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Sensitivity of the skin tissue on the activity of external heat sources

B. Mochnacki1 and E. Majchrzak2

Abstract: In the paper the analysis of transient temper-
ature field in the domain of biological tissue subjected to
an external heat source is presented. Because of the geo-
metrical features of the skin the heat exchange in domain
considered is assumed to be one-dimensional. The ther-
mophysical parameters of successive skin layers (dermis,
epidermis and sub-cutaneous region) are different, at the
same time in sub-domains of dermis and sub-cutaneous
region the internal heat sources resulting from blood per-
fusion are taken into account. The degree of the skin
burn results from the value of the so-called Henriques in-
tegrals. The first and the second order sensitivity of these
integrals with respect to the thermophysical parameters
are analyzed. On the stage of numerical computations
the boundary element method has been used. In the final
part of the paper the results of computations are shown.

keyword: bioheat transfer, burns prediction, sensitivity
analysis, boundary element method

1 Introduction

The susceptibility of human body to influence of external
thermal interactions is very discriminated. It is caused,
first of all, by the different values of thermphysical pa-
rameters of the skin - they are conditioned by the sex, age
and even the profession of concrete person. The same ex-
ternal heat flux and the same its exposure time can give
quite different effects (e.g. the degree of burn) according
to the individual features.

It seems that the methods of sensitivity analysis can be in
such case very effective, because they give the informa-
tion concerning the mutual connections between the ther-
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mal processes proceeding in the domain analyzed and the
thermal effects (in this case the damage of the skin) for a
large scale of individual thermophysical parameters - in
particular if the higher order sensitivity is introduced into
considerations.

Thermal damage of skin begins when the temperature
at the basal layer (the interface between epidermis and
dermis) rises above 44[oC] (317[K]). Henriques (1947)
found that the degree of skin damage could be predicted
on the basis of the integrals

Ib =
τ∫

0

Pb(Tb)exp

(
− ∆E

RTb(t)

)
dt (1)

and

Id =
τ∫

0

Pd (Td)exp

(
− ∆E

RTd (t)

)
dt (2)

where ∆E/R [K] is the ratio of activation energy to uni-
versal gas constant, Pb, Pd [1/s] are the pre-exponential
factors, while Tb, Td [K] are the temperature of basal
layer (the surface between epidermis and dermis) and
dermal base (the surface between dermis and subcuta-
neous region), [0, τ] is the time interval considered.

First degree burns are said to occur when the value of
the burn integral (1) is from the interval 0.53 < Ib ≤ 1,
while the second degree burns when Ib > 1, see Hen-
riques (1947), Torvi and Dale (1994). The third degree
appears when the integral Id > 1. So, in order to deter-
mine the values of integrals Ib and Id the heating and next
the cooling curve for the basal surface and dermal base
must be known.

2 Mathematical model of thermal processes

We consider the 1D heterogeneous domain in which one
can distinguish the following sub-domains: epidermis of
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thickness L1 [m], dermis of thickness L2 − L1 and sub-
cutaneous region of thickness L−L2 - Fig. 1. The ther-
mophysical parameters of these regions are equal to λ e

[W/mK] (thermal conductivity) and ce [J/m3K] (specific
heat per unit of volume), e=1, 2, 3.

subcutaneous 

region 

dermis epidermis 

q0 

L1   L2 

 
L        x 

Figure 1 : Domain considered

The transient bio-heat transfer in domain of skin is de-
scribed by following system of equations, see Pennes
(1948), Brinck and Werner (1994), Shaw, Preston and
Bacon (1996), Liu and Xu (2000), Majchrzak (1998):

x ∈ Ωe : ce
∂Te

∂t
= λe

∂2Te

∂x2 +ke (Tb−Te)+Qme (3)

where ke = GecB is the product of blood perfusion rate
and volumetric specific heat of blood, TB is the blood
temperature and Qme is the metabolic heat source. On
the contact surfaces between the sub-domains the conti-
nuity conditions in the form

x ∈ Γ1,2 :

{
q1 = q2 = qb

T1 = T2 = Tb
(4)

and

x ∈ Γ2,3 :

{
q2 = q3 = qd

T2 = T3 = Td
(5)

are given, where qe = −λe∂Te/∂x.

