ is a circle centered at xJ and
radius equal to the distance from xJ to the nearest node.

4.3 Matrix Transformation Technique for Satisfying
Essential Boundary Conditions

We use the matrix transform technique to satisfy essential
boundary conditions. In this subsection, the dependence
on time is not explicitly indicated. Let D and I denote
respectively the set of nodes where x-displacements are
and are not prescribed; a similar procedure is used for y-
and z-displacements. Writing the x-displacements of all
nodes as {u}, we have

{u}=
{

uD

uI

}
=
[

φDD φDI

φID φII

]{
δD

δI

}
. (33)

Solving the first of these equations for δD, we obtain

{δ} =
{

δD

δI

}
=

{
φ−1

DDuD

0

}
+

[−φ−1
DDφDI

I

]
{δI}, (34)

where 0 and I are the null and the identity matri-
ces respectively. Substitution from (34) into (17)
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and the premultiplication of the resulting equation by[
−ψ−1

DDψDI

I

]T

give

[KIJ ]{δJ}+[MIJ]{δ̈J} = {FI}, (35)

where

[KIJ]=
[−ψ−1

DDψDI

I

]T

[KIJ]
[−φ−1

DDφDI

I

]
,

[MIJ]=
[−ψ−1

DDψDI

I

]T

[MIJ]
[−φ−1

DDφDI

I

]
,

{FI}=
[−ψ−1

DDψDI

I

]T

{FI}−
[−ψ−1

DDψDI

I

]T

[KIJ]
{

φ−1
DDuD

0

}

−
[−ψ−1

DDψDI

I

]T

[MIJ]
{

φ−1
DDüD

0

}
.

(36)

For the free vibration problem matrices [KIJ] and [MIJ] in
equations (22) and (23) can be similarly modified.

4.4 Numerical Integration of ODEs

Two techniques, namely, the Newmark family of meth-
ods and the Wilson-θ method have been employed to
integrate equations (35) subject to the initial conditions.
In the Newmark family of methods, displacements δt+∆t

and velocities δ̇
t+∆t

at time t +∆t are related to their val-
ues at time t by

δt+∆t = δt +∆tδ̇t
+

(∆t)2

2
((1−2β)δ̈t

+2βδ̈t+∆t
),

δ̇
t+∆t

= δ̇
t
+∆t((1−γ)δ̈

t
+γδ̈

t+∆t
),

(37)

where parameters β and γ control the accuracy and the
stability of the integration scheme and ∆t is the uniform
time increment. The Newmark family of methods is un-
conditionally stable if

γ≥ 1
2

and β ≥ 1
4

(
1
2

+γ
)2

(38)

and second-order accurate for γ= 1
2 only; otherwise it is

first-order accurate. Here we use γ = 0.5 and β = 0.25;
thus the integration scheme is unconditionally stable and
non-dissipative. A way to use this algorithm is to solve

equations (35) for δ̈
t+∆t

and then find δt+∆t and δ̇
t+∆t

from (37) and the known solution at time t. One can thus
march forward in time.

The Wilson-θ method assumes that the acceleration
varies linearly in the time interval [t, t + θ∆t] where
θ≥ 1 and is usually taken as 1.37. Thus

δ̈t+θ∆t
= (1−θ)δ̈t

+θδ̈t+∆t
,

δ̇t+θ∆t
= δ̇t

+
θ2∆t

2
δ̈t+∆t

+
(

2
θ
−1

)
θ2∆t

2
δ̈t

,

δt+θ∆t = δt +θ∆tδ̇t
+

3−θ
6

θ2∆t2δ̈t
+

θ3∆t2

6
δ̈t+∆t

.

(39)

The method is unconditionally stable for θ≥ 1.37. Equa-
tions (35) are written at time t + θ∆t, equations (39) 1

are used and the resulting equations are solved for δ̈t+∆t
.

Then equations (40) are used to evaluate δt+∆t and δ̇t+∆t
.

