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A Discrete Model for the High Frequency Elastic Wave Examination on Biological
Tissue
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Abstract: A microstructure-accounting mechanical
field theory approach is applied to the problem of re-
flection from a granular thin layer embedded between
two solid substrates to study the direct relationship of the
micro-structural parameters and the overall reflection co-
efficients of the thin layer. The exact solution for plane
wave reflection coefficients is derived under the new the-
oretical framework giving quantitative relations between
the macroscopic reflection coefficients and a set of micro
structural/physical parameters including particle size and
micromoduli. The model was analyzed using averaged
material properties of biological tissue for the granular
thin layer. It was demonstrated that changes in micro-
level physical and geometrical parameters affect the re-
flectivity of the thin layer. The results indicate that it
is possible to quantitatively determine micro-parameters
of the embedded granular material if the reflection spec-
tra are experimentally determined. The effects of micro-
parameters also suggest that the discrete representation
of biological tissue might be advantageous in modeling
its biomechanical responses.

keyword: Biological nanomechanics, granular media,
reflection coefficients, thin layer, plane wave propaga-
tion.

1 Introduction

The nondestructive determination of material properties
of a thin layer embedded between two known materials
has generated considerable research interests in recent
years [Achenbach, Kitahara, Mikata and Sotiropoulos
(1988); Maslov and Kinra (1999); Hwang and Geubelle
(2002)]. Both the theoretical modeling and experimental
techniques found a wide range of applications in industry
and engineering. For example, it is, in many situations,
crucial to nondestructively and accurately evaluate the
mechanical conditions of an adhesive bond in aerospace
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engineering [Lanza, Bonomo and Tuzzeo (2001)]. With
knowledge about the elastic moduli of the adhesive, the
existence of defects or interfacial weaknesses, and the
cohesive strength of the bond, decisions can be made
whether to further utilize the existing structure or not.

Ultrasonic techniques for the nondestructive evaluation
of a thin layer embedded between two substrates usually
employ the propagation of elastic waves and evaluate the
generated reflection or transmission phenomena at each
interface, as well as the multi-reflection/transmission
within a thin layer. The theoretical analysis on waves in
layered media has been firmly established [Brekhovskikh
(1960)]. Experimentally determined reflection coeffi-
cients from the thin layer and the dependence of the
reflectivity on layer mechanical properties were investi-
gated by [Kinra and Iyer (1995), Lavrentyev and Rokhlin
(1997)].

Since the embedded layer could be very “thin”, to the
extent that the dimension of the microstructures (such as
the particle diameter for granular media) is comparable
to that of the layer (its thickness), it is here postulated
that certain microscopic properties have a macroscopic
effect on the overall reflectivity. To our best knowl-
edge, there is little effort devoted to investigating the di-
rect relationship of the microstructures of the layer ma-
terial and the macroscopic mechanical properties of the
layer, and thus the reflectivity, if examined by ultrasonic
techniques. Lack of sufficient and convenient theoretical
tools may have hindered the research endeavor to address
this issue adequately. This paper aims at helping to ad-
dress this question.

Biological tissue is usually granular or cellular by nature.
The onset of disease often causes changes in tissue mi-
crostructures. To study these changes and their quantita-
tive correlation with disease, the above described ultra-
sonic technique may prove useful, because the method
could be applied to very small samples, and the applica-
tion of high frequency elastic waves may lend the mi-
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crostructures non-negligible. Motivated by these con-
siderations, the theoretical framework of Doublet Me-
chanics or Nanomechanics [Ferrari, Granik, Imam, and
Nadeau, (1997)] is hereby employed to model the plane
wave reflection from a granular thin layer and to examine
the relationship between the microscopic parameters and
the macro-level measurable reflections.