On the skin surface the following condition is assumed

x ∈ Γ0 :

{
q1 = q0, t ≤ t0

q1 = α (T1 −T ∞) t > t0
(6)

where q0 is the given boundary heat flux, t0 is the ex-
posure time (see Behnke (1984)), α is the heat transfer

coefficient, T ∞ is the ambient temperature. For conven-
tionally assumed boundary Γ c limiting the system, the
no-flux condition can be taken into account. Addition-
ally, for t=0 the initial temperature distribution is known:
t=0: Te(x,0) = Tp(x).

3 The first-order sensitivity analysis

The first order sensitivity analysis of bioheat transfer will
be done with respect to the parameters λ e, ce, ke. These
parameters we denote by ps, s = 1,2, . . .,9. If the di-
rect method of sensitivity analysis is used (Dems (1986),
Davies, Saidel and Harasaki (1997), Majchrzak and Ja-
siski (2001)), then we should consider nine additional
boundary-initial problems resulting from the differenti-
ation of diffusion equations and boundary-initial condi-
tions, this means




x ∈ Ωe :ce
∂Ues

∂t
= λe

∂2Ues

∂x2 +keUes +qVe e = 1,2,3

x = 0 :




V1s = − 1
λ1

∂λ1

∂ps
q0 t ≤ t0

V1s = αU1s− 1
λ1

∂λ1

∂ps
q1 t > t0

x = Le :




Ues = Ue+1,s, e = 1,2
1
λe

∂λe

∂ps
qe +Ves =

1
λe+1

∂λe+1

∂ps
qe+1 +Ve+1,s

x = L :V3s = 0
t = 0 :Ues = 0

(7)

where

Ues =
∂Te

∂ps
, Ves = −λe

∂Ues

∂x
(8)

and

qVe =
(

ce

λe

∂λe

∂ps
− ∂ce

∂ps

)
∂Te

∂t

+
1
λe

∂λe

∂ps
[keTe − (keTB +Qme)]+

∂ke

∂ps
(TB −Te) (9)

Taking into account the form of functionals Ib, Id the sen-
sitivity of these integrals with respect to the parameters
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ps should be calculated using the formulas

∂Ib

∂ps
=

τ∫
0

Pb
∆E

RT 2
b (t)

exp

[
− ∆E

RTb(t)

]
Ubs(t)dt (10)

and

∂Id

∂ps
=

τ∫
0

Pd
∆E

RT 2
d (t)

exp

[
− ∆E

RTd(t)

]
Uds(t)dt (11)

where

Ubs (t) = U1s (L1, t) = U2s (L1, t) (12)

and

Uds (t) = U2s (L2, t) = U3s (L2, t) (13)

The change of burn integrals connected with the change
of parameter ps results from the Taylor formula limited
to the first-order sensitivity, this means

Ib (ps ±∆ps) = Ib (ps)±Ubs∆ps (14)

or

Id (ps ±∆ps) = Id (ps)±Uds∆ps (15)

The second-order sensitivity analysis

The second order sensitivity analysis requires the differ-
entiation of equations (7) with respect to the parameters
ps. After the mathematical manipulations one obtains




x ∈ Ωe : ce
∂Wes

∂t
= λe

∂2Wes

∂x2 +keWes +QVe

x = 0 :




Z1s = − 1
λ1

∂λ1

∂ps

(
1
λ1

q0 −V1s

)
, t ≤ t0

Z1s = αW1s− 2
λ1

∂λ1

∂ps
V1s, t > t0

x = Le :




Wes = We+1,s
2
λe

∂λe

∂ps
Ves+Zes =

2
λe+1

∂λe+1

∂ps
Ve+1,s+Ze+1,s

x = L : Z3s = 0,
t = 0 : Wes = 0

(16)

where

Wes =
∂Ue

∂ps
, Zes = −λe

∂Wes

∂x
(17)

and

QVe =
2
λe

∂λe

∂ps

[
ce

∂Ues

∂t
+keUes −

1
λe

(
ce

∂Te

∂t
+keTe − (keTB +Qme)

)]
− ∂ke

∂ps
Ues (18)

The second order sensitivity of burn integrals with re-
spect to the parameters ps is calculated using the formu-
las

∂2Ib

∂p2
s

=
τ∫

0

Pb
∆E

RT 2
b (t)

[(
∆E

RT 2
b (t)

− 2

T (
b t)

)
Ubs(t)+Wbs(t)

]
·

· exp

[
− ∆E

RT 2
b (t)

]
dt (19)

and

∂2Id

∂p2
s

=
τ∫

0

Pd
∆E

RT 2
d (t)