δt+∆t = δt + δ̇t∆t +(2δ̈t
+ δ̈t+∆t

)
∆t2

6

δ̇
t+∆t

= δ̇
t
+(δ̈

t+∆t
+ δ̈

t
)
∆t
2

. (40)

5 Computation and Discussion of Results

When computing numerical results the region Sα associ-
ated with node α is set equal to a circle of radius h α with
center at xα; it preserves the local character of the MLPG
formulation. Integrals appearing in equations (18)-(20)
are evaluated by using a 9 × 9 Gauss quadrature rule.
The MLS basis functions φJ in equation (31) are found
for each Gauss quadrature point xQ.

The following boundary conditions are imposed at a sim-
ply supported (S), a clamped (C) and a free (F) edge.

S : σxx = 0, v = w = 0 on x = 0,a;

σyy = 0, u = w = 0 on y = 0,b;

C : u = v = w = 0 on x = 0,a; y = 0,b;

F : σxx = σyx = σzx = 0 on x = 0,a;

σyy = σxy = σzy = 0 on y = 0,b.

(41)

Henceforth S will be used to denote a simply supported
edge and not the midsurface.

Unless otherwise noted, we have set c = 15, K = 5,
M = 196 and m = 15. Complete monomials of degree
4 are employed to generate the MLS basis functions.
Equal number of nodes, as shown in Fig. 2, are uniformly
placed in the x and y-directions.
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Figure 2 : Locations of uniformly distributed nodes on
the midsurface

5.1 Natural Frequencies

We compute natural frequencies of a homogeneous plate
made of either an isotropic or an orthotropic material and
compare them with either the analytical solution of Srini-
vas and Rao (1970) as augmented by Batra and Aim-
manee (2003) or with those obtained by the analysis of
the 3-dimensional problem with the FEM and/or with re-
sults available in the literature. Srinivas and Rao (1970)
found analytically frequencies of vibrations of a simply
supported plate by assuming that

u(x,y, z, t)=
∞

∑
m,n=1

eiωmntUmn(z)cos
mπx

a
sin

nπy
b

,

v(x,y, z, t) =
∞

∑
m,n=1

eiωmntVmn(z) sin
mπx

a
cos

nπy
b

,

w(x,y, z, t) =
∞

∑
m,n=1

eiωmntWmn(z) sin
mπx

a
sin

nπy
b

.

(42)

For an isotropic simply supported plate, Batra and Aim-
manee (2003) have recently found that frequencies

ωmn =
(

m2π2

a2 +
n2π2

b2

)1/2
√

G
ρ

, (43)

of the in-plane vibration mode shapes

u(x,y, z) = Umn cos
mπx

a
sin

nπy
b

,

v(x,y, z) = Vmn sin
mπx

a
cos

nπy
b

,

w(x,y, z) = 0.

(44)

when either m = 0 or n = 0 were missed by Srinivas and
Rao. In equation (43) G is the shear modulus. The am-
plitudes Umn and Vmn of in-plane modes satisfy the con-
straint

bUmnm+aVmnn = 0. (45)

For either m = 0 or n = 0, the amplitudes Uon and Vm0 are
unconstrained.

The frequency equation (22) is solved by the three-
term look-ahead Lanczos algorithm developed by Freund
(1994). This method was found to be more accurate and
efficient than some of the others we tried.

Results are presented in terms of the nondimensional fre-
quency ω related to the dimensional frequency ω by

ω= ωh

√
ρ
E

, (46)

where E is Young’s modulus. For an isotropic square
plate with a = 250 mm, h/a = 0.1, and Poisson’s ratio
= 0.3, Table 1 compares the presently computed flexural
frequencies with those obtained by other researchers and
also by the FE analysis of the three-dimensional problem
with the commercial code IDEAS. The FE results were
computed with a uniform 40×40×4 20-node brick ele-
ment mesh with 4 elements in the thickness direction. We
employed the consistent mass matrix with both the FE
and the MLPG formulations. It is clear that the MLPG
results agree very well with those of other researchers.
Kant’s (2001) results are based on his model 2. A shear
correction factor of 5/6 is used in computing results with
the Whitney-Pagano’s theory. However, no such correc-
tion factor is used in the present compatible HOSNDPT.