In the field theory of Doublet Mechanics (or Nanome-
chanics), solids are represented as arrays of points or
nodes at finite distances, thus essentially introducing
a discrete type of representation of matter. Added to
its microstructure-accounting abilities, the distinguishing
feature of this theory compared to other micromechani-
cal theories is the fact that it is fully multi-scale, meaning
that one can actually navigate from discrete to continuum
under the same framework of the theory without resort-
ing to different types of representation. Each lattice node
is assumed endowed with a rotation and translation vec-
tor with increment vectors that may be expanded in a con-
vergent Taylor series about the lattice nodal point. The
order M at which the series is truncated defines the degree
of approximation employed. The fundamental equations
relating microstrains to the displacement vectors contain
the lattice geometry and internodal distances or particle
dimensions. The fundamental governing equations of the
theory are presented in the Appendix.

The primary interest of this paper is to derive the exact
solution for the reflection coefficients of a granular thin
layer embedded between two substrates, and to investi-
gate the effect of the microstructural parameters on the
reflection coefficients. The overall project aim is to ex-
plore the feasibility of ultrasonic interrogation on micro-
level characteristics of biological material by using a thin
sample. The derivation of the reflection coefficients with
plane wave incidence is presented in section 2. With the
model obtained from the theoretical derivation, the mag-
nitude of reflection coefficients versus frequency under
different parametric settings is plotted and analyzed in
section 3. The potential biomedical application of this
approach is then discussed in section 4.

2 Derivation of Exact Reflection Coefficients

Consider a configuration where an elastic, discrete-
structured (granular) layer of thickness d, is embed-
ded between two infinite, isotropic, elastic domains with
perfect bonding (Figure 1). For the purpose of char-
acterizing the mechanical properties of the thin layer

with respect to its microstructural features, the discrete-
structured layer is identified by its density ρ, the micro
elastic constants Aαβ, and internodal distances (or parti-
cle diameter) ηα . For the definition of the microstruc-
tural parameters Aαβ and ηα , reference may be made to
the Appendix. The substrates are modeled with contin-
uum elasticity, and the corresponding material properties
are density ρ, and Lame’s constants: λ and µ.
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Figure 1 : Schematic of a thin, discrete-structured (gran-
ular) layer embedded between two substrates modeled as
isotropic elastic continua

A time-harmonic plane wave (longitudinal or shear) is
launched at an angle θ from the upper substrate to
the structure. The incident wave portions into reflec-
tions and transmissions when it hits the first material
discontinuity—the upper interface between the thin layer
and the substrate. The transmitted waves will further en-
counter the upper and lower interfaces and cause forma-
tion of a series of longitudinal and shear waves propagat-
ing up and down within the thin layer. Figure 2 summa-
rizes the types of waves propagating in the system.

As shown in Figure 2, the reflected and transmitted waves
propagate as longitudinal or shear waves with different
angles and velocities. The angles of the reflection and
transmission are dictated by Snell’s law, which states that
the ratio of the wave number and the sine of the propaga-
tion angle remains constant at the same interface. There-
fore, there is only one possible angle for each type of
waves (longitudinal or shear) propagating in one direc-
tion (up or down).

If the displacement vector of the incident wave is known
(i.e., the amplitude and the incident angle are known), the
other eight waves in the system can be uniquely deter-
mined assuming the material properties of the substrates
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Figure 2 : The nine type of waves propagating in the
three-layer structure.

and the layer are known. The displacement of the waves
is typically represented in the form of harmonic functions
as shown in Equation (1).

u(0) = A0 exp(ik0 (x1 sinθ0−x2 cosθ0 −c0t)) (1)

where u(0) is the displacement of the wave (0), A0 is the
amplitude of the displacement, k0 is the wave number, θ0

is the propagation angle with respect to the perpendicular
direction, and c0 is the wave speed.

We define the reflection coefficient for the layer as the
magnitude of the ratio of the displacement of the re-
flected wave from the layer (wave (1) or (2)) over that
of the incident wave (Equations (2) and (3)).

