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Finite-Element Nonlinear Dynamics of Flexible Structuresin Three Dimensions

S. Okamoto! and Y. Omurat

Abstract: The purpose of this study is to develop a praeduced stiffness. If robot arms become flexible due to
cedure for performing a dynamic analysis in the case tisaich lightening, the consequent deformation will reduce
a structure undergoes large translational and rotatiotta controllability of position and orientation. A number
displacements when moving along a nonlinear trajectas studies on large displacements of flexible structures
at variable velocity. Finite-element equations of motiomave been conducted to date, however, most are based
that include the inertial force of the structure’s motioon statistical methods [Maeda and Hayashi (1976); Goto
have been derived. The equations also account for the (e383)], with only a few employing a dynamic analysis
ometric nonlinearity that has to be considered in a profBathe, Ramm and Wilson (1975); Zui, Inoue, Imura and
lem of finite translational and rotational displacementBujikawa (1986); lura and Atluri (1988); Zupan and Saje
A finite rotational matrix was used to transfer vectors ¢2003)]. To the best of our knowledge, there have been
matrices measured in a certain coordinate frame to thosestudies involving the dynamic analysis of a flexible
measured in another coordinate frame. The compu&ructure moving along a nonlinear trajectory at variable
tional code for simulating body behavior was developeaetlocity.
using the derived equations. The validity of the formyn the present study, the acceleration of an arbitrary point
lations and the computational code was verified by cofgr 5 flexible 3D structure moving along a nonlinear tra-
paring the numerical solutions obtained using the compdctory is derived, followed by the derivation of the finite-
tational code with our experimental results and the angament equations of motion considering the accelera-
lytical solutions of another researcher. As an applicatiggn. A computational code for time history response
of the new method, the time history response of a modg{alysis of 3D-framed structures is then developed. The
system for movement along an arc trajectory was cal@rformance of the Newmark method and modified New-
lated using the developed computational code. ton method was evaluated in order to select the most ef-
. , _ fective time-integration method for nonlinear dynamics
keyword:  Finite rotguon,. Iz_;\rge displacement, fIgX| Okamoto and Omura (2000)]. Experiments on the static
_bIe stru_cture, dynam_|cs, fmlte element method, tim ending and free vibration of cantilevers, and frame mo-
integration method, air resistance. tion when a cantilever moves along a nonlinear trajec-
tory, were carried out in order to compare the numerical
1 Introduction solutions with the experimental results. By comparing
. _ _ the numerical solutions with our experimental results and
The international space station, currently under constryfa analytical results for the static bending of cantilevers
tion with international cooperation, is a large and COMy Holden (1972), the validity of the formulations in re-
plex structure, and future space structures may be eYgRy tg the finite rotational matrices, the nonlinear geo-
larger and more complex. These structures are defiayic stiffness matrices, and the vector of nodal point
ered into an orbit around the earth, and may be delivergglo 5 equivalent to the element stresses, was established
in regions of space out of the range of the earth in 8kamoto and Omura (1998)]. The consideration of not
future. Consequently, the weight of members and pagi§y the viscous damping force due to internal friction
of space structures must be reduced. Lightened and g3 pody but also air resistance is discussed in the case
larged structures would become flexible and undergo Siflat a body undergoes large displacements at high speed
nificant deformation when subjected to a load due to their air, based on a comparison of the experimental and

1 , — — numerical results for free vibration. Finally, as an appli-
Department of Mechanical System Engineering, Hiroshima Uni-_ . fth d hod . . de b
versity, Kagamiyama, Higashi-Hiroshima, 739-8527 Japan Cation of the proposed method, a comparison Is made be-
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tween the numerical solutions and the experimental val-
ues for when the clamped end of a cantilever moves along
an arc trajectory.