Frequencies listed in Table 1 are not the 13 lowest fre-
quencies but are frequencies corresponding to the flex-
ural modes of vibration signified by the values of m
and n. These are identified by looking at the mode
shapes computed with the FEM. The first 10 lowest fre-
quencies of a simply supported square plate with h/a =
0.1,0.2,0.3,0.4 and 0.5 obtained with the MLPG and the
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Table 1 : Natural frequencies ω= ωh
√

ρ/E of a SSSS isotropic square plate with ν = 0.3, and h/a = 0.1.
MLPG Srinivas et al. Kant et al. FEM Whitney-Pagano Senthilnathan et al.

No. m n
(Consistent mass) (1970) (2001) (I-Deas) (1970) (1987)

1 1 1 0.0578 0.0578 0.0578 0.0577 0.0577 0.0577
2 1 2 0.1391 0.1381 0.1381 0.1379 0.1377 0.1377
3 2 2 0.2133 0.2122 0.2122 0.2118 0.2112 0.2112
4 1 3 0.2606 0.2587 0.2587 0.2583 0.2573 0.2574
5 2 3 0.3214 0.3249 0.3250 0.3242 0.3229 0.3230
6 1 4 0.3973 0.4075 0.4076 0.4063 0.4044 0.4046
7 3 3 0.4226 0.4272 0.4274 0.4259 0.4238 0.4241
8 2 4 0.4651 0.4658 0.4661 0.4643 0.4618 0.4622
9 3 4 0.5456 - 0.5577 0.5548 0.5517 0.5525
10 1 5 0.5632 0.5748 0.5752 0.5723 0.5689 0.5697
11 2 5 0.6154 - 0.6265 0.6148 0.6192 0.6202
12 4 4 0.6909 0.6753 0.6759 - 0.6676 0.6688
13 3 5 0.7066 - 0.7002 - 0.6989 -

Table 2 : First ten natural frequencies ω= ωh
√

ρ/E for a SSSS isotropic square plate with ν = 0.3. An * indicates
the frequency of an in-plane mode of vibration.

h/a = 0.1 h/a = 0.2 h/a = 0.3 h/a = 0.4 h/a = 0.5
No Batra- Batra-

Aimmanee Aimmanee
MLPG FEM (2003) MLPG FEM MLPG FEM MLPG FEM MLPG FEM (2003)

1 0.0578 0.0578 0.0578 0.2122 0.2122 0.4273 0.4273 0.6753 0.6754 0.9401 0.9403 0.9401
2 0.1391 0.1381 0.1381 0.3897∗ 0.3897∗ 0.5845∗ 0.5845∗ 0.7793∗ 0.7793∗ 0.9741∗ 0.9742∗ 0.9742
3 0.1391 0.1381 0.1381 0.3897∗ 0.3897∗ 0.5845∗ 0.5845∗ 0.7793∗ 0.7793∗ 0.9741∗ 0.9742∗ 0.9742
4 0.1948∗ 0.1948∗ 0.1949 0.4675 0.4659 0.8276∗ 0.8266∗ 1.1035∗ 1.1021∗ 1.3793∗ 1.3777∗ 1.3777
5 0.1948∗ 0.1948∗ 0.1949 0.4675 0.4659 0.8733 0.8713 1.3051 1.3028 1.7438 1.7416 1.7406
6 0.2133 0.2122 0.2122 0.5517∗ 0.5511∗ 0.8734 0.8713 1.3051 1.3028 1.7438 1.7416 1.7406
7 0.2606 0.2587 0.2587 0.6772 0.6754 1.1698 ∗ 1.1690∗ 1.5598∗ 1.5587∗ 1.9497∗ 1.9483∗ 1.9483
8 0.2606 0.2587 0.2587 0.7799∗ 0.7793∗ 1.1700∗ 1.1690∗ 1.5600∗ 1.5587∗ 1.9500∗ 1.9483∗ 1.9483
9 0.2759∗ 0.2755∗ 0.2757 0.7799∗ 0.7793∗ 1.2157 1.2133 1.7470∗ 1.7426∗ 2.1783∗ 2.1783∗ 2.1783
10 0.3214 0.3249 0.3249 0.8014 0.7990 1.3103 ∗ 1.3070∗ 1.7470∗ 1.7426∗ 2.1783∗ 2.1783∗ 2.1783
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Table 3 : Natural frequencies ω= ωh
√

ρ/D11 of a SSSS square orthotropic plate with h/a = 0.1 and D 11 = 160GPa
MLPG Srinivas et al. Kant et al. FEM Whitney-Pagano Senthilnathan et al.

