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Finite-Element Nonlinear Dynamics of Flexible Structures in Three Dimensions

S. Okamoto1 and Y. Omura1

Abstract: The purpose of this study is to develop a pro-
cedure for performing a dynamic analysis in the case that
a structure undergoes large translational and rotational
displacements when moving along a nonlinear trajectory
at variable velocity. Finite-element equations of motion
that include the inertial force of the structure’s motion
have been derived. The equations also account for the ge-
ometric nonlinearity that has to be considered in a prob-
lem of finite translational and rotational displacements.
A finite rotational matrix was used to transfer vectors or
matrices measured in a certain coordinate frame to those
measured in another coordinate frame. The computa-
tional code for simulating body behavior was developed
using the derived equations. The validity of the formu-
lations and the computational code was verified by com-
paring the numerical solutionsobtained using the compu-
tational code with our experimental results and the ana-
lytical solutions of another researcher. As an application
of the new method, the time history response of a model
system for movement along an arc trajectory was calcu-
lated using the developed computational code.

keyword: Finite rotation, large displacement, flexi-
ble structure, dynamics, finite element method, time-
integration method, air resistance.

1 Introduction

The international space station, currently under construc-
tion with international cooperation, is a large and com-
plex structure, and future space structures may be even
larger and more complex. These structures are deliv-
ered into an orbit around the earth, and may be delivered
in regions of space out of the range of the earth in the
future. Consequently, the weight of members and parts
of space structures must be reduced. Lightened and en-
larged structures would become flexible and undergo sig-
nificant deformation when subjected to a load due to their
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reduced stiffness. If robot arms become flexible due to
such lightening, the consequent deformation will reduce
the controllability of position and orientation. A number
of studies on large displacements of flexible structures
have been conducted to date, however, most are based
on statistical methods [Maeda and Hayashi (1976); Goto
(1983)], with only a few employing a dynamic analysis
[Bathe, Ramm and Wilson (1975); Zui, Inoue, Imura and
Fujikawa (1986); Iura and Atluri (1988); Zupan and Saje
(2003)]. To the best of our knowledge, there have been
no studies involving the dynamic analysis of a flexible
structure moving along a nonlinear trajectory at variable
velocity.

In the present study, the acceleration of an arbitrary point
in a flexible 3D structure moving along a nonlinear tra-
jectory is derived, followed by the derivation of the finite-
element equations of motion considering the accelera-
tion. A computational code for time history response
analysis of 3D-framed structures is then developed. The
performance of the Newmark method and modified New-
ton method was evaluated in order to select the most ef-
fective time-integration method for nonlinear dynamics
[Okamoto and Omura (2000)]. Experiments on the static
bending and free vibration of cantilevers, and frame mo-
tion when a cantilever moves along a nonlinear trajec-
tory, were carried out in order to compare the numerical
solutions with the experimental results. By comparing
the numerical solutionswith our experimental results and
the analytical results for the static bending of cantilevers
by Holden (1972), the validity of the formulations in re-
gard to the finite rotational matrices, the nonlinear geo-
metric stiffness matrices, and the vector of nodal point
forces equivalent to the element stresses, was established
[Okamoto and Omura (1998)]. The consideration of not
only the viscous damping force due to internal friction
of a body but also air resistance is discussed in the case
that a body undergoes large displacements at high speed
in air, based on a comparison of the experimental and
numerical results for free vibration. Finally, as an appli-
cation of the proposed method, a comparison is made be-
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tween the numerical solutions and the experimental val-
ues for when the clamped end of a cantilever moves along
an arc trajectory.

2 Formulations

In developing the finite-element equations, we used the
updated Lagrangian (UL) formulation. The expressions
developed for general motion were such that the coor-
dinate frame fixed to the body, namely the global coor-
dinate frame, is not the inertial frame, and moves along
a nonlinear trajectory at variable velocity. We also con-
sider that the body undergoes large translational and ro-
tational displacements, yet strains remain small. This
means that the strains in the coordinate frame fixed to the
finite element remain infinitesimal, while the same coor-
dinate frame undergoes large translational and rotational
displacements.