2 Formulations

In developing the finite-element equations, we used the
updated Lagrangian (UL) formulation. The expressions

developed for general motion were such that the coor-
dinate frame fixed to the body, namely the global coor-

dinate frame, is not the inertial frame, and moves along
a nonlinear trajectory at variable velocity. We also con-

sider that the body undergoes large translational and ro-
tational displacements, yet strains remain small. This
means that the strains in the coordinate frame fixed to the
finite element remain infinitesimal, while the same coor-

dinate frame undergoes large translational and rotational
displacements.

2.1 Coordinateframes X3 Body att =0
O-X; X5, X3 :Inertial coordinate frame

The schematics of body motion and the coordinate *0 - "X, "X, "% : Global coordinate frame

frames are shown.in Fig§. 1 _and 2. Ip the figures, the *oj-*xlj*xzj*xé - Element coordinate frame

O — X1 XoX3 frame is the inertial coordinate frame that « =0 tort+ At

moves with linear uniform velocity, antb— *x; *X2 *X3
and*ol — *x} *x} *x} are the global angtth element
frames at timex(= 0, t, ort + At), respectively. The
0 — X1 X2X3 frame is the global coordinate frame observed
in the global frame, that isp = %0, 'o or 2o, and
X = ¢, X or Aty (k=1, 2 or 3).

Figure 1: Body motion in inertial coordinate frame

2.3 Absolute acceleration

The absolute acceleratioht$'a at the point*2tp mea-

2.2 Displacement sured in the element coordinate frame at time given
by

Let's assume that a body elastically deforms as it under-

goes translational and rotational motion. An arbitrary’&'a = Tein "R+ Tog{ "§

point °p in the body at time 0 moves to the poii at
timet, and theri*2!p at timet 4+ At, as shown in Fig. 2.
When the total displacements at poihpsand+2tp, and
the incremental displacement duridg measured in the
element coordinate frame at timeare denoted byf u,
t9tu and,, Au, total displacements are given by

+ RO x Tt 42 TRt <
+ P x(tPta x Yty )

where 'R is the position vector of the origif*to
measured in the inertial coordinate frame at tirmeAt,

and “p'Q is the rotational angular velocity of the body
measured in the global coordinate frame at timeAt,

as shown in Fig. 1. The matrikej» denotes the transfer
matrix of a finite rotation to transfer the vector quantities
A physical quantity measured in the inertial, the globaheasured in the inertial coordinate frame at ttme\t to

or the element coordinate frame at time,(prt +At, is those measured in the element coordinate frame attfime
appended the symbblg, e,i’, g’, €,i”, g” ore” atthe andTeqg: denotes the transfer matrix of a finite rotation
lower left. Hereji=i'=i". to transfer the vector quantities measured in the global

U =Ju+oAu @)
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coordinate frame at time+ At to those measured in the2.4  Principle of virtual work
element coordinate frame at timewhereTg/g//zTgne/.
The vector "i'r denotes the position vector with ini-
tial and end point® (='*4t 0) and'*A!p, respectively,
as shown in Fig. 2. Then,{!r is given by the fol-
lowing expression using the position vectgr and the
incremental displacemeptAu:

A body in equilibrium at time + At is shown in Figs. 1
and 2. Here, let us consider the element that include the
point'™2tp of the body. If the volume and the area of the
surface of the element at timere denotedv® and'S®,
respectively, the principle of virtual work for the element
at timet + At measured in the element coordinate frame
at timet is expressed as

- /Ve 500 'p Ut dive
- / Seley @5 d'Ve
Ve

+ / B AU, TS dise
tse

S /Veée/Auk At £B gtve — 0 )

L

X, (or 0%, %, , tr4ix)) Bodyatt=0 "\ nere

X P

0-X% X, X, : Global coordinate frame A e/Ash —I—e/ASH (6)
*0-*xJ*x)*x} : Element coordinate frame

*=0,tort+ At

Figure 2 : Body motion in global coordinate frame /Ash _ } 0/Au n 0o AY, 7)
€ 2\ oty 0tx,
t+At,. t