No. m n
(Consistent mass) (1970) (2001) (I-Deas) (1970) (1987)

1 1 1 0.0477 0.0474 0.0474 0.0477 0.0476 0.0478
2 1 2 0.1028 0.1033 0.1033 0.1021 0.1041 0.1049
3 2 1 0.1236 0.1188 0.1188 0.1227 0.1188 0.1198
4 2 2 0.1729 0.1694 0.1694 0.1721 0.1698 0.1726
5 1 3 0.1850 0.1888 0.1888 0.1828 0.1905 0.1919
6 3 1 0.2172 0.2180 0.2181 0.2169 0.2178 0.2197
7 2 3 0.2439 0.2475 0.2476 0.2459 0.2485 0.2533
8 3 2 0.2727 0.2624 0.2625 0.2754 0.2623 0.2677
9 1 4 0.3066 0.2969 0.2969 0.2811 0.2994 0.3012
10 4 1 0.3307 0.3319 0.3319 0.3372 0.3340 0.3340
11 3 3 0.3371 0.3320 0.3320 0.3406 0.3321 0.3414
12 2 4 0.3441 0.3476 0.3476 0.3449 0.3491 0.3558
13 4 2 0.3733 0.3707 0.3707 0.3649 0.3698 0.3775

Table 4 : First ten natural frequencies ω= ωh
√

ρ/E for a CCCC isotropic plate with ν = 0.3.
h/a = 0.1 h/a = 0.2 h/a = 0.3 h/a = 0.4 h/a = 0.5

No
MLPG FEM MLPG FEM MLPG FEM MLPG FEM MLPG FEM

1 0.0999 0.0992 0.3272 0.3260 0.5975 0.5965 0.8780 0.8775 1.1592 1.1595
2 0.1909 0.1896 0.5736 0.5708 0.9908 0.9882 1.4099 1.4080 1.8262 1.8252
3 0.1909 0.1896 0.5736 0.5708 0.9909 0.9882 1.4099 1.4080 1.8262 1.8252
4 0.2673 0.2660 0.7506 0.7496 1.1270 1.1261 1.5036 1.5027 1.8798 1.8790
5 0.3144 0.3137 0.7507 0.7496 1.1271 1.1261 1.5036 1.5027 1.8798 1.8790
6 0.3171 0.3167 0.7706 0.7676 1.3088 1.3054 1.7799 1.7777 2.2251 2.2225
7 0.3749 0.3740 0.8804 0.8760 1.3347 1.3330 1.8499 1.8470 2.3912 2.3891
8 0.3749 0.3740 0.8897 0.8881 1.4766 1.4699 2.0794 2.0713 2.6861 2.6772
9 0.3807 0.3797 0.8897 0.8881 1.5023 1.4915 2.1141 2.1007 2.7111 2.7114
10 0.3807 0.3797 1.0388 1.0403 1.6371 1.6365 2.1777 2.1775 2.7280 2.7127

Table 5 : First ten natural frequencies ω = ωh
√

ρ/E for a SCSC isotropic plate with ν = 0.3. An * indicates the
frequency of an in-plane mode of vibration.

h/a = 0.1 h/a = 0.2 h/a = 0.3 h/a = 0.4 h/a = 0.5
No

MLPG FEM MLPG FEM MLPG FEM MLPG FEM MLPG FEM
1 0.0816 0.0812 0.2747 0.2740 0.5134 0.5129 0.7697 0.7696 0.9741 ∗ 0.9742∗

2 0.1507 0.1494 0.3897∗ 0.3897∗ 0.5845∗ 0.5845∗ 0.7793∗ 0.7793∗ 1.0341 1.0344
3 0.1820 0.1808 0.4899 0.4879 0.8978 0.8954 1.3281 1.3256 1.7264 1.7256
4 0.1948∗ 0.1948∗ 0.5519 0.5495 0.9614 0.9590 1.3793 1.3775 1.7649 1.7627
5 0.2417 0.2405 0.6895 0.6888 1.0349 1.0341 1.3805 1.3798 1.7997 1.7987
6 0.2674 0.2644 0.7230 0.7205 1.0978 1.0968 1.4586 1.4574 1.8132 1.8117
7 0.3110 0.3103 0.7333 0.7325 1.1699 ∗ 1.1690∗ 1.5599∗ 1.5587∗ 1.9498∗ 1.9483∗