2.1 Coordinate frames

The schematics of body motion and the coordinate
frames are shown in Figs. 1 and 2. In the figures, the
O− X1X2X3 frame is the inertial coordinate frame that
moves with linear uniform velocity, and∗o− ∗x1

∗x2
∗x3

and ∗o j − ∗x j
1

∗x j
2

∗x j
3 are the global andj-th element

frames at time∗(= 0, t, or t + ∆ t), respectively. The
o−x1x2x3 frame is the global coordinate frame observed
in the global frame, that is,o = 0o, to or t+∆to, and
xk = 0xk, t xk or t+∆t xk (k=1, 2 or 3).

2.2 Displacement

Let’s assume that a body elastically deforms as it under-
goes translational and rotational motion. An arbitrary
point 0p in the body at time 0 moves to the pointt p at
time t, and thent+∆t p at timet +∆ t , as shown in Fig. 2.
When the total displacements at pointst p andt+∆t p, and
the incremental displacement during∆ t measured in the
element coordinate frame at timet are denoted bye ′t u,

e ′t+∆t u ande ′ ∆u, total displacements are given by

e ′t+∆tu = e ′t u + e ′ ∆u (1)

A physical quantity measured in the inertial, the global
or the element coordinate frame at time 0,t, or t +∆ t, is
appended the symboli, g, e, i ′, g ′, e ′, i ′′, g ′′ or e ′′ at the
lower left. Here,i=i ′=i ′′.
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Figure 1 : Body motion in inertial coordinate frame

2.3 Absolute acceleration

The absolute acceleration e ′t+∆ta at the pointt+∆t p mea-
sured in the element coordinate frame at timet is given
by

e ′t+∆t a = Te ′ i ′′ i ′′
t+∆tR̈ + Te ′ g ′′{ g ′′t+∆t r̈

+ g ′′t+∆tΩ̇ × g ′′t+∆tr +2 g ′′t+∆tΩ× g ′′t+∆t ṙ

+ g ′′t+∆tΩ × ( g ′′t+∆tΩ × g ′′t+∆tr)} (2)

where i ′′
t+∆t R is the position vector of the origint+∆to

measured in the inertial coordinate frame at timet +∆ t,
and g ′′t+∆tΩ is the rotational angular velocity of the body
measured in the global coordinate frame at timet +∆ t,
as shown in Fig. 1. The matrixTe ′i ′′ denotes the transfer
matrix of a finite rotation to transfer the vector quantities
measured in the inertial coordinate frame at timet +∆ t to
those measured in the element coordinate frame at timet,
andTe ′g ′′ denotes the transfer matrix of a finite rotation
to transfer the vector quantities measured in the global
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coordinate frame at timet +∆ t to those measured in the
element coordinate frame at timet, whereTT

e ′g ′′=Tg ′′e ′ .
The vector g ′′t+∆tr denotes the position vector with ini-
tial and end pointso

(
=t+∆t o

)
and t+∆t p, respectively,

as shown in Fig. 2. Then, g ′′t+∆t r is given by the fol-
lowing expression using the position vectorg ′t r and the
incremental displacemente ′ ∆u:
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Figure 2 : Body motion in global coordinate frame

g ′′t+∆t r = Tg ′′g ′ g ′t r + Tg ′′e ′ e ′ ∆u (3)

whereTg ′′g ′ denotes the transfer matrix of a finite ro-
tation to transfer the vector quantities measured in the
global coordinate frame at timet to those measured in
the global coordinate frame at timet +∆ t. Substituting
Eq. (3) into Eq. (2) yields the following expression:

e ′t+∆ta = Te ′ i ′′ i ′′
t+∆tR̈ + Te ′ g′ g ′t r̈

+ Te ′ g ′′{ g ′′t+∆t Ω̇× (Tg ′′ g ′ g ′t r + Tg ′′ e ′ e ′∆u)}
+ 2Te ′ g ′′{ g ′′t+∆tΩ × (Tg ′′g ′ g ′t ṙ + Tg ′′ e ′ e ′∆u̇)}
+ Te ′ g ′′[ g ′′t+∆t Ω×{ g ′′t+∆tΩ× (Tg ′′ g ′ g ′t r