0" 1= Tgrg o'l + Tgrer e AU ®3) AeN _ 1 (9eAUn9e AUy, -

where T4rg denotes the transfer matrix of a finite ro-
tation to transfer the vector quantities measured in the
global coordinate frame at timeto those measured inHere, 4t s4 is the second Piola-Kirchhoff stress and
the global coordinate frame at tinhe- At. Substituting e/AskI is the incremental Green-Lagrange strain. Then,

Eqg. (3) into Eq. (2) yields the following expression: 44t {3is the surface force and! f£ is the body force.
Ha = Ty MR+ Teg gt
+ Tegd "P'Qx(Tyg o 1+ Tyre oAU)} 25 Finite-element equations of motion
t+%t nat t/ nNal al ! - H 1 I
+ 2Megrl g7 Q X (Tgrg o/ T+ Tgrer oAU} The finite-element equation of motion derived from Eq.
+ Tegl "PQx{ U (Tyg g r (5) is expressed as
+ Tgre eAU) ] + AU (4)

t+At t+At t t
where the component in the, - direction of tdtais ¢ fat @ fyt{efi+(eKeteKe)ebd+e0(2)]
denoted *4ta,. = W, (9)
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where given by
e, = /Vee/NTtp Hat g gtye (10) "= U+ U4 (17)
o= / JB TdT dve (11) Where &' ) is Morison's force, 8" f ; is the drag due
! tve to the velocity of air, and*&" f ; is the inertial resistance
Ko = / +B.T DB, dVe (12) due to the acceleration of air. For example, in the case
tye of the two-node element shown in Fig. 3, the drag and
- inertial resistance are given b
JK, = /Vee/BNT ot o By dive (13) given by
Pt 'S : :
HA, = /Vee/NT tHALE B ghye A = Cp - HAg B
i=1~37~9 18
+ / JNT UAES g (14) e ( ) (18)
s HAE Pe V" tHAL
e lai — mT5 e Ui,
Here, Y4'f , is the inertial force in terms of absolute (i=1~3,7~9) (19)

acceleration,"*§! f ,, is the viscous damping force due to

internal friction of the elementJf | is the vector of nodal where ot fy; and ot f5; are the components of
point forces equivalent to the element stresses at Itjme“re%tf\7 and otf 5 respectively. The components of
-0O(2) is a second-order term or highet&'f . is the j =4~ 6 and 10~ 12 are assumed to be zero. In these
external fOl’CGe/ K. is the linear strain stiffness ma'[l’iX,equations,CD is the drag coefficientC,, is the added
&K, is the nonlinear geometric stiffness matrixAd mass coefficientp; is the mass density of air, ari

is the vector of increments in the nodal point displacgs the area of the surface vertical to the- axis.

ments,, N is the shape function matrix, B, is the lin- g gy ation of motion accounting for both the viscous

ear strai_n-displac_emgnt transformation matrg>_<BN is damping force due to internal friction and air resistance
the nonlinear strain-displacement transformation matrié’given by

D is the elasticity matrix ¢l T is the vector of Cauchy
stresses, ang T is the matrix of Cauchy stresses. The+ats t+AL t t

1 ’ + /f——|— /f + /K —|—/K /Ad"- /02
detail of the derivation ot}f,, K, andd K, isde- © & ° 7 fefor(oKeteKo)e 0@}

o : : = (20)
scribed in the literatures [Okamoto and Omura (1995); e
Batha (1996)].

) i te] _ . where

If the viscous damping forcé & f} due to internal fric-
tlgn in the element is proportional to the velocity, it |St+§tf§ _ t+eA/tfa 4t . 21)
given by
t+At _ At t+AL .

e’ f v — e C e d (15) t+§tfv _ et/ C t+e%t d + t+§tf\7 (22)

where 4 C is the viscous damping matrix antfé* d . _
is the vector of nodal point velocities. Further more, fiéreafter, the symbgl at the upper right of vectors and

proportional viscous damping can be assumed, the ratrices indicates expressions for ke element. If Eq.