[(
∆E

RT 2
d (t)

− 2

T (
d t)

)
Uds(t)+Wds(t)

]
·

· exp

[
− ∆E

RT 2
d (t)

]
dt (20)

where

Wbs (t) = W1s (L1, t) = W2s (L1, t) (21)

and

Wds (t) = W2s (L2, t) = W3s (L2, t) (22)

If the second-order sensitivities are taken into account
then the formulas (14), (15) can be developed to the more
exact form:

Ib (ps ±∆ps) = Ib (ps)±Ubs∆ps +
1
2

Wbs∆p2
s (23)

and

Id (ps ±∆ps) = Id (ps)±Uds∆ps +
1
2

Wds∆p2
s (24)
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4 The method of numerical solution

The basic problem and additional sensitivity problems
have been solved using the I scheme of the BEM (Baner-
jee (1994), Brebbia and Dominguez (1992), Majchrzak
(2001)). For mesh-free simulation of diffusion equations
see also Golberg and Chen (2001), and for heat conduc-
tion in anisotropic bodies Ochiai (2001). The algorithm
discussed concerns the following diffusion equation

x ∈Ωe : ce
∂Fe (x, t)

∂t
= λe

∂2Fe (x, t)
∂x2 +Se (x, t) ,e = 1,2,3

(25)

where Fe denotes the temperature or functions resulting
from the sensitivity analysis, while S e(x, t) is the source
function. We introduce the time grid {t 0, t1, . . .} with a
constant step ∆t = t f − t f−1

The I scheme of the BEM for equation (25) and transition
t f−1 → t f leads to the formulas (e = 1,2,3)

Fe
(
ξ, , t f )+


 1

ce

t f∫
t f−1

F∗
e

(
ξ, , x, t f , t

)
Je (x, t) dt




x=Le

x=Le−1

=


 1

ce

t f∫
t f−1

J∗e
(
ξ, , x, t f , t

)
Fe (x, t) dt




x=Le

x=Le−1

+
Le∫

Le−1

F∗
e

(
ξ, , x, t f , t f−1)Fe

(
x, t f−1) dx

+
1
ce

Le∫
Le−1

Se
(
x, t f−1) t f∫

t f−1

F∗
e

(
ξ, , x, t f , t

)
dtdx (26)

where F∗
e are the fundamental solutions:

F∗
e

(
ξ, x, t f , t

)
=

1

2
√

πae (t f − t)
exp

[
− (x−ξ)2

4ae (t f − t)

]

(27)

where ξ is the point in which the concentrated heat source
is applied, ae = λe/ce, Je(x,t) = −λe∂Fe/∂x.

The heat fluxes resulting from fundamental solutions are
equal to

J∗e
(
ξ, x, t f , t

)
= −λe

∂F∗
e

(
ξ, x, t f , t

)
∂x

=
λe (x−ξ)

4
√

π[ae (t f − t)] 3/2
exp

[
− (x−ξ)2

4ae (t f − t)

]
(28)

Assuming that for t ∈ [t f−1, t f ] : Fe(x, t) = Fe(x, t f ) and
Je(x, t) = Je(x, t f ) one obtains the following form of
equations (26)

Fe
(
ξ, t f )+ge (ξ, Le)Je

(
Le , t f )

−ge (ξ, Le−1)Je
(
Le−1 , t f)= he (ξ, Le)Fe

(
Le , t f)

−he (ξ, Le−1)Fe
(
Le−1 , t f )+ue (ξ)+we (ξ) (29)

where

he (ξ, x) =
1
ce

t f∫
t f−1

J∗e dt =
sgn(x−ξ)

2
erfc

[ |x−ξ|
2
√

ae∆ t

]

(30)

ge (ξ, x) =
1
ce

t f∫
t f−1

F∗
e dt =

√
∆ t√

πλece
exp

[
−(x−ξ)2

4ae∆ t

]

− |x−ξ|
2λe

er f c

[ |x−ξ|
2
√

ae∆ t

]
(31)

ue (ξ) =
Le∫

Le−1

F∗
e

(
ξ, x, t f , t f−1)Fe

(
x, t f−1) dx

=
1

2
√

πae∆ t

Le∫
Le−1

exp

[
−(x−ξ)2

4ae∆ t

]
Fe
(
x, t f−1) dx (32)

and

we (ξ) =
Le∫

Le−1

Se
(
x, t f−1)ge (ξ ,x) dx (33)
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For ξ → L+
e−1 and ξ → L−

e for each sub-domain consid-
ered one obtains the system of equations

[
ge (Le−1,Le−1) ge (Le−1,Le)
ge (Le,Le−1) ge (Le,Le)