+ Tg ′′ e ′ e ′∆u)}]+ e ′∆ü (4)

where the component in thexk - direction of e ′t+∆ta is
denoted e ′t+∆tak.

2.4 Principle of virtual work

A body in equilibrium at timet +∆ t is shown in Figs. 1
and 2. Here, let us consider the element that include the
point t+∆t p of the body. If the volume and the area of the
surface of the element at timet are denotedtV e andtS e,
respectively, the principle of virtual work for the element
at timet +∆ t measured in the element coordinate frame
at timet is expressed as

−
∫

tV e
δe ′∆uk

tρ e ′t+∆t ak d tV e

−
∫

tV e
δe ′∆εkl e ′t+∆t skl d tV e

+
∫

t Se
δe ′∆uk e ′t+∆t f S

k d tS e

+
∫

tV e
δe ′∆uk e ′t+∆t f B

k d tV e = 0 (5)

where

e ′∆εkl = e ′∆εL
kl + e ′∆εN

kl (6)

e ′∆εL
kl =

1
2

(
∂ e ′∆uk

∂ t xl
+

∂ e ′∆ul

∂ t xk

)
(7)

e ′∆εN
kl =

1
2

(
∂ e ′∆um

∂ t xl

∂ e ′∆um

∂ t xk

)
(8)

Here, e ′t+∆t skl is the second Piola-Kirchhoff stress and

e ′∆εkl is the incremental Green-Lagrange strain. Then,
e ′t+∆t f S

k is the surface force and e ′t+∆t f B
k is the body force.

2.5 Finite-element equations of motion

The finite-element equation of motion derived from Eq.
(5) is expressed as

e ′t+∆t f a + e ′t+∆t f v +
{

e ′t f τ +
(

e ′ K e + e ′t K τ
)

e ′∆d + e ′O(2)
}

= e ′t+∆t f e (9)
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where

e ′t+∆t f a =
∫

tV e
e ′ N T tρ e ′t+∆t a dtV e (10)

e ′t f τ =
∫

tV e
e ′ BL

T
e ′t τ dtV e (11)

e ′ K e =
∫

tV e
e ′ BL

T D e ′ BL dtV e (12)

e ′t K τ =
∫

tV e
e ′ BN

T
e ′t τ̂ e ′ BN dtV e (13)

e ′t+∆t f e =
∫

tV e
e ′ N T

e ′t+∆t f B dtV e

+
∫

t Se
e ′ N T

e ′t+∆t f S dtSe (14)

Here, e ′t+∆t f a is the inertial force in terms of absolute
acceleration, e ′t+∆t f v is the viscous damping force due to
internal friction of the element,e ′t f τ is the vector of nodal
point forces equivalent to the element stresses at timet,

e ′O(2) is a second-order term or higher, e ′t+∆t f e is the
external force,e ′ K e is the linear strain stiffness matrix,

e ′t K τ is the nonlinear geometric stiffness matrix,e ′∆d
is the vector of increments in the nodal point displace-
ments,e ′ N is the shape function matrix,e ′ BL is the lin-
ear strain-displacement transformation matrix,e ′ B N is
the nonlinear strain-displacement transformation matrix,
D is the elasticity matrix,e ′t τ is the vector of Cauchy
stresses, ande ′t τ̂ is the matrix of Cauchy stresses. The
detail of the derivation ofe ′t f τ, e ′ K e and e ′t K τ is de-
scribed in the literatures [Okamoto and Omura (1995);
Batha (1996)].