trix "4 C is expressed as (20) is transferred to the equation measured in the global
coordinate frame at time+ At using the transfer matrix
HAMC=a K, (16) Tgre i€
wherea is a constant. teargl o teagl

It is impossible to ignore air resistance when a body un- { tf ( iotud - -

. . . . . " n K ! " K ) //AdJ //()J 2 }
dergoes large displacements at high speed in air. Mori- AL Tﬂ_ grKeto'K ) grhdl +4/01(2)
son’s force [JSME (1998)] is used here for air resistance, = “g]%t fl (23)
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where oA"Y = A Y a(gad)Y (34)
. . _ =k 1 = (K 1 = 1 .=
t—ié%tf{i — Té//el t+€9tf{i (24) g//Ad = B (At)zg//Ad — B Atg//d — 2 Bg// d(35)
t+Me ) _ Tl t+At ¢ ] = (k = = (k
oty = Tge ey @5 ad" = ata-ygid-ay ©d"Y @39)
. T where3 andy are parameters that determine integration
g KE = ThgeKiTye (27) accuracy and stability. The superscrifits- 1) and (k)
ty i twiai T refer to the number of iterations. The calculations are
g// K-[ == Tg//e, e’/ K-[ Tg//e, (28) . . . . .
_ _ _ iterated until the appropriate convergence criteria are sat-
grAd) = Tl o Ad] (29) isfied. The modified Newton method corresponds to the
g//oj(z) _ Té]”e’ e/oj(z) (30) condition that acceleration from timeto t + At can be

AL L tete | interpolated by a curved line.
WL = Ty VEHL (31)

3 Experiments
and if the equations of motion for all elements are gen-

erated, namely Eq. (23), then composing all the eqUazPeriments were conducted for a cantilever under three
tions and taking account of boundary conditions givé®nditions: static bending, free vibration and frame mo-

the equation of motion for the whole body, expressed 49N when the clamped end of the cantilever moves along
a nonlinear trajectory.

T YT o
+{g"fr+ (;rKet o Ky) g +4,0(2)}
S (32)

3.1 Staticbending

A brass cantilever of length.@[m| and diameter §nm|

was used in the static bending experiment. The displace-
o ment of the cantilever due to a tare load alone was mea-
The term of second order or higherO (2) was ignored gyred, followed by measurements of both a tare load on
in the simulations because it is negligibly small relativihe cantilever and a concentrated load on the free end

to the other terms. due to a weight of 50, 100 or 15@. The weight was
limited to 150[g] so as not to exceed the elastic limit of

2.6 Method of calculation the cantilever. The physical parameters of brass are listed
in Table 1.

The computational code for time history response analy-
sis of framed structures in 3D space was developed Usflg Freevibration

the above formulations. Two methods were used to solve _ _ _
Eq. (32), as outlined in the following. A stainless steel cantilever was used in the free vibra-

ct)ign experiment. The length of the cantilever wes[f],

On_e o_f the metho_ds used was the Newmgrk metha d the width and height of the rectangular cross-section

which is an extension of the linear acceleration method, . .

The solutions at time-+ At are calculated as if the coef-Were 6mm] and 2/mm), respectively. The physical pa-
€s + rameters of stainless steel are listed in Table 1.

ficient matrices of Eq. (32), such as the stiffness matrices o
were constant from timetot 4 At. Method of measurement The vibration of the can-

method, which is an iteration scheme. Below is the focr}rg\ a personal comg uter yp 9
mulation for the modified Newton method based on Eq. P puter.

(32) [see Bathe, Ramm and Wilson (1975)].