8 0.3400 0.3421 0.7799∗ 0.7793∗ 1.2586 1.2556 1.8065 1.8038 2.1783 2.1787
9 0.3445 0.3440 0.8117 0.8074 1.3876 1.3888 1.8503 1.8520 2.3130 2.3153
10 0.3635 0.3640 0.8782 0.8722 1.4234 1.4170 2.0457 2.0375 2.3564 2.3541
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Table 6 : First ten natural frequencies ω= ωh
√

ρ/E for a CFCF isotropic plate with ν = 0.3.
h/a = 0.1 h/a = 0.2 h/a = 0.3 h/a = 0.4 h/a = 0.5

No
MLPG FEM MLPG FEM MLPG FEM MLPG FEM MLPG FEM

1 0.0633 0.0629 0.2158 0.2152 0.4047 0.4038 0.6029 0.6024 0.8025 0.8024
2 0.0740 0.0731 0.2448 0.2435 0.4490 0.4478 0.6596 0.6587 0.8681 0.8675
3 0.1186 0.1172 0.3568 0.3557 0.5355 0.5338 0.7143 0.7121 0.8933 0.8905
4 0.1620 0.1609 0.3835 0.3814 0.7038 0.7017 1.0466 1.0455 1.4001 1.3980
5 0.1752 0.1741 0.4939 0.4911 0.8547 0.8520 1.2142 1.2122 1.5692 1.5679
6 0.1783 0.1777 0.5312 0.5272 0.9207 0.9160 1.2809 1.2786 1.6025 1.6000
7 0.2046 0.2081 0.6386 0.6370 0.9595 0.9575 1.3123 1.3100 1.6403 1.6375
8 0.2192 0.2198 0.6469 0.6492 0.9843 0.9826 1.3149 1.3101 1.7099 1.7056
9 0.2912 0.2907 0.6555 0.6531 1.0533 1.0514 1.3992 1.3968 1.7389 1.7359
10 0.3021 0.3008 0.6562 0.6550 1.1384 1.1318 1.5805 1.5785 1.9515 1.9481

FE methods are listed in Table 2 where frequencies of
in-plane modes of vibration are marked with an asterisk.
Liew et al. (1995) analyzed free vibrations of a thick
rectangular plate and listed a few of the in-plane modes
of vibration for simply supported edges. It is clear that
as the plate gets thicker, more of the in-plane modes of
vibration have frequencies lower than the third flexural
mode of vibration. For a square plate, m = 0, n = 1 and
m = 1, n = 0 give the same frequency but have different
mode shapes. The in-plane modes of vibration are not
predicted by a plate theory, such as the classical one, that
neglects u0 and v0.

In order to compute natural frequencies of a simply sup-
ported orthotropic square plate, we take elastic constants
for Aragonite given by Srinivas et al. (1970).

D =




160 37.3 1.72 0 0 0
86.87 15.72 0 0 0

84.81 0 0 0
25.58 0 0

Sym
42.68 0

42.06


GPa.

(47)

Table 3 lists frequencies of different flexural modes ob-
tained by various methods. It is interesting to note that
frequencies computed with the MLPG method and em-
ploying only 196 nodes are closer to the analytical solu-
tion than those obtained with the FEM and much larger
number of nodes. For the HOSNDPT, there are 3(K +1)
unknowns at each node. The number of degrees of
freedom in the 3-dimensional FE analysis of the prob-
lem is significantly more than that in the MLPG. Batra

and Aimmanee (2003) have pointed out that the in-plane
modes of vibration (44) are admissible in a simply sup-
ported orthotropic plate. However, we did not attempt to
find the first 10 natural frequencies.