If the viscous damping force e ′t+∆t f j
v due to internal fric-

tion in the element is proportional to the velocity, it is
given by

e ′t+∆t f v = e ′t+∆t C e ′t+∆t ḋ (15)

where e ′t+∆t C is the viscous damping matrix and e ′t+∆t ḋ
is the vector of nodal point velocities. Further more, if
proportional viscous damping can be assumed, the ma-
trix e ′t+∆t C is expressed as

e ′t+∆t C = α e ′ Ke (16)

whereα is a constant.

It is impossible to ignore air resistance when a body un-
dergoes large displacements at high speed in air. Mori-
son’s force [JSME (1998)] is used here for air resistance,

given by

e ′t+∆t f m = e ′t+∆t f ṽ + e ′t+∆t f ã (17)

where e ′t+∆t f m is Morison’s force, e ′t+∆t f ṽ is the drag due
to the velocity of air, and e ′t+∆t f ã is the inertial resistance
due to the acceleration of air. For example, in the case
of the two-node element shown in Fig. 3, the drag and
inertial resistance are given by

e ′t+∆t f ṽ i = CD

ρ f
tSi

2 e ′t+∆t ḋ i | e ′t+∆t ḋ i| ,

(i = 1∼ 3,7∼ 9) (18)

e ′t+∆t f ã i = Cm

ρ f
tV e

2 e ′t+∆t d̈ i ,

(i = 1∼ 3,7∼ 9) (19)

where e ′t+∆t f ṽ i and e ′t+∆t f ã i are the components of

e ′t+∆t f ṽ and e ′t+∆t f ã, respectively. The components of
i = 4∼ 6 and 10∼ 12 are assumed to be zero. In these
equations,CD is the drag coefficient,Cm is the added
mass coefficient,ρ f is the mass density of air, andtSk

is the area of the surface vertical to thexk - axis.

The equation of motion accounting for both the viscous
damping force due to internal friction and air resistance
is given by

e ′t+∆t f a + e ′t+∆t f v +
{

e ′t f τ +
(

e ′ K e + e ′t K τ
)

e ′∆d + e ′O(2)
}

= e ′t+∆t f e (20)

where

e ′t+∆t f a = e ′t+∆t f a + e ′t+∆t f ã (21)

e ′t+∆t f v = e ′t C e ′t+∆t ḋ + e ′t+∆t f ṽ (22)

Hereafter, the symbolj at the upper right of vectors and
matrices indicates expressions for thej-th element. If Eq.
(20) is transferred to the equation measured in the global
coordinate frame at timet +∆ t using the transfer matrix
Tg ′′e ′ , i.e.

g ′′t+∆t f j
a + g ′′t+∆t f j

v

+
{

g ′′t f j
τ +

(
g ′′ K j

e + g ′′t K j
τ

)
g ′′∆d j + g ′′O j(2)

}

= g ′′t+∆t f j
e (23)
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where

g ′′t+∆t f j
a = T j

g ′′ e′ e ′t+∆t f j
a (24)

g ′′t+∆t f j
v = T j

g ′′ e′ e ′t+∆t f j
v (25)

g ′′t f j
τ = T j

g ′′ e′ e ′t f j
τ (26)

g ′′ K j
e = T j

g ′′ e′ e ′ K j
e T j

g ′′e′
T

(27)

g ′′t K j
τ = T j

g ′′ e′ e ′t K j
τ T j

g ′′ e′
T

(28)

g ′′ ∆d j = T j
g ′′ e′ e ′ ∆d j (29)

g ′′ O j(2) = T j
g ′′ e′ e ′ O j(2) (30)

g ′′t+∆t f j
e = T j

g ′′ e′ e ′t+∆t f j
e (31)

and if the equations of motion for all elements are gen-
erated, namely Eq. (23), then composing all the equa-
tions and taking account of boundary conditions gives
the equation of motion for the whole body, expressed as

g ′′t+∆t f a + g ′′t+∆t f v

+
{

g ′′t f τ +
(

g ′′ K e + g ′′t K τ
)

g ′′∆d + g ′′O(2)
}

= g ′′t+∆t f e (32)

The term of second order or higherg ′′ O (2) was ignored
in the simulations because it is negligibly small relative
to the other terms.