3.3 Framemotion

(o Keo+giK )A( //Aa)(k) _ An experiment on frame motion in the case that the
g" e T T/ g 1 clamped end of a cantilever moves along a nonlinear
— Yt T( - )(33) trajectory was carried out. An aluminum cantilever

- = (K = (K
tJE]%tfe_ tE%tfa()_ t—lg-]%tfv()
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was used in this experiment, with dimension8[in] x
20[mm]| x 2[mm|. The physical parameters of aluminum X,
are listed in Table 1. The behavior of the body was cap-

tured by the same method as that used in the free vibra-

j
tion experiment. & ;
X,
4 Results
4.1 Analysis model
I_n the S|mula_t|ons, analy_S|s models idealizing the can- Figure 3: Two-node element
tilevers used in the experiments were used. The analysis
models were divided into two-node elements, as shown
in Fig. 3.
4.2 Static bending [X 10*]
1 T T T T T T T T T
The analysis model used in the static bending experiment 0 1
was an idealized cantilever divided into nine two-node
elements. _ % §
- £ +2 0[g].
Table 1: Physical parameters o 43 |
[} -
Brass | Stainless stee] Aluminum @ x4 50 [g]
p [853<10° | 8.03x10° | 2.71x10° S %5 _ T
E | 110x10° | 197x10° 69x 10° § +61- + 100 [g] |
v| 033 0.34 0.28 i 150 Tg1(Weight) |
. - —— Numerical
p : Mass densitykg/m?| +8F Experimental .
E : Young's modulus[N/n¥]| Y
v : Poisson’s ratio 0123 456 78910
: X 10
Coordinate x; [ m] [

The Newmark methodd= 1/4) was used for time in- Figure4: Deformation of cantilever under both tare load
tegration. Initially, the displacement due to a tare log'd concentrated load on free end due to weight
alone was calculated. In the simulation, the tare load

on the cantilever was gradually increased quasi-statica}[[ly lear f h its that the f lati
up to a level equal to gravitational acceleratian={ IS clear from these results that the formuiations con-

9.8[m/s2)). Then the displacements due to both a tapgrningthetransfer matrices of finite rotation, the nonlin-

load on the cantilever and a concentrated load on the ff&é& geometric stiffness matrices, and the vector of nodal

end were calculated such that the system became qulj%p_es equivalent to the element stresses, are all relevant.

static. The numerical solutions and experimental values

are shown in Fig. 4. 4.3 Freevibration

The displacement of the free end of the cantilever under

a uniformly distributed load was calculated. The resulfd1e analysis model for the free vibration experiment was
are shown in Fig. 5, in which the solid line is the nudivided into nine two-node elements.

merical solution obtained in this study and the dot-dagihe time history response of the cantilever when the free
line is the analytical solution by Holden (1972); the twend was loaded with a half-sine-wave force, as shown in
solutions are in good agreement. Fig. 6, was calculated using the Newmark meth@d=(
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[X 10 i1] 3 T T T T
10 T T T T T T T ul T L
2 -
o e - z
= gl Linear theory /'/Numerical | A i
% 7t . 8
o =] o 0
=] 6 r /// ’/’/ = < <
g 5l /, =~ ) +1 | | | |
3 iy 0 1 2 3 10 12 14
§ ar pd 7 Time t[s]
S 3+ ] E
2 Analytical (by Holden) . .
A 2r . Figure 6 : Half-sine-wave force
1 - -
0 1 1 1 1 1 1 1 1 1 [Xloil]
01 2 3 45 6 7 8 910 6
3 T T T T T T
Load parameter k=w L”/ (El) E-
w : Uniformly distributed load [N/ m] = 4t Newmark 1
L : Length of cantilever [ m ] 3,
El : Flexural rigidity [ Nm? ] =
o 2 .
5
FigureS: I?isplacement of free end of cantilever under g o f\(\[\{\{\(\[\/\/\/\/\/\,\/\,\,\,\,\,\,\,\V,\V,\V
uniformly distributed load o VVVVVVVVVVVvvvuvvuey
Q 12 | | | |

| |
o 2 4 6 8 10 12 14

] ] ) Time t[s]
1/4). The time incremen\t was set at D x 10~ “[g]

in order to describe the vibrations up to the third mode . , .
of bending s — 12.4[Hz)). A value of 16 x 10-3 was F19ure7: Lateral displacement of free end of cantilever