][
Je
(
Le−1, t f

)
Je
(
Le, t f

) ]

=
[

he
(
L+

e−1,Le−1
)−1 he

(
L+

e−1,Le
)

he (L−
e ,Le−1) he (L−

e ,Le)−1

][
Fe
(
Le−1, t f

)
Fe
(
Le, t f

) ]

+
[

ue (Le−1)
ue (Le)

]
+
[

we (Le−1)
we (Le)

]
(34)

or

[
ge

11 ge
12

ge
21 ge

22

][
Je
(
Le−1, t f

)
Je
(
Le, t f

) ]=
[

he
11 he

12
he

21 he
22

][
Fe
(
Le−1, t f

)
Fe
(
Le, t f

) ]

+
[

ue(Le−1)
ue(Le)

]
+
[

we (Le−1)
we (Le )

]
(35)

The continuity conditions for x = L 1 and x = L2 can be
written in the form

x = L1 :

{
F1
(
L1 , t f

)
= F2

(
L1 , t f

)
= Fb

(
t f
)

J1
(
L1 , t f

)
= J2

(
L1 , t f

)
+A

(
L1, t f

) (36)

and

x = L2 :

{
F2
(
L2 , t f

)
= F3

(
L2 , t f

)
= Fd

(
t f
)

J2
(
L2 , t f

)
= J3

(
L2 , t f

)
+B

(
L2, t f

) (37)

In the case of basic problem A(L1, t f ) = 0 and
B(L2, t f ) = 0, for the sensitivity problems these func-
tions result from the boundary conditions for basal layer
and dermal base (see: equations (7) and (16)). The final
form of resolving system results from above continuity
conditions and the conditions given for x =0 and x = L.
So, for t ≤ t0 we have




−h1
11 −h1

12 g1
12 0 0 0

−h1
21 −h1

22 g1
22 0 0 0

0 −h2
11 g2

11 −h2
12 g2

12 0
0 −h2

21 g2
21 −h2

22 g2
22 0

0 0 0 −h3
11 g3

11 −h3
12

0 0 0 −h3
21 g3

21 −h3
22







F1
(
0, t f

)
Fb
(
t f
)

J1
(
L1, t f

)
Fd
(
t f
)

J2
(
L2, t f

)
F3
(
L, t f

)




=

=




C
(
0, t f

)
+u1 (0)+w1 (0)

C
(
0, t f

)
+u1 (L1)+w1 (L1)

g2
11A
(
L1, t f

)
+u2 (L1)+w2 (L1)

g2
21A
(
L1, t f

)
+u2 (L2)+w2 (L2)

g3
11B
(
L2, t f

)
+u3 (L2)+w3 (L2)

g3
21B
(
L2, t f

)
+u3 (L)+w3 (L)




(38)

The value of C(0, t f ) in the last equation is connected
with the type of boundary condition given for x=0 (as in
formula (6)).

The internal values of functions Fe corresponding to time
t f are calculated for the each layer of tissue, separately
using the formula

Fe
(
ξ, t f )= ge (ξ, Le−1)Je

(
Le−1 , t f )

−ge (ξ, Le)Je
(
Le , t f )+he (ξ, Le)Fe

(
Le , t f )

−he (ξ, Le−1)Fe
(
Le−1 , t f )+ue (ξ)+we (ξ) (39)

5 Results of computations

In numerical computations the following mean values
of parameters have been assumed: λ1 = 0.235 [W/mK],
λ2 = 0.445 [W/mK], λ3 = 0.185 [W/mK], c1 = 4.3068 ·
106 [J/m3K], c2 = 3.96 · 106 [J/m3K], c3 = 2.674 · 106

[J/m3K], cB = 3.9962 · 106 [J/m3K], GBe = 0.00125 [m3

blood/s/ m3tissue], e = 2, 3, GB1 = 0, TB = 37◦C, Qme =
245 [W/m3] for e = 2, 3, while Qm1 = 0 (Torvi and Dale
(1994)). The thicknesses of successive skin layers: 0.1,
2 and 10 [mm]. Pre-exponential factors Pb = 1.43 · 1072,
Pd = 2.86A1069 [1/s] for Tb ≥ 317K and Pb = Pd = 0 for
Tb < 317K. The initial temperature distribution has been
assumed to be the parabolic one (as in Figure 2). The
skin subdomains have been divided into 10, 40 i 120 lin-
ear internal cells of dimensions 10−5, 5·10−5, 8.333·10−5

[m]), respectively. The computations have been realized
with time step ∆t =0.05 [s].