2.6 Method of calculation

The computational code for time history response analy-
sis of framed structures in 3D space was developed using
the above formulations. Two methods were used to solve
Eq. (32), as outlined in the following.

One of the methods used was the Newmark method,
which is an extension of the linear acceleration method.
The solutions at timet +∆ t are calculated as if the coef-
ficient matrices of Eq. (32), such as the stiffness matrices
were constant from timet to t +∆ t.

The other method used was the modified Newton
method, which is an iteration scheme. Below is the for-
mulation for the modified Newton method based on Eq.
(32) [see Bathe, Ramm and Wilson (1975)].

( g ′′ K e + g ′′t K τ )∆
(

g ′′∆d
)(k)

=

g ′′t+∆t f e − g ′′t+∆t f a
(k)− g ′′t+∆t f v

(k)− g ′′t+∆t f τ
(k−1)

(33)

g ′′∆d
(k)

= g ′′∆d
(k−1)

+∆
(

g ′′∆d
)(k)

(34)

g ′′∆d̈
(k)

=
1

β (∆t)2 g ′′∆d
(k)− 1

β ∆t g ′′t ḋ − 1
2 βg ′′t d̈(35)

g ′′∆ḋ
(k)

= ∆t (1−γ) g ′′t d̈ −∆t γ g ′′t+∆t d̈
(k)

(36)

whereβ andγ are parameters that determine integration
accuracy and stability. The superscripts(k−1) and(k)
refer to the number of iterations. The calculations are
iterated until the appropriate convergence criteria are sat-
isfied. The modified Newton method corresponds to the
condition that acceleration from timet to t + ∆ t can be
interpolated by a curved line.

3 Experiments

Experiments were conducted for a cantilever under three
conditions: static bending, free vibration and frame mo-
tion when the clamped end of the cantilever moves along
a nonlinear trajectory.

3.1 Static bending

A brass cantilever of length 0.9 [m] and diameter 3[mm]
was used in the static bending experiment. The displace-
ment of the cantilever due to a tare load alone was mea-
sured, followed by measurements of both a tare load on
the cantilever and a concentrated load on the free end
due to a weight of 50, 100 or 150[g]. The weight was
limited to 150[g] so as not to exceed the elastic limit of
the cantilever. The physical parameters of brass are listed
in Table 1.

3.2 Free vibration

A stainless steel cantilever was used in the free vibra-
tion experiment. The length of the cantilever was 0.9[m],
and the width and height of the rectangular cross-section
were 6[mm] and 2[mm], respectively. The physical pa-
rameters of stainless steel are listed in Table 1.

Method of measurement The vibration of the can-
tilever was captured by video camera. Time history re-
sponse data were generated from the video by processing
on a personal computer.

3.3 Frame motion

An experiment on frame motion in the case that the
clamped end of a cantilever moves along a nonlinear
trajectory was carried out. An aluminum cantilever
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was used in this experiment, with dimensions 1.0 [m] ×
20[mm]× 2[mm]. The physical parameters of aluminum
are listed in Table 1. The behavior of the body was cap-
tured by the same method as that used in the free vibra-
tion experiment.

4 Results

4.1 Analysis model

In the simulations, analysis models idealizing the can-
tilevers used in the experiments were used. The analysis
models were divided into two-node elements, as shown
in Fig. 3.

4.2 Static bending

The analysis model used in the static bending experiment
was an idealized cantilever divided into nine two-node
elements.