RL =
∣∣∣∣A2

A0

∣∣∣∣ (2)

RS =
∣∣∣∣A1

A0

∣∣∣∣ (3)

where RL is the reflection coefficient of the reflected lon-
gitudinal wave, and RS is the reflection coefficient of the
reflected shear wave. If the incident wave is pulsed, i.e.,
contains a range of frequency components, the reflection
coefficients correspond to that range of frequency gener-
ate a reflection spectrum.

In the theoretical framework we employ, the governing
constitutive and kinematical equations are multi-scale in

nature, with the order of the scale variable in accordance
with the problem at study. The objective of this pa-
per is to characterize non-continuum response features
that may be of significance in the development of a dis-
crete model for biological tissue. This objective may be
reached by limiting our considerations to the approxima-
tion degree M = 2. For the above-stated plane wave prop-
agation problem, a simplified version of the governing
equations is derived with the following assumption: the
particle interactions are assumed to be longitudinal (cen-
tral), so that the shear and torsional microstresses vanish
everywhere.

The micro-constitutive relationship corresponding to this
assumption is:

pα = ∑
β

Aαβεβ (4)

where pα is the overall microstress in the α doublet, and
εβ is the axial microstrain associated with β doublet, A αβ
is the micro elastic constant.

For M = 2, the micro-level kinematical relationship is:

εα = ταiτα j
∂ui

∂x j
+

1
2

ηαταiτα jταk
∂2ui

∂x j∂xk
(5)

where εα is the micro-strain associated with node α, τ’s
are

the direction cosines of the unit vectors connecting two
nodes, ui is the displacement in the xi direction, and ηα
is the internal distance associated with node α (assum-
ing all doublets within each bundle share the same in-
ternodal distance). For its expanded form please see the
Appendix.

The transition from micro to continuum stresses is
achieved through imposing natural boundary conditions.
The resulting equation follows:

σi j =
n

∑
α=1

(ταiτα j pα − ηα

2
ταiτα jταk

∂pα

∂xk
) (6)

where σi jis the continuum stress.

The continuum stresses are therefore directly derived
from micro level physical and geometrical parameters
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such as Aαβ, τ’s and ηα . Thus, the macro level observ-
able/measurables such as the reflection coefficients from
the thin layer are directly related to micro level parame-
ters.

The reflection coefficients may be solved for by en-
forcing the following continuity conditions at x 2 =
0(Equations (7)-(10)) and x2 = d(Equations (11)-(14)):

1. Continuity of normal displacement at x2 = 0:

u
(0)
1 +u(1)

1 +u(2)
1 = u(3)

1 +u(4)
1 +u(5)

1 +u(6)
1 (7)

2. Continuity of normal stress at x2 = 0:

σ(0)
22 +σ(1)

22 +σ(2)
22 = σ(3)

22 +σ(4)
22 +σ(5)

22 +σ(6)
22 (8)

3. Continuity of shear displacement at x2 = 0:

u(0)
2 +u(1)

2 +u(2)
2 = u(3)

2 +u(4)
2 +u(5)

2 +u(6)
2 (9)

4. Continuity of shear stress at x2 = 0:

σ(0)
21 +σ(1)

21 +σ(2)
21 = σ(3)

21 +σ(4)
21 +σ(5)

21 +σ(6)
21 (10)

5. Continuity of normal displacement at x2 = −d:

u(7)
1 +u(8)

1 = u(2)
1 +u(4)

1 +u(5)
1 +u(6)

1 (11)

6. Continuity of normal stress atx2 = −d:

σ(7)
22 +σ(8)

22 = σ(3)
22 +σ(4)

22 +σ(5)
22 +σ(6)

22 (12)

7. Continuity of shear displacement atx2 = −d:

u(7)
2 +u(8)

2 = u(3)
2 +u(4)

2 +u(5)
2 +u(6)

2 (13)

8. Continuity of shear stress atx2 = −d:

σ(7)
21 +σ(8)

21 = σ(3)
21 +σ(4)

21 +σ(5)
21 +σ(6)

21 (14)

where σ(n)
i j is the stress associated with the nth wave (the

waves are numbered from 0 to 8 as shown in Figure 2;
and u(n)

m is the displacement associated with the nth wave.