used for the constant of proportional viscous dampingtnder half-sine-wave force

such that the damping rattbwas 04 %, as found from

the experimental results. The numerical solution for the
lateral displacement of the free end in the global coordi?!ution by the Newmark method converges to a value

nate frame, the origin of which is fixed to the Clampegreater than zero. This is dqe_to the fact t_hat the mpdi-
end of the cantilever, is shown in Fig. 7. The responsefiﬁd Newton method has negligible cumulative numerical
the range from s to 2[s] comprises both the free vibra-£0r because it is based on the condition that the acceler-
tion and the forced vibration due to the half-sine-waion duringAt is interpolated by a curved line, whereas

force. The response aftefs therefore represents onIJhe Newmark method cumulates a significant numerical
free vibration. error because the acceleration durikgis interpolated

T ine the effect of ina the f _dllinearly. These results show that the modified Newton
0 examine [he eliect ot applying the Torce More rapidiyy o 44 js more effective for dynamic analyses in cases

the response of t_he body to the appllcatlon_of the 'mpUIaﬁ]ere the acceleration changes rapidly.
force shown in Fig. 8 was calculated. The time increment

At and constant of proportional viscous dampingere 44 Damping forces

the same as for the previous calculation. The numerical _ _ _
solutions for lateral displacement of the free end by tHde damping forces were examined by comparing the
Newmark method{ = 1/4) and the modified Newton numerical solutions by the modified Newton method with
method B = 1/4,y= 1/2) are shown in Fig. 9. The dis-the experimental values.

placement after application of an impulse force shoulthe constant of proportional viscous dampioagob-
approach zero, however as can be seen from Fig. 9, tiaed in experiments was = 1.6 x 1073 (Z = 0.4 %),



294 Copyright(© 2003 Tech Science Press CMES, vol.4, no.2, pp.287-299, 2003
6 T T T T T [XlOﬂ]
'Z 4_ | — 3 . T T T T T T
5 s '
2 . = 1 - [\ /\ (\ {\‘ | -
3 % ol AR A
g O S 11f :
iz 1 1 1 1 1 CIE.) i2:,
0 0.1 6 8 10 12 14 & +3b ;
Time t[s] & 1al —— Numerical |
a " Experimental
15 1 1 1 1 1 1
Figure8: Impulse force o 1 2 3 4 5 6 7
Time t[s]
[XlOﬂ] (@ O[gto7]g
6 T T T T T T +1
E 4 | [X10™]
'—('\‘ n 3 T T T T T T
* Al I |
S TP R s -
2 O L oA
8 +2 R . I ' [ ; AN AN AN
< AR — Newmark GE) +1 RIRVAYRVAYRY
I Modified Newton- o 28 M W oy Y YU U .
o 1 1 1 1 1 1 ‘_% 13‘ N
6 & —— Numerical
0 2 4 6 8 10 12 14 @ sl T AV
Time t[S] o +5 1 1 ] | p| |
7 8 9 10 11 12 13 14

Time t[s]
(b) 7[g to14]g

Figure9: Lateral displacement of free end of cantilever
under impulse force

Figure 10: Lateral displacement of free end of cantilever
found under conditions of free vibration with small disgozs(;fsr[]gl \élsci)gfgdamplng force due to internal fric-
placement. The numerical solutions using this value or o

a = 1.6 x 102 are shown together with the experimental

results in Fig. 10. The numerical solution does not match

the experimental values when both displacement and ;s also calculated. The constant of proportional vis-
locity are large becauseis too small. Numerical solu- cous dampingt was set at B x 10~ ( = 0.4%), as in
tions using a larger value af, for example 2L x 10~ the previous experiments. A value oflwas used for