Table 1 : Physical parameters

Brass Stainless steel Aluminum
ρ 8.53×103 8.03×103 2.71×103

E 110×109 197×109 69×109

ν 0.33 0.34 0.28

ρ : Mass density
[
kg/m3

]
E : Young’s modulus

[
N/m2

]
ν : Poisson’s ratio

The Newmark method (β = 1/4) was used for time in-
tegration. Initially, the displacement due to a tare load
alone was calculated. In the simulation, the tare load
on the cantilever was gradually increased quasi-statically
up to a level equal to gravitational acceleration (g =
9.8 [m/s2]). Then the displacements due to both a tare
load on the cantilever and a concentrated load on the free
end were calculated such that the system became quasi-
static. The numerical solutions and experimental values
are shown in Fig. 4.

The displacement of the free end of the cantilever under
a uniformly distributed load was calculated. The results
are shown in Fig. 5, in which the solid line is the nu-
merical solution obtained in this study and the dot-dash
line is the analytical solution by Holden (1972); the two
solutions are in good agreement.
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Figure 3 : Two-node element
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Figure 4 : Deformation of cantilever under both tare load
and concentrated load on free end due to weight

It is clear from these results that the formulations con-
cerning the transfer matrices of finite rotation, the nonlin-
ear geometric stiffness matrices, and the vector of nodal
forces equivalent to the element stresses, are all relevant.

4.3 Free vibration

The analysis model for the free vibration experiment was
divided into nine two-node elements.

The time history response of the cantilever when the free
end was loaded with a half-sine-wave force, as shown in
Fig. 6, was calculated using the Newmark method (β =
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1/4). The time increment∆ t was set at 1.0× 10−2 [s]
in order to describe the vibrations up to the third mode
of bending (f3 = 12.4 [Hz]). A value of 1.6×10−3 was
used for the constant of proportional viscous dampingα
such that the damping ratioζ was 0.4 %, as found from
the experimental results. The numerical solution for the
lateral displacement of the free end in the global coordi-
nate frame, the origin of which is fixed to the clamped
end of the cantilever, is shown in Fig. 7. The response in
the range from 0[s] to 2[s] comprises both the free vibra-
tion and the forced vibration due to the half-sine-wave
force. The response after 2[s] therefore represents only
free vibration.

To examine the effect of applying the force more rapidly,
the response of the body to the application of the impulse
force shown in Fig. 8 was calculated. The time increment
∆ t and constant of proportional viscous dampingα were
the same as for the previous calculation. The numerical
solutions for lateral displacement of the free end by the
Newmark method (β = 1/4) and the modified Newton
method (β = 1/4, γ= 1/2) are shown in Fig. 9. The dis-
placement after application of an impulse force should
approach zero, however as can be seen from Fig. 9, the
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Figure 6 : Half-sine-wave force
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Figure 7 : Lateral displacement of free end of cantilever
under half-sine-wave force

solution by the Newmark method converges to a value
greater than zero. This is due to the fact that the modi-
fied Newton method has negligible cumulative numerical
error because it is based on the condition that the acceler-
ation during∆ t is interpolated by a curved line, whereas
the Newmark method cumulates a significant numerical
error because the acceleration during∆ t is interpolated
linearly. These results show that the modified Newton
method is more effective for dynamic analyses in cases
where the acceleration changes rapidly.

4.4 Damping forces

The damping forces were examined by comparing the
numerical solutionsby the modified Newton method with
the experimental values.

The constant of proportional viscous dampingα ob-
tained in experiments wasα = 1.6× 10−3 (ζ = 0.4 %),
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Figure 9 : Lateral displacement of free end of cantilever
under impulse force

found under conditions of free vibration with small dis-
placement. The numerical solutions using this value of
α = 1.6×10−3 are shown together with the experimental
results in Fig. 10. The numerical solution does not match
the experimental values when both displacement and ve-
locity are large becauseα is too small. Numerical solu-
tions using a larger value ofα, for example 2.1× 10−3

(ζ = 1.5 %) are shown with the experimental values in
Fig. 11. In this case, the numerical solution fits the ex-
perimental results when both displacement and velocity
are large, yet does not agree well when the displacements
are small due to the largeα. These results indicate that it
is inadequate to consider only the viscous damping force
due to internal friction when both displacement and ve-
locity are large.