The above boundary conditions give an 8X8 matrix by
which the reflection coefficients (RL or RS) can be solved
for assuming the incident wave and the material proper-
ties of the substrate and the thin layer are known.

3 An application of the theory: microstructure-
accounting analysis of biological tissue samples

The theoretical model described above is applied in this
section to analyze thin biological tissue samples on mi-
croscopic slides. In medical histology laboratories, bi-
ological tissue specimens are typically sectioned and
placed between two glass slides. In this section it will
be shown how the above-developed theory may be em-
ployed in the course of high frequency elastic wave (ul-
trasound) interrogation in order to identify features that
correlate with the sample microstructure.

The following setup is adopted for the illustrative simu-
lation:

1. Substrates: crown glass [Weast (1985)]:
Density=2.5 g/cm3

Lame’s constants are:
λ = 26.4 GPa
µ = 29.0 GPa.

2. Thin layer: soft tissue

Soft tissue is chosen to be the material of the thin layer.
For the forward problem, the properties of the thin layer
are assumed known too.

To obtain numerical solutions for the Nanomechanics
modeling problem, we focus our attention on the mi-
crostructure shown in Figure 3. This arrangement results
in 3D macroscopic isotropy [Ferrari, (2000)] if the order
of the scale is chosen to be one (M = 1). It also reduces
the number of the independent micromoduli to two: A 11

and A44.
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Figure 3 : Micro-architecture of the doublets associated
with the node at the origin
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The direction cosine matrix is as follows:

τ1 = (1,0,0) τ4 = (0,1/
√

2,1/
√

2)
τ2 = (0,1,0) τ5 = (1/

√
2,0,1/

√
2)

τ3 = (0,0,1) τ6 = (1/
√

2,1/
√

2,0)
(15)

The micromoduli of the tissue are estimated from macro
elastic moduli based on the fact that the multi-scale
model reduces to the continuum model when the scale
factor is equal to one. Specifically, the micromoduli are
related to Lame’s constants as follows [Ferrari, (2000)]:

λ = A11 −A44

µ = 1
4 A44

(16)

The values of the macro elastic moduli of the thin tissue
layer are adopted from the averaged values for human
breast tissue in the literature [Goss, Johnston, and Dunn,
(1978), (1980)]. It is also hypothesized that the dimen-
sion of the nodes in the discrete model for the biological
tissue corresponds to that of the cells. We assume that
the cells are close-packed so that the internodal distance
is equivalent to the cell diameter. The typical dimension
of human breast epithelial cells is 10-µm. We further as-
sume that the internodal distances are the same for all
doublets in this simulation. Therefore η α = η and is at
the scale of 10-µm.

Therefore, we assume the set of parameters for the bio-
logical tissue thin layer as follows:

Density: 1.0 g/cm3

A11=3.0 GPa

A44=0.5 GPa

η = 1 ∼ 10− µm

The thickness of the thin layer is assumed to be 150-µm,
which is thin enough to be considered a “thin” layer com-
pared to the dimension of the substrates (glass slides) and
thick enough to accommodate several nodes (cells) cross
the thickness. The incident angle can be any arbitrary
angle if its magnitude is between those of the two mode
conversion angles for the glass-tissue interface. Without
losing generality, 47 degrees is chosen to be the incident
angle for all the simulations in this study.

Computer simulations for generating the reflection coef-
ficients from the thin tissue layer are thus conducted to
investigate the following questions:

1. The advantages of the higher order form of the
multi-scale Nanomechanics model compared to
continuum mechanics model;

2. The effect of microstructural properties on the over-
all reflection coefficients/spectra of the thin layer
under the framework of Nanomechanics.