The first example concerns the thermal processes in the
tissue subjected to the boundary heat flux q 0 =6500
[W/m2] and the exposure time t0 =18 [s]. For
t¿t0 the Robin condition is assumed (α =8 [W/m2K],
T ∞ =20oC).

The temperature field obtained for above input data is
shown in Figure 2. On the basis of the knowledge of
T(L1, t) (basal layer) and T(L2, t) (dermal base) we found
that the times to first and second degree burn are equal
16.1 [s] and 17.55 [s], respectively. The third degree burn
in this case does not appear.
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Next, the sensitivity analysis of temperature field and
burn integral has been done with respect to the all ther-
mophysical parameters.

The part of the results obtained is shown in Figures 3,
4, 5, 6. In Figure 3 and 4 the distribution of sensitivity
functions ∂T/λ1 and ∂T/c2 are marked. The changes of
the epidermis thermal conductivity are not very essential
for the course of the burn integral Ib. Figure 5 presents
the course of Ib for the values of λ1 from the interval
[0.21, 0.26 W/mK]. One can see that the times of the
burns apparitions are practically the same. The other sit-
uation takes place in the case of the parameter c2. For
∆c2 =120000 [J/m3K] we observe the essential changes
of integral Ib- Figure 6. So, the influence of parameters
on the course of thermal processes in the tissue domain
is distinctly discriminated (in numerical realization we
assumed ∆ps/ps=const).

The results above presented have been obtained using the
first-order sensitivity analysis.

The second example concerns the thermal processes in
the tissue subjected to the boundary heat flux q 0 =90000
[W/m2] and the exposure time t0 =4 [s]. The remain-
ing input data are the same. Because of the big gradient
of temperature and heating rate, the second-order sensi-
tivity has been considered. The computations previously
discussed showed that the influence of the dermis con-
ductivity (λ2) on the heat transfer process is also very
essential and the results of the second-order analysis con-
cerning this parameter will be below presented.

 

Figure 2 : Temperature distribution

Figure 3 : Distribution of function ∂T /∂λ 1 for χ ⊂ [0,4
mm]

 

Figure 4 : Distribution of function ∂T/∂c 2

 

Figure 5 : Course of burn integral and its sensitivity with
respect to λ1
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In Figure 7 the basic solution, this means the tempera-
ture field in the skin tissue is shown. The next Figure
illustrates the distribution of the derivative ∂ 2T /∂λ2

2. The
courses of the burn integral Id for the values of λ2 from
the scope [0.42, 0.47 W/mK] are marked in Figure 9.
One can see that the time of the third degree burn ap-
parition is considerable differentiated. In order to verify
the exactness of the algorithm proposed the extreme val-
ues of λ2 have been directly introduced to the procedure
solving the basic problem and the differences between
solutions were very small.

 

Figure 6 : Course of burn integral Ib and its sensitivity
with respect to c2

Figure 7 : Temperature field

Figure 8 : Distribution of function ∂ 2T/∂λ2
2

 

Figure 9 : The change of Id with respect to λ2

6 Conclusions

It seems that the application of the boundary element
method to the solution of the problem discussed leads
to the very effective numerical algorithm. The number
of unknown parameters is not large (only the boundary
values). Next, the internal temperatures and the internal
values of functions U , W can be found at the optional
set of points on the basic of the knowledge of boundary
ones. The approximation of the real boundary conditions
is exact and it causes that the solution in the interior of
domain is sufficiently exact, too.

The results of computations presented in this paper show
that the influence of different thermophysical parameters
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on the course of the process is discriminated. The quan-
titative valuation of these problems can be done first of
all on the basis of sensitivity analysis. The quite good
results can be, as a rule, obtained using the first-order ap-
proach, while the second-order analysis is useful in the
case of parameters especially responsible to the course
of thermal processes.

The next stage of the investigations in this scope will con-
cern the sensitivity analysis with respect to geometrical
parameters. Especially the epidermis thickness can have
the essential importance on the thermal damage of the
skin.
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