The behavior of the cantilever considering the viscous
damping force due to internal friction and air resistance
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Figure 10 : Lateral displacement of free end of cantilever
considering viscous damping force due to internal fric-
tion of α = 1.6×10−3

was also calculated. The constant of proportional vis-
cous dampingα was set at 1.6×10−3 (ζ = 0.4 %), as in
the previous experiments. A value of 1.0 was used for
the added mass coefficientCm because the beam is quite
long compared with the lengths of the sides of the rect-
angular cross-section. The drag coefficientCD due to air
resistance was set at 5.0 so as to correspond with the ex-
perimental conditions. According to JSME (1998), the
drag coefficientCD for a beam with rectangular cross-
section is around 2 when the Reynold’s number (Re) for
the air at relative velocity is between 103 and 5×103, in-
creasing to 20 to 40 whenRe is below 103. As Re in the
present simulation is in the range 0 to 1.5×103, theCD of
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Figure 11 : Lateral displacement of free end of cantilever
considering viscous damping force due to internal fric-
tion of α = 2.1×10−3

5.0 used in the simulation is qualitatively accurate. The
numerical solution and experimental results are shown in
Fig. 12; the close correspondence indicates that consid-
ering both viscous damping force due to internal friction
and air resistance provides a more accurate solution when
displacement and velocity become large.

4.5 Frame motion in two dimensions

The experiment on frame motion was performed by
translating the clamped end of a cantilever along an arc
trajectory of radius and subtending angle 450[mm] and
π/2[rad], respectively. A stop of every stiffness constant
of theX1 -, X2 - andX3 - directions 5×102 [N/m](= ks1 =
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α = 1.6×10−3, Cm = 1.0,CD = 5.0

Figure 12 : Lateral displacement of free end of cantilever
considering both viscous damping force due to internal
friction and air resistance

ks2 = ks3) was set the end of the trajectory. The experi-
mental results for each 0.1[s] are indicated by the broken
line in Fig. 13. The time history of displacement in the
X1 - andX2 - directions, and angle of rotation around the
x3- axis, namelyΨ3 =

∫ t
0 Ω3dt, of the clamped end in

the inertial coordinate frame, the origin of which is the
center of the arc, is shown in Figs. 14, 15 and 16, respec-
tively. The time history of displacement of the free end
in the X1 - andX2 - directions in the inertial coordinate
frame is also shown as a broken line in Figs. 17 and 18,
respectively.
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Figure 14 : Displacement of clamped end of cantilever
in X1 - direction

A simulation reproducing the conditions of the experi-
ment was then carried out. The analysis model was di-
vided into ten two-node elements. The modified New-
ton method was used as the time-integration scheme. A
time increment∆ t of 1.0×10−2 [s] was used in order to
describe the vibrations up to the third mode of bending
( f3 = 10.22[Hz]). The constant of proportional viscous
dampingα was set at 2.0×10−3 (ζ = 0.9 %), found un-
der conditions of free vibration with small displacement.
A drag coefficientCD and added mass coefficientCm of
5.0 and 1.0, respectively, were used, consistent with the
previous experiments. The numerical solution for each
0.1 [s] is shown as a solid line in Fig. 13. The displace-
ment of the free end in thex1 - and x2 - directions is
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Figure 15 : Displacement of clamped end of cantilever
in X2 - direction
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Figure 16 : Angle of rotation of global coordinate frame
aroundx3 - axis

shown as a solid line in Figs. 17 and 18, respectively.
The numerical solution is in good agreement with the ex-
perimental results.