3.1 Comparison of Nanomechanics and Continuum
Mechanics Prediction on the Reflection Coeffi-
cients

The simulation results from two scales are compared:
M = 1(non-scale) and M = 2, with all other parame-
ters chosen to be the same and specified as above. For
the M = 1 case, the exact solution for the reflection co-
efficients is the same as that modeled from continuum
mechanics [Ferrari, Granik, Imam, and Nadeau, (1997)].
For the M = 2 case, the reflection coefficients are calcu-
lated following the derivation described in section 2.

The first simulation considers a medium with small in-
ternodal distance (1-µm) that is examined by fairly low
frequency elastic waves (¡15 Mhz). The result is shown
in Figure 4. It appears that the prediction from the
Nanomechanics and the continuum theory on the reflec-
tion coefficients are essentially identical.
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Figure 4 : The reflection spectrum from continuum
model (dashed line) and that from nanomechanics model
(solid line) for “very small” internodal distance (η =
1−µm).

The result is not surprising, because for a medium with
very small internodal distance, the nodes/particles are
“invisible” for low frequency elastic waves whose wave-
length is much greater than the dimension of the parti-
cles. Under this condition, the predicted response from
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the discrete model is known to converge to that from con-
ventional continuum models. Nevertheless, the nanome-
chanics model offers the opportunity to correlate the re-
sponse of the medium to its microstructural characteris-
tics. For example, if the size of the particles is varied
while other properties remain the same, a change in the
reflection coefficient is observed, as shown in the follow-
ing simulation. Thus, the Nanomechanics model gives
insight to the upper limit of the size of the particles be-
fore they become “visible” for elastic waves propagating
at a certain range of frequencies.
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Figure 5 : The reflection specturm from continuum
model (dashed line) and that from nanomechanics model
(solid line) for “larger” internodal distances (η = 8 −
µm).

Figure 5 shows the result of the second simulation where
every other parameter remains the same except the in-
ternodal distance, which is set to be 8-µm. The resulting
reflection spectrum shows appreciable difference com-
pared to that generated from continuum model. The par-
ticle size (or internodal distance) in this case is still far
below the magnitude of the wavelength (20∼350-µm).

If the internodal distance remains the same (1-µm), and
the frequency of the elastic waves is much higher (¿
50Mhz), substantial discrepancy in the prediction of the
reflection spectra from the two models is also observed
(Figure 6).

3.2 The Effect of Micromoduli

With all the other parameters fixed, the micromodulus
A11 is varied ±10% to study its effect on the reflection

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (MHz)

M
a
g

n
it

u
d

e 
o

f 
R

ef
le

ct
io

n
 C

o
ef

fi
ci

en
ts

Reflection spectrum from (M=1)/Continuum model  

Reflection spectrum from M=2 nanomechanics model

Figure 6 : The comparison between nanomechanics
model and continuum model at lower and higher frequen-
cies for “very small” internodal distance (η = 1−µm).
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Figure 7 : The effect of the A11

spectrum.

Figure 7 shows that increase in micromodulus A 11 results
in shifting of the overall spectrum to the right (higher fre-
quency), and vice versa. The changes in micromodulus
A11 change the location of the minima in the curves. Nev-
ertheless, the magnitude of the minima and the distance
between the minima remain unaffected.

Similarly the effect of modulus A44 is studied by vary-
ing its magnitude to ±10% of the original. The result is
shown in Figure 8.

Figure 8 shows that A44 affects the overall reflection
spectra to a much lesser degree compared to A11. In other
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Figure 8 : The effect of A44 with 10% variation

words, A44 is a less sensitive parameter in terms of deter-
mining the reflection spectrum. To study its general ef-
fect, a greater amount of change (20%) is introduced and
the result is shown in Figure 9.
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Figure 9 : The effect of A44 with 20% variation

Figure 9 shows that increase in micromodulus A 44 results
in shifting of the second minimum to the left (lower fre-
quency), and vice versa. Therefore changes in micro-
modulus A44 change the distance between the two min-
ima, and also the magnitude of the minima.