(¢ = 1.5%) are shown with the experimental values ifhe added mass coefficieBt, because the beam is quite
Fig. 11. In this case, the numerical solution fits the e}sng compared with the lengths of the sides of the rect-
perimental results when both displacement and velociigular cross-section. The drag coeffici€ptdue to air
are large, yet does notagree well when the displacemegi§stance was set afBso as to correspond with the ex-
are small due to the large These results indicate that itherimental conditions. According to JSME (1998), the
is inadequate to consider only the viscous damping forggag coefficientCp for a beam with rectangular cross-
due to internal friction when both displacement and v@ection is around 2 when the Reynold’s numiRe) for
locity are large. the air at relative velocity is between 3@nd 5x 103, in-
The behavior of the cantilever considering the viscoaseasing to 20 to 40 wheRe is below 1. As Rein the
damping force due to internal friction and air resistangeesent simulation is in the range 0 t& X 103, theCp of
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[X10*!] [X10™]
3 T T T T T T 3 T T T T T T
£ 2 [\ T T 2F i T
3 R Y |
> 0: {\ {\ ﬁh\ ﬁ ,ﬁ‘ Ap 1 > 0: ! A f\ {\ {\ A Aonoa
2 4 PV RS S x1f ] \/
S +2r | ¥ 5 *2f
8 3 ; - 8 3 ' 1
2 ! —— Numerical (o3 ! —— Numerical
L +4H . D+ ;
a L Experimental [a) L Experimental
i5 1 1 1 1 1 1 i5 1 1 1 1 1 1
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
Time t[s] Time t[s]
(@ O[sjto7]g (@ O[gto7]g
[X10*!] [X10™]
3 T T T T T T 3 T T T T T T
£ 2r T £ 2r T
~ 1f . ~ 1 .
5 =]
Dy _ 0
g +1H A S +1
g 2 - & 2
8 13} _ - 8 23} _ -
& +al- — Numerical & 14l — Numerical
[ N Experimental [ i Experimental
+5 1 1 | 1 1 1 +5 1 1 | 1 1 1
7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14
Time t[s] Time t[s]
(b) 7][s|to14]s] (b) 7[sto14]s]
Figure1l: Lateral displacement of free end of cantilever a=16x10"3Cn=10,Cp =50

considering viscous damping force due to internal fri

onofa — 2.1 x 10-3 Figure12: Lateral displacement of free end of cantilever

considering both viscous damping force due to internal
friction and air resistance

5.0 used in the simulation is qualitatively accurate. The
numerical solution and experimental results are shown in

Fig. 12; the close correspondence indicates that consid-

ering both viscous damping force due to internal frictiort> _ k) was set the end of the trajectory. The experi-

. . . , mental results for each D[g are indicated by the broken
and air resistance provides a more accurate solution when .

displacement and velocity become large line in Fig. 13. The time history of displacement in the
P y ge- X1 - andX; - directions, and angle of rotation around the

X3- axis, namelyWs = [;Qadt, of the clamped end in
the inertial coordinate frame, the origin of which is the
The experiment on frame motion was performed lmgnter of the arc, is shown in Figs. 14, 15 and 16, respec-
translating the clamped end of a cantilever along an dieely. The time history of displacement of the free end
trajectory of radius and subtending angle 4501 and in the X; - andX; - directions in the inertial coordinate
11/2[rad], respectively. A stop of every stiffness constarftame is also shown as a broken line in Figs. 17 and 18,
of the Xy -, X, - andXs - directions 5< 10°[N/m|(=kg = respectively.

45 Frame motion in two dimensions
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[X10*] T X107
18 T t\ 0 — b6 T T T T
= N
L i X
15 ‘ - 4F -
. c
—_ H <)
E 10t 5 1 5 2r i
B 3
X = =
L 5t - 4 0 <<
E ..... &) +2 1 1 1 1
g )" Trajectory 0 0.5 1 1.5 8 10
S 0 = | Time t[s]
/; Nume_rical
+5 | Zio EXTe“mema'- Figure 15 : Displacement of clamped end of cantilever
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in X, - direction shown as a solid line in Figs. 17 and 18, respectively.

The numerical solution is in good agreement with the ex-
perimental results.

A simulation reproducing the conditions of the experi: . . .