4.6 Frame motion in three dimensions

A simulation on a three dimensional problem was car-
ried out by translating the clamped end of the cantilever
of length and diameter 1.0[m] and 4[mm], respectively,
as well as moving along the arc trajectory in theX1 - X2

plane under the same conditions as the two dimensional
problem. The same stop as the two dimensional prob-
lem was set the end of the trajectory. The time history
of displacement of the clamped end inX3 - direction in
the inertial coordinate frame is shown in Fig. 19. By re-
ferring to JSME(1998), the drag coefficientCD and the
added mass coefficientCm for a beam with the circular
cross-section were set at 1.0 and 1.0, respectively. The
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time increment∆ t and the constant of proportional vis-
cous dampingα were set at the same values as the two
dimensional problem. The numerical solution for each
0.1 [s] is shown in Fig. 20. The displacement of the free
end in theX1 -, X2 - andX3 - directions is shown in Figs.
21, 22 and 23, respectively.
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Figure 17 : Displacement of free end of cantilever inX1

- direction under frame motion in two dimensions
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Figure 18 : Displacement of free end of cantilever inX2

- direction under frame motion in two dimensions

5 Conclusions

The objective of this research was to develop a proce-
dure for performing a dynamic analysis in the case that
a flexible structure undergoes large translational and ro-
tational displacements in three dimensions as it moves
along a nonlinear trajectory at variable velocity. The
finite-element equations of motion considering the iner-
tial force generated when a structure moves along a non-

8 10
±2

0

2

4

6

0 0.5 1 1.5
Time  t [ s ]

D
is

pl
ac

em
en

t  
X

3 
[ m

 ] [X10 ±1]

Figure 19 : Displacement of clamped end of cantilever
in X3 - direction under frame motion in three dimensions
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Figure 21 : Displacement of free end of cantilever inX1

- direction under frame motion in three dimensions
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Figure 22 : Displacement of free end of cantilever inX2

- direction under frame motion in three dimensions
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Figure 23 : Displacement of free end of cantilever inX3

- direction under frame motion in three dimensions

linear trajectory in three dimensions were derived. Fur-
thermore, a computational code for simulating the behav-
ior of a body was developed using the derived equations.
The validity of the formulations and the computational
code was verified by comparing numerical solutions ob-
tained using the computational code with experimental
results and the analytical solutions of another researcher.
The results presented in this paper indicated that;

(1) An iteration method such as the modified New-
ton method is more effective than a linear ac-
celeration method such as the Newmark method
as a time-integration scheme for problems in the
case that a structure undergoes large translational
and rotational displacements with rapid acceleration
changes.

(2) Both the viscous damping force due to internal fric-
tion of a body and air resistance must be consid-
ered when the body undergoes large displacements
at high speed in air.

Appendix: Finite rotational matrix
Let the right-handed rotation of the coordinate frameo−
x1x2x3 around the axial vectorθθ(= θ1e1 +θ2e2 +θ3e3)
by the finite angleθ(= |θθ|) result in o − x ′

1x′2x′3 . In
this case, the transfer matrix of a finite rotationT for
the transfer of vectors and matrices ino− x1x2x3 into a
o−x′1x′2x′3 frame is given by

T =




φ1
2 (1−cosθ)+cosθ φ1φ2(1−cosθ)+φ3sinθ

φ1φ2 (1−cosθ)−φ3sinθ φ2
2 (1−cosθ)+cosθ

φ3φ1 (1−cosθ)+φ2sinθ φ2φ3(1−cosθ)−φ1sinθ

φ3φ1(1−cosθ)−φ2sinθ

φ2φ3(1−cosθ)+φ1sinθ

φ3
2 (1−cosθ)+cosθ


 (37)

whereφ1, φ2 andφ3 denote the direction cosines ofθθ,
expressed as

φ1 =
θ1

θ
, φ2 =

θ2

θ
, φ3 =

θ3

θ
(38)
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