3.3 Effect of Particle Size (Internodal Distance/Cell
Size)

With all the other parameters fixed, the particle size of
the thin layer is varied ±20% to study its effect on the
reflection spectrum (Figure 10).
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Figure 10 : The effect of particle size at lower frequen-
cies.

Figure 10 shows that the particle size has minimal effect
on the overall reflection spectrum at the relatively low
frequency range. For higher frequency range, the simu-
lation result is shown in Figure 11.
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Figure 11 : The effect of particle size at higher frequen-
cies.

It appears that at higher frequency range the particle size
has an appreciable effect on the reflection spectrum by
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shifting it to the left with increased magnitude of the par-
ticle size. This effect is similar to that of micromodu-
lus A11, however, the effects of the two parameters dif-
fer: changes in micromodulus A11has the same effect on
the reflection spectra regardless of the frequency range,
while the effect of particle size is frequency dependent.

4 Discussion and Conclusion

In this paper, the forward problem was solved, i.e., the
exact solution for the reflection coefficients of a thin layer
embedded between two substrates. The reflectivity of the
thin layer was shown to be affected by the micro-level
parameters of the granular layer, including micromoduli
and particle size. The simulation was studied utilizing
a configuration that is routine to pathological settings: a
histology slide where a very thin tissue section is embed-
ded between two glass slides.

The inverse version of this problem, by which the pa-
rameters of the thin layer are unknown, but the reflec-
tion coefficients are measured experimentally, is of par-
ticular interest for pathological applications. Histology
slides are examined by pathologists under a microscope
to analyze microstructural features that contain diagnos-
tic information. It is the relationship between the cel-
lular structures—the micro architecture that affords use-
ful diagnostic criteria to separate normal tissue from ma-
lignancies, and further different types of malignancies.
Pathologists may read microstructures under the micro-
scope; however, even microstructure information some-
times is not sufficient. For example, well-differentiated
malignant tissue has very similar cell distribution pat-
terns compared to normal tissue [Cotran, Kumar and
Collins (1999)]. Pathologists resort to macro-level ex-
amination on physical properties of the tissue, such as
X-ray or ultrasound imaging, or molecular analysis from
immunostaining for additional diagnostic information to
be integrated into that from histology slide analysis.

If inversion algorithms are developed to reconstruct tis-
sue properties from experimental data and the theoretical
model, the backward/inverse problem can be solved for.
This presents a potential to design an automatic pathol-
ogy slide reader that “reads” histology slides and inter-
prets the reflection spectra for separating malignant and
normal tissue based on information of the tissue proper-
ties, including mechanical properties (micromoduli) and
microstructural features (particle size).

We have designed an apparatus to measure the reflection
spectra from tissue samples prepared as a sandwich struc-
ture with a thin slice of tissue being placed between two
pieces of glass slides. For detailed information on the ex-
perimental setup, reference is made to [Liu, Rokhlin and
Ferrari, (2002)]. Typical reflection spectra from normal
and malignant breast tissue are shown in Figure 12.
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Figure 12 : Comparison of experimentally measured re-
flection spectra from normal breast tissue and malignant
breast tissue (invasive ductal carcinoma). N1, N2, and
N3 are the reflection spectra from three normal tissue
sections; T1, T2 and T3 are those from three malignant
tissue sections.

It appears that the reflection spectra of the normal and
malignant breast tissue differ in several aspects: the lo-
cations of the minima, the distance between the minima,
and the magnitude of the minima. According to the the-
oretical analysis of the effects of the tissue properties
on the overall reflection spectrum presented in section
three, these differences could be accounted for by the
microstructural mechanisms such as the difference in mi-
cromoduli or the internodal distances.