We have listed in Tables 4-6 the first 10 natural frequen-
cies for an isotropic plate with different edge conditions
and h/a = 0.1,0.2,0.3,0.4 and 0.5. For each one of these
15 cases, the MLPG solution of the HOSNDPT is very
close to the 3-dimensional analysis of the problem by the
FEM. Frequencies of in-plane modes of vibration of a
SCSC isotropic plate are marked with an asterisk in Ta-
ble 5; these modes are absent for the other two edge con-
ditions studied.

We now delineate the effect of different parameters on
the frequencies computed with the MLPG method for a
simply supported isotropic square plate with h/a = 0.2.

5.1.1 Order of the Plate Theory

Figure 3 exhibits the dependence of the four flexural or
bending frequencies upon the order K of the plate the-
ory. Results were computed by using 9×9 = 81 Gauss
quadrature points and 169 uniformly distributed nodes.
These results show that K = 2 gives very good results for
the first bending frequency, K = 3 for the second, K = 4
for the third and the fourth. Additional results presented
in Tables 1 through 6 revealed that K = 5 will give very
good results even for plates of aspect ratio h/a = 0.5.
As noted earlier, the number of unknowns at each point
equals 3(K +1).
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Figure 3 : Bending frequencies of the plate vs. the order
K of the plate theory.

5.1.2 Number of Nodes

For a 5th order plate theory, the dependence of the first
four flexural frequencies upon the total number of nodes
equispaced in the x- and the y-directions is depicted in
Fig. 4. Whereas the first four bending frequencies can
be accurately computed with 144 nodes, 169 nodes were
needed for obtaining higher frequencies for a square plate
of aspect ratio 0.5.

5.1.3 Number of Monomials used to find the MLS basis
functions

Since the bending modes for higher frequencies involve
more complex deformation fields than those for lower
modes, it would seem that more number of monomial
terms used to find the MLS basis functions will help. Re-
sults plotted in Fig. 5 and additional ones included in Ta-
bles 1-6 suggest that m = 15 suffices. This value of m
corresponds to complete monomials of degree 4.

5.1.4 The Scaling Parameter c

It is clear from results evinced in Fig. 6 that the depen-
dence of the first four bending frequencies upon c is not
monotonic. Whereas c = 10 provides very good values
of the first two flexural frequencies, c = 15 is needed for
computing accurately the higher frequencies which in-

Figure 4 : Convergence of the bending frequency of the
plate with the increase in the total number of nodes.

Figure 5 : Bending frequency of the plate vs. number of
monomials in the MLS basis function.

volve complicated deformation patterns.

5.1.5 Number of Quadrature Points

We have plotted in Fig. 7 the variation of the first
four bending frequencies with the number of quadrature
points used to evaluate various integrals in the MLPG
formulation. 36 quadrature points suffice for computing
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Figure 6 : Bending frequency of the plate vs. the scaling
parameter, c.

Figure 7 : Bending frequency of the plate vs. number of
Gauss points.

the 4th flexural frequency. Our experience with comput-
ing results for plates of different aspect ratios and higher
frequencies suggests that 64 Gauss points without any
partitioning of the domain of integration are sufficient.

5.2 Forced Response of a Plate

The forced response of a clamped square isotropic plate
with h/a = 0.1 has been analyzed by the Newmark fam-
ily of methods with β = 0.25 and γ = 0.5 and also by

the Wilson-θ method with θ = 1.37. Thus both integra-
tion techniques are unconditionally stable. Results com-
puted with the MLPG method are compared with those
obtained from the 3-dimensional analysis of the problem
by using the commercial FE code ANSYS and a uniform
mesh of 20× 20× 3 20-node brick elements. We used
the consistent mass matrix with the MLPG method and
a lumped mass matrix in the FE analysis of the problem.
The material and geometric properties used are the same
as for the free vibration problem. We have compared the
time histories of the centroidal deflection w of the plate
and of the axial stress σxx at the centroid of the top sur-
face of the plate computed by the two methods and for
each of the two time-dependent pressure loads = q0g(t)
applied on the top surface. These quantities are nondi-
mensionalized as

w =
100Eh3

12q0a4(1−ν2)
w, σxx =

(
h
a

)2 σxx

q0
. (48)

5.2.1 Simple Harmonic Load

We first set g(t) = sin5000t and ∆t = 2.0×10−7s for the
Newmark and the Wilson-θ methods. For K = 5, M =
169, m = 15, NQ = 81 and c = 15, the computed cen-
troidal deflection and the axial stress vs. time t are plot-
ted in Figs. 8 and 9 respectively. For most values of t
the three curves in both Figs. overlap. One can thus con-
clude that the MLPG solution agrees very well with the
FE solution. The axial stress at the centroid of the top
surface was computed with the plate equations.