) . .6 Framemotion in three dimensions
ment was then carried out. The analysis model was di-
vided into ten two-node elements. The modified NewA simulation on a three dimensional problem was car-
ton method was used as the time-integration schemeriéd out by translating the clamped end of the cantilever
time incremenit of 1.0 x 1072 [ was used in order toof length and diameter.a[m] and 4mm], respectively,
describe the vibrations up to the third mode of bendirag well as moving along the arc trajectory in &e- X,
(f3 = 10.22[HZ)). The constant of proportional viscouplane under the same conditions as the two dimensional
dampinga was set at D x 103 ( = 0.9 %), found un- problem. The same stop as the two dimensional prob-
der conditions of free vibration with small displacementem was set the end of the trajectory. The time history
A drag coefficientCp and added mass coefficiet, of of displacement of the clamped endXg - direction in
5.0 and 10, respectively, were used, consistent with thae inertial coordinate frame is shown in Fig. 19. By re-
previous experiments. The numerical solution for eaébrring to JISME(1998), the drag coefficie@p and the
0.1]g] is shown as a solid line in Fig. 13. The displaceadded mass coefficief, for a beam with the circular
ment of the free end in thg; - andx, - directions is cross-section were set atdland 10, respectively. The
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time incrementAt and the constant of proportional vis-
cous dampingr were set at the same values as the two
dimensional problem. The numerical solution for each
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—_ 1
0.1[g is shown in Fig. 20. The displacement of the free & [)élO ]
end in theX; -, X, - andXs - directions is shown in Figs. E, ' ' Y
21, 22 and 23, respectively. ~ 4F -
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Figure 17 : Displacement of free end of cantileverXa
- direction under frame motion in two dimensions
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Figure 18 : Displacement of free end of cantileverfa  ,&°
- direction under frame motion in two dimensions ~ “—————————— )
t=1.0f E
5 Conclusions
The objective of this research was to develop a proce-
dure for performing a dynamic analysis in the case that t=1.2

a flexible structure undergoes large translational and ro-
tational displacements in three dimensions as it moves
along a nonlinear trajectory at variable velocity. The
finite-element equations of motion considering the iner-
tial force generated when a structure moves along a non-

Figure

20 : Frame motion in three dimensions
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Figure 21 : Displacement of free end of cantileveria
- direction under frame motion in three dimensions
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Figure 22 : Displacement of free end of cantileveria
- direction under frame motion in three dimensions
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Figure 23 : Displacement of free end of cantileveria
- direction under frame motion in three dimensions
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linear trajectory in three dimensions were derived. Fur-
thermore, a computational code for simulating the behav-
ior of a body was developed using the derived equations.
The validity of the formulations and the computational
code was verified by comparing numerical solutions ob-
tained using the computational code with experimental
results and the analytical solutions of another researcher.
The results presented in this paper indicated that;

(1) An iteration method such as the modified New-
ton method is more effective than a linear ac-
celeration method such as the Newmark method
as a time-integration scheme for problems in the
case that a structure undergoes large translational
and rotational displacements with rapid acceleration
changes.

(2) Both the viscous damping force due to internal fric-
tion of a body and air resistance must be consid-
ered when the body undergoes large displacements
at high speed in air.

Appendix:  Finiterotational matrix

Let the right-handed rotation of the coordinate frame
X1XoX3 around the axial vectod (= 0,e, +6,e,+ 6;e;)
by the finite angled (= (6]) result ino—xXoX; . In
this case, the transfer matrix of a finite rotatidnfor
the transfer of vectors and matricesan- x1Xox3 into a
0— XXX frame is given by

@2 (1—cos9) + cosd ®,¢, (1 —cosd) + ¢, sin®
@@, (1—cosB) —@,sin® @, (1— cosh) + cosd
@3¢, (1—cos0) +@,sind  @,@;(1—cosh) — @, Sind
@3¢, (1—cosB) — @,sind
@¢;(1—cosB) + @, sind
®;% (1— cos) + cosd

(37)

where@,, @, and @, denote the direction cosines 6f
expressed as

(38)
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