In conclusion, this study presents a novel approach for
the constitutive modeling and thus characterization of the
mechanical properties of biological tissue in accordance
to its microstructures.
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Appendix

For the ease of visualization, a granular interpretation of
the theory is introduced: the solid is modeled as a regu-
lar array of equal-sized elastic spheres of diameter d,the
centers of which form Bravais lattice. It is noted that the
theory itself does not require such an interpretive aid.

The displacements of the particles are assumed to vary
little at the lengths on the order of their separations. A
smooth vector field of the translation function u(X, t) is
introduced, where X is the position vector of an arbitrary
point in the body and t is time. The vector field of the
translation displacement is assumed to coincide with the
real translation of the granular body particles at the node
a, where X = x.

An incremental vector ∆uα is introduced, which is de-
fined as

∆uα = u(x+ζζζα , t)−u(x, t) (A-1)

It represents an increment of the translation vector u in a
transition from an arbitrary node a to the adjacent node
bα (Figure A-1).

The above increment vector may be expanded in a con-
vergent Taylor series in a neighborhood of an arbitrary
node a whose position vector is x. Truncating this series
at the M−th term we obtain

∆uα =
M

∑
χ=1

(ηα)χ

χ!
(τα · ∇ )χu(x, t) (A-2)

when X = x.

Based on the above assumptions, the axial microstrain is
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Figure A-1 : Translations of the doublet nodes a and b α ,
ηα is the distance between the two doublet nodes, τττα is
the unit vector along the original direction from node a
to bα , and ζζζα is the new direction vector after the defor-
mation.

obtained

εα = ταi

M

∑
χ=1

(ηα)χ−1

χ!
ταk1 · · ·ταkχ

∂χui

∂xk1 · · ·∂xkχ

(A-3)

It follows that the first approximation (M = 1) for the
axial microstrain takes the form

εα = ταiτα jεi j (A-4)

where εi j =
1
2
(
∂ui

∂x j
+

∂u j

∂xi
)

And the second approximation (M = 2) takes the form

εα = ταiτα j
∂ui

∂x j
+

1
2

ηαταiτα jταk
∂2ui

∂x j∂xk
(A-5)

in expansion, it becomes:

εα = τ2
α1

∂u1

∂x1
+ τα1τα2(

∂u1

∂x2
+

∂u2

∂x1
)+ τ2

α2
∂u2

∂x2

+
ηα

2

(
τ3

α1
∂2u1

∂x2
1

+2τ2
α1τα2

∂2u1

∂x1∂x2
+ τ2

α2τα1
∂2u1

∂x2
2

(A-6)

+τ2
α1τα2

∂2u2

∂x2
1

+2τ2
α2τα1

∂2u2

∂x1∂x2
+ τ3

α2
∂2u2

∂x2
2

)

Microstress pα that is associated with εα is defined. The
microstress-microstrain constitutive relationship is:

pα =
n

∑
β=1

Aαβεβ (A-7)

where Aαβ are the micro-level elastic moduli. This rela-
tionship is obtained under the assumption that the particle
interactions are longitudinal (central), so that the shear
and torsional microstresses vanish everywhere.

The transition from microstresses to macrostresses is
achieved by applying equilibrium equations and the re-
sulting relationship is

σ(M)
k1i =

n

∑
α=1

ταk1

M

∑
χ=1

(−1)χ+1 (ηα)χ−1

χ!

ταk2 · · ·ταkχ

∂χ−1(pαi)
∂xk2 · · ·∂xkχ

(A-8)

(A-9)

The first approximation (M = 1) for the stress takes the
form

σi j =
n

∑
α=1

τα jταi pα (A-10)

It is further derived that the macromoduli for M = 1case
becomes

Ci jkl =
n

∑
α,β=1

Aαβταiτα jτβkτβl (A-11)

The second approximation (M = 2) for the continuum
stress takes the form

σi j =
n

∑
α=1

τα j(ταipα − 1
2

ηαταkταk
∂pα

∂xk
) (A-12)

The more general variants of the theory are introduced in
[Ferrari, Granik, Imam, and Nadeau, (1997)].