5.2.2 Transient Load

We now set g(t) = H(t − 0)− H(t − 2× 10−3s) where
H is a Heaviside step function. Thus a uniform pressure
q0 is applied to the top surface of the plate for the first
2 ms. The MLPG method is used to compute the tran-
sient response with and without damping but no damp-
ing was used in the FE analysis. The damping matrix in
the MLPG formulation equaled 0.005

∫
Sα

vTṼ dS where
vT is the matrix of test basis functions and Ṽ the matrix
of trial basis functions. The time step was set equal to
2×10−7s for the MLPG and the FE solutions. Time his-
tories till t = 5 ms of the centroidal deflection and the
axial stress at the centroid of the top surface of the plate
have been plotted in Figs. 10-13; results in Figs. 10 and
11 are without damping, and those in Figs. 12 and 13
are with damping. Again the MLPG solution with the
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Figure 8 : Centroidal deflection vs. time (The three
curves essentially overlap each other)

Figure 9 : Axial stress at the centroid of the top surface
(The three curves are very close to each other) vs. time

HOSNDPT matches very well with the FE solution of
the corresponding 3-dimensional problem.

6 Conclusions

We have used the MLPG method and a higher order shear
and normal deformable plate theory to study the natural
frequencies and the forced response of a rectangular plate
subjected to different edge conditions. No shear correc-
tion factor is used, and all domain integrals are evaluated
by using the full quadrature rule. Transverse stresses are
evaluated from equations of the plate theory.

Figure 10 : Centroidal deflection vs. time (The three
curves are hardly distinguishable).

Figure 11 : Axial stress at the centroid of the top surface
vs. time (The three curves are very close to each other).

Computed frequencies and the transient response un-
der time-dependent loads are found to agree very well
with the corresponding results available in the litera-
ture and also computed by the FE analysis of the three-
dimensional problem. For the same accuracy of results,
the number of degrees of freedom employed with the
MLPG method is considerably less than that with the
FEM. Whereas the MLPG method requires only the lo-
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Figure 12 : Centroidal deflection vs. time (The two
curves overlap each other)

Figure 13 : Axial stress at the centroid of the top surface
vs. time (The two solutions coincide with each other).

cations of nodes, the FEM also requires the nodal con-
nectivity which is time consuming even for a regular 3-
dimensional rectangular domain considered here. The
computation of the mass matrix, the stiffness matrix
and the load vector takes more CPU time in the MLPG
method than that in the FEM. Furthermore, the mass and
the stiffness matrices in the MLPG method are not sym-
metric but are generally symmetric in the FEM.

Results presented in Tables 1 through 6 evince that fre-
quencies computed by the Galerkin FEM are higher than
their corresponding analytical values. However, those

computed by the MLPG method do not exhibit this prop-
erty.

For an incompressible linear elastic material, first ten fre-
quencies for a simply supported square plate computed
by the MLPG method and the HOSNDPT are compared
below in Table 7 with the analytical solution of Srini-
vas and Rao (1970) augmented by Batra and Aimmanee
(2003). It is clear that the present approach does not ex-
hibit the locking phenomenon prevalent in the FEM.
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Appendix

Expressions for the first seven orthonormalized Legendre
polynomials defined on

[−h
2 , h

2

]
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(A-1)

For K = 7 the matrix di j appearing in equation (3) is
given by

di j =
2
h




0 0 0 0 0 0 0 0√
3 0 0 0 0 0 0 0

0
√

15 0 0 0 0 0 0√
7 0

√
35 0 0 0 0 0

0 3
√

3 0 3
√

7 0 0 0 0√
11 0
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55 0 3

√
11 0 0 0

0
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39 0
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91 0
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143 0 0√
15 0 5

√
3 0 3

√
15 0

√
